summaryrefslogtreecommitdiff
path: root/numpy/lib/financial.py
blob: ded809c4d8ede643b996fd4a6daa3200e5b2b3da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Some simple financial calculations
#  patterned after spreadsheet computations.

# There is some complexity in each function
#  so that the functions behave like ufuncs with
#  broadcasting and being able to be called with scalars
#  or arrays (or other sequences).
import numpy as np

__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate',
           'irr', 'npv', 'mirr']

_when_to_num = {'end':0, 'begin':1,
                'e':0, 'b':1,
                0:0, 1:1,
                'beginning':1,
                'start':1,
                'finish':0}

def _convert_when(when):
    try:
        return _when_to_num[when]
    except KeyError:
        return [_when_to_num[x] for x in when]


def fv(rate, nper, pmt, pv, when='end'):
    """
    Compute the future value.

    Parameters
    ----------
    rate : array-like
        Rate of interest (per period)
    nper : array-like
        Number of compounding periods
    pmt : array-like
        Payment
    pv : array-like
        Present value
    when : array-like
        When payments are due ('begin' (1) or 'end' (0))

    Notes
    -----
    The future value is computed by solving the equation::

      fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) == 0

    or, when ``rate == 0``::

      fv + pv + pmt * nper == 0

    Examples
    --------
    What is the future value after 10 years of saving $100 now, with
    an additional monthly savings of $100.  Assume the interest rate is
    5% (annually) compounded monthly?

    >>> np.fv(0.05/12, 10*12, -100, -100)
    15692.928894335748

    By convention, the negative sign represents cash flow out (i.e. money not
    available today).  Thus, saving $100 a month at 5% annual interest leads
    to $15,692.93 available to spend in 10 years.

    """
    when = _convert_when(when)
    rate, nper, pmt, pv, when = map(np.asarray, [rate, nper, pmt, pv, when])
    temp = (1+rate)**nper
    miter = np.broadcast(rate, nper, pmt, pv, when)
    zer = np.zeros(miter.shape)
    fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
    return -(pv*temp + pmt*fact)

def pmt(rate, nper, pv, fv=0, when='end'):
    """
    Compute the payment.

    Parameters
    ----------
    rate : array-like
        Rate of interest (per period)
    nper : array-like
        Number of compounding periods
    pv : array-like
        Present value
    fv : array-like
        Future value
    when : array-like
        When payments are due ('begin' (1) or 'end' (0))

    Notes
    -----
    The payment ``pmt`` is computed by solving the equation::

      fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) == 0

    or, when ``rate == 0``::

      fv + pv + pmt * nper == 0

    Examples
    --------
    What would the monthly payment need to be to pay off a $200,000 loan in 15
    years at an annual interest rate of 7.5%?

    >>> np.pmt(0.075/12, 12*15, 200000)
    -1854.0247200054619

    In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained
    today, a monthly payment of $1,854.02 would be required.

    """
    when = _convert_when(when)
    rate, nper, pv, fv, when = map(np.asarray, [rate, nper, pv, fv, when])
    temp = (1+rate)**nper
    miter = np.broadcast(rate, nper, pv, fv, when)
    zer = np.zeros(miter.shape)
    fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
    return -(fv + pv*temp) / fact

def nper(rate, pmt, pv, fv=0, when='end'):
    """
    Compute the number of periods.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : array_like
        When payments are due ('begin' (1) or 'end' (0))

    Notes
    -----
    The number of periods ``nper`` is computed by solving the equation::

      fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) == 0

    or, when ``rate == 0``::

      fv + pv + pmt * nper == 0

    Examples
    --------
    If you only had $150 to spend as payment, how long would it take to pay-off
    a loan of $8,000 at 7% annual interest?

    >>> np.nper(0.07/12, -150, 8000)
    64.073348770661852

    So, over 64 months would be required to pay off the loan.

    The same analysis could be done with several different interest rates and/or
    payments and/or total amounts to produce an entire table.

    >>> np.nper(*(np.ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000]))
    array([[[ 32.58497782,  38.57048452],
            [ 71.51317802,  86.37179563]],
    <BLANKLINE>
           [[ 33.07413144,  39.26244268],
            [ 74.06368256,  90.22989997]]])

    """
    when = _convert_when(when)
    rate, pmt, pv, fv, when = map(np.asarray, [rate, pmt, pv, fv, when])
    try:
        z = pmt*(1.0+rate*when)/rate
    except ZeroDivisionError:
        z = 0.0
    A = -(fv + pv)/(pmt+0.0)
    B = np.log((-fv+z) / (pv+z))/np.log(1.0+rate)
    miter = np.broadcast(rate, pmt, pv, fv, when)
    zer = np.zeros(miter.shape)
    return np.where(rate==zer, A+zer, B+zer) + 0.0

def ipmt(rate, per, nper, pv, fv=0.0, when='end'):
    """
    Not implemented.

    """
    total = pmt(rate, nper, pv, fv, when)
    # Now, compute the nth step in the amortization
    raise NotImplementedError

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)

def pv(rate, nper, pmt, fv=0.0, when='end'):
    """
    Compute the present value.

    Parameters
    ----------
    rate : array-like
        Rate of interest (per period)
    nper : array-like
        Number of compounding periods
    pmt : array-like
        Payment
    fv : array-like
        Future value
    when : array-like
        When payments are due ('begin' (1) or 'end' (0))

    Notes
    -----
    The present value ``pv`` is computed by solving the equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    or, when ``rate = 0``::

     fv + pv + pmt * nper = 0

    """
    when = _convert_when(when)
    rate, nper, pmt, fv, when = map(np.asarray, [rate, nper, pmt, fv, when])
    temp = (1+rate)**nper
    miter = np.broadcast(rate, nper, pmt, fv, when)
    zer = np.zeros(miter.shape)
    fact = np.where(rate == zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
    return -(fv + pmt*fact)/temp

# Computed with Sage
#  (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x - p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r + p*((r + 1)^n - 1)*w/r)

def _g_div_gp(r, n, p, x, y, w):
    t1 = (r+1)**n
    t2 = (r+1)**(n-1)
    return (y + t1*x + p*(t1 - 1)*(r*w + 1)/r)/(n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r + p*(t1 - 1)*w/r)

# Use Newton's iteration until the change is less than 1e-6
#  for all values or a maximum of 100 iterations is reached.
#  Newton's rule is
#  r_{n+1} = r_{n} - g(r_n)/g'(r_n)
#     where
#  g(r) is the formula
#  g'(r) is the derivative with respect to r.
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """
    Compute the rate of interest per period.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : array_like, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : float, optional
        Starting guess for solving the rate of interest
    tol : float, optional
        Required tolerance for the solution
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest ``rate`` is computed by solving the equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    or, if ``rate = 0``::

     fv + pv + pmt * nper = 0

    """
    when = _convert_when(when)
    nper, pmt, pv, fv, when = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff<tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn

def irr(values):
    """Internal Rate of Return

    This is the rate of return that gives a net present value of 0.0

    npv(irr(values), values) == 0.0
    """
    res = np.roots(values[::-1])
    # Find the root(s) between 0 and 1
    mask = (res.imag == 0) & (res.real > 0) & (res.real <= 1)
    res = res[mask].real
    if res.size == 0:
        return np.nan
    rate = 1.0/res - 1
    if rate.size == 1:
        rate = rate.item()
    return rate

def npv(rate, values):
    """Net Present Value

    sum ( values_k / (1+rate)**k, k = 1..n)
    """
    values = np.asarray(values)
    return (values / (1+rate)**np.arange(1,len(values)+1)).sum(axis=0)

def mirr(values, finance_rate, reinvest_rate):
    """Modified internal rate of return

    Parameters
    ----------
    values:
        Cash flows (must contain at least one positive and one negative value)
        or nan is returned.
    finance_rate :
        Interest rate paid on the cash flows
    reinvest_rate :
        Interest rate received on the cash flows upon reinvestment
    """

    values = np.asarray(values)
    pos = values > 0
    neg = values < 0
    if not (pos.size > 0 and neg.size > 0):
        return np.nan

    n = pos.size + neg.size
    numer = -npv(reinvest_rate, values[pos])*((1+reinvest_rate)**n)
    denom = npv(finance_rate, values[neg])*(1+finance_rate)
    return (numer / denom)**(1.0/(n-1)) - 1