1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
# Some simple financial calculations
# patterned after spreadsheet computations.
# There is some complexity in each function
# so that the functions behave like ufuncs with
# broadcasting and being able to be called with scalars
# or arrays (or other sequences).
import numpy as np
__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate',
'irr', 'npv', 'mirr']
_when_to_num = {'end':0, 'begin':1,
'e':0, 'b':1,
0:0, 1:1,
'beginning':1,
'start':1,
'finish':0}
def _convert_when(when):
try:
return _when_to_num[when]
except KeyError:
return [_when_to_num[x] for x in when]
def fv(rate, nper, pmt, pv, when='end'):
"""
Compute the future value.
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
Number of compounding periods
pmt : scalar or array_like of shape(M, )
Payment
pv : scalar or array_like of shape(M, )
Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Future values. If all input is scalar, returns a scalar float. If
any input is array_like, returns future values for each input element.
If multiple inputs are array_like, they all must have the same shape.
Notes
-----
The future value is computed by solving the equation::
fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
Examples
--------
What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100. Assume the interest rate is
5% (annually) compounded monthly?
>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748
By convention, the negative sign represents cash flow out (i.e. money not
available today). Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.
If any input is array_like, returns an array of equal shape. Let's
compare different interest rates from the example above.
>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([ 15692.92889434, 16569.87435405, 17509.44688102])
"""
when = _convert_when(when)
rate, nper, pmt, pv, when = map(np.asarray, [rate, nper, pmt, pv, when])
temp = (1+rate)**nper
miter = np.broadcast(rate, nper, pmt, pv, when)
zer = np.zeros(miter.shape)
fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
return -(pv*temp + pmt*fact)
def pmt(rate, nper, pv, fv=0, when='end'):
"""
Compute the payment against loan principal plus interest.
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray
Payment against loan plus interest. If all input is scalar, returns a
scalar float. If any input is array_like, returns payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
Notes
-----
The payment ``pmt`` is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
Examples
--------
What would the monthly payment need to be to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?
>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619
In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required.
"""
when = _convert_when(when)
rate, nper, pv, fv, when = map(np.asarray, [rate, nper, pv, fv, when])
temp = (1+rate)**nper
miter = np.broadcast(rate, nper, pv, fv, when)
zer = np.zeros(miter.shape)
fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
return -(fv + pv*temp) / fact
def nper(rate, pmt, pv, fv=0, when='end'):
"""
Compute the number of periods.
Parameters
----------
rate : array_like
Rate of interest (per period)
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
Notes
-----
The number of periods ``nper`` is computed by solving the equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
Examples
--------
If you only had $150 to spend as payment, how long would it take to pay-off
a loan of $8,000 at 7% annual interest?
>>> np.nper(0.07/12, -150, 8000)
64.073348770661852
So, over 64 months would be required to pay off the loan.
The same analysis could be done with several different interest rates
and/or payments and/or total amounts to produce an entire table.
>>> np.nper(*(np.ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000]))
array([[[ 32.58497782, 38.57048452],
[ 71.51317802, 86.37179563]],
<BLANKLINE>
[[ 33.07413144, 39.26244268],
[ 74.06368256, 90.22989997]]])
"""
when = _convert_when(when)
rate, pmt, pv, fv, when = map(np.asarray, [rate, pmt, pv, fv, when])
try:
z = pmt*(1.0+rate*when)/rate
except ZeroDivisionError:
z = 0.0
A = -(fv + pv)/(pmt+0.0)
B = np.log((-fv+z) / (pv+z))/np.log(1.0+rate)
miter = np.broadcast(rate, pmt, pv, fv, when)
zer = np.zeros(miter.shape)
return np.where(rate==zer, A+zer, B+zer) + 0.0
def ipmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Not implemented. Compute the payment portion for loan interest.
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
per : scalar or array_like of shape(M, )
Interest paid against the loan changes during the life or the loan.
The `per` is the payment period to calculate the interest amount.
nper : scalar or array_like of shape(M, )
Number of compounding periods
pv : scalar or array_like of shape(M, )
Present value
fv : scalar or array_like of shape(M, ), optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Interest portion of payment. If all input is scalar, returns a scalar
float. If any input is array_like, returns interest payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
See Also
--------
ppmt, pmt, pv
Notes
-----
The total payment is made up of payment against principal plus interest.
``pmt = ppmt + ipmt``
"""
total = pmt(rate, nper, pv, fv, when)
# Now, compute the nth step in the amortization
raise NotImplementedError
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Not implemented. Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def pv(rate, nper, pmt, fv=0.0, when='end'):
"""
Compute the present value.
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pmt : array_like
Payment
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray, float
Present value of a series of payments or investments.
Notes
-----
The present value ``pv`` is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0
or, when ``rate = 0``::
fv + pv + pmt * nper = 0
"""
when = _convert_when(when)
rate, nper, pmt, fv, when = map(np.asarray, [rate, nper, pmt, fv, when])
temp = (1+rate)**nper
miter = np.broadcast(rate, nper, pmt, fv, when)
zer = np.zeros(miter.shape)
fact = np.where(rate == zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
return -(fv + pmt*fact)/temp
# Computed with Sage
# (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x - p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r + p*((r + 1)^n - 1)*w/r)
def _g_div_gp(r, n, p, x, y, w):
t1 = (r+1)**n
t2 = (r+1)**(n-1)
return (y + t1*x + p*(t1 - 1)*(r*w + 1)/r)/(n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r + p*(t1 - 1)*w/r)
# Use Newton's iteration until the change is less than 1e-6
# for all values or a maximum of 100 iterations is reached.
# Newton's rule is
# r_{n+1} = r_{n} - g(r_n)/g'(r_n)
# where
# g(r) is the formula
# g'(r) is the derivative with respect to r.
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest ``rate`` is computed by solving the equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
or, if ``rate = 0``::
fv + pv + pmt * nper = 0
"""
when = _convert_when(when)
nper, pmt, pv, fv, when = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff<tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def irr(values):
"""
Return the Internal Rate of Return (IRR).
This is the rate of return that gives a net present value of 0.0.
Parameters
----------
values : array_like, shape(N,)
Input cash flows per time period. At least the first value would be
negative to represent the investment in the project.
Returns
-------
out : float
Internal Rate of Return for periodic input values.
Examples
--------
>>> np.irr([-100, 39, 59, 55, 20])
0.2809484211599611
"""
res = np.roots(values[::-1])
# Find the root(s) between 0 and 1
mask = (res.imag == 0) & (res.real > 0) & (res.real <= 1)
res = res[mask].real
if res.size == 0:
return np.nan
rate = 1.0/res - 1
if rate.size == 1:
rate = rate.item()
return rate
def npv(rate, values):
"""
Returns the NPV (Net Present Value) of a cash flow series.
Parameters
----------
rate : scalar
The discount rate.
values : array_like, shape(M, )
The values of the time series of cash flows. Must be the same
increment as the `rate`.
Returns
-------
out : float
The NPV of the input cash flow series `values` at the discount `rate`.
Notes
-----
Returns the result of:
.. math :: \\sum_{t=1}^M{\\frac{values_t}{(1+rate)^{t}}}
"""
values = np.asarray(values)
return (values / (1+rate)**np.arange(1,len(values)+1)).sum(axis=0)
def mirr(values, finance_rate, reinvest_rate):
"""
Modified internal rate of return.
Parameters
----------
values : array_like
Cash flows (must contain at least one positive and one negative value)
or nan is returned.
finance_rate : scalar
Interest rate paid on the cash flows
reinvest_rate : scalar
Interest rate received on the cash flows upon reinvestment
Returns
-------
out : float
Modified internal rate of return
"""
values = np.asarray(values)
pos = values > 0
neg = values < 0
if not (pos.size > 0 and neg.size > 0):
return np.nan
n = pos.size + neg.size
numer = -npv(reinvest_rate, values[pos])*((1+reinvest_rate)**n)
denom = npv(finance_rate, values[neg])*(1+finance_rate)
return (numer / denom)**(1.0/(n-1)) - 1
|