summaryrefslogtreecommitdiff
path: root/numpy/lib/machar.py
blob: 72fde37f2bfde474bc6fc1007bd65e35e436e660 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
Machine arithmetics - determine the parameters of the
floating-point arithmetic system
"""
# Author: Pearu Peterson, September 2003


__all__ = ['MachAr']

from numpy.core.fromnumeric import any
from numpy.core.numeric import seterr

# Need to speed this up...especially for longfloat

class MachAr(object):
    """Diagnosing machine parameters.

    The following attributes are available:

    ibeta  - radix in which numbers are represented
    it     - number of base-ibeta digits in the floating point mantissa M
    machep - exponent of the smallest (most negative) power of ibeta that,
             added to 1.0,
             gives something different from 1.0
    eps    - floating-point number beta**machep (floating point precision)
    negep  - exponent of the smallest power of ibeta that, substracted
             from 1.0, gives something different from 1.0
    epsneg - floating-point number beta**negep
    iexp   - number of bits in the exponent (including its sign and bias)
    minexp - smallest (most negative) power of ibeta consistent with there
             being no leading zeros in the mantissa
    xmin   - floating point number beta**minexp (the smallest (in
             magnitude) usable floating value)
    maxexp - smallest (positive) power of ibeta that causes overflow
    xmax   - (1-epsneg)* beta**maxexp (the largest (in magnitude)
             usable floating value)
    irnd   - in range(6), information on what kind of rounding is done
             in addition, and on how underflow is handled
    ngrd   - number of 'guard digits' used when truncating the product
             of two mantissas to fit the representation

    epsilon - same as eps
    tiny    - same as xmin
    huge    - same as xmax
    precision   - int(-log10(eps))
    resolution  - 10**(-precision)

    Reference:
      Numerical Recipies.
    """
    def __init__(self, float_conv=float,int_conv=int,
                 float_to_float=float,
                 float_to_str = lambda v:'%24.16e' % v,
                 title = 'Python floating point number'):
        """
          float_conv - convert integer to float (array)
          int_conv   - convert float (array) to integer
          float_to_float - convert float array to float
          float_to_str - convert array float to str
          title        - description of used floating point numbers
        """
        # We ignore all errors here because we are purposely triggering
        # underflow to detect the properties of the runninng arch.
        saverrstate = seterr(under='ignore')
        try:
            self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
        finally:
            seterr(**saverrstate)

    def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
        max_iterN = 10000
        msg = "Did not converge after %d tries with %s"
        one = float_conv(1)
        two = one + one
        zero = one - one

        # Do we really need to do this?  Aren't they 2 and 2.0?
        # Determine ibeta and beta
        a = one
        for _ in xrange(max_iterN):
            a = a + a
            temp = a + one
            temp1 = temp - a
            if any(temp1 - one != zero):
                break
        else:
            raise RuntimeError, msg % (_, one.dtype)
        b = one
        for _ in xrange(max_iterN):
            b = b + b
            temp = a + b
            itemp = int_conv(temp-a)
            if any(itemp != 0):
                break
        else:
            raise RuntimeError, msg % (_, one.dtype)
        ibeta = itemp
        beta = float_conv(ibeta)

        # Determine it and irnd
        it = -1
        b = one
        for _ in xrange(max_iterN):
            it = it + 1
            b = b * beta
            temp = b + one
            temp1 = temp - b
            if any(temp1 - one != zero):
                break
        else:
            raise RuntimeError, msg % (_, one.dtype)

        betah = beta / two
        a = one
        for _ in xrange(max_iterN):
            a = a + a
            temp = a + one
            temp1 = temp - a
            if any(temp1 - one != zero):
                break
        else:
            raise RuntimeError, msg % (_, one.dtype)
        temp = a + betah
        irnd = 0
        if any(temp-a != zero):
            irnd = 1
        tempa = a + beta
        temp = tempa + betah
        if irnd==0 and any(temp-tempa != zero):
            irnd = 2

        # Determine negep and epsneg
        negep = it + 3
        betain = one / beta
        a = one
        for i in range(negep):
            a = a * betain
        b = a
        for _ in xrange(max_iterN):
            temp = one - a
            if any(temp-one != zero):
                break
            a = a * beta
            negep = negep - 1
            # Prevent infinite loop on PPC with gcc 4.0:
            if negep < 0:
                raise RuntimeError, "could not determine machine tolerance " \
                                    "for 'negep', locals() -> %s" % (locals())
        else:
            raise RuntimeError, msg % (_, one.dtype)
        negep = -negep
        epsneg = a

        # Determine machep and eps
        machep = - it - 3
        a = b

        for _ in xrange(max_iterN):
            temp = one + a
            if any(temp-one != zero):
                break
            a = a * beta
            machep = machep + 1
        else:
            raise RuntimeError, msg % (_, one.dtype)
        eps = a

        # Determine ngrd
        ngrd = 0
        temp = one + eps
        if irnd==0 and any(temp*one - one != zero):
            ngrd = 1

        # Determine iexp
        i = 0
        k = 1
        z = betain
        t = one + eps
        nxres = 0
        for _ in xrange(max_iterN):
            y = z
            z = y*y
            a = z*one # Check here for underflow
            temp = z*t
            if any(a+a == zero) or any(abs(z)>=y):
                break
            temp1 = temp * betain
            if any(temp1*beta == z):
                break
            i = i + 1
            k = k + k
        else:
            raise RuntimeError, msg % (_, one.dtype)
        if ibeta != 10:
            iexp = i + 1
            mx = k + k
        else:
            iexp = 2
            iz = ibeta
            while k >= iz:
                iz = iz * ibeta
                iexp = iexp + 1
            mx = iz + iz - 1

        # Determine minexp and xmin
        for _ in xrange(max_iterN):
            xmin = y
            y = y * betain
            a = y * one
            temp = y * t
            if any(a+a != zero) and any(abs(y) < xmin):
                k = k + 1
                temp1 = temp * betain
                if any(temp1*beta == y) and any(temp != y):
                    nxres = 3
                    xmin = y
                    break
            else:
                break
        else:
            raise RuntimeError, msg % (_, one.dtype)
        minexp = -k

        # Determine maxexp, xmax
        if mx <= k + k - 3 and ibeta != 10:
            mx = mx + mx
            iexp = iexp + 1
        maxexp = mx + minexp
        irnd = irnd + nxres
        if irnd >= 2:
            maxexp = maxexp - 2
        i = maxexp + minexp
        if ibeta == 2 and not i:
            maxexp = maxexp - 1
        if i > 20:
            maxexp = maxexp - 1
        if any(a != y):
            maxexp = maxexp - 2
        xmax = one - epsneg
        if any(xmax*one != xmax):
            xmax = one - beta*epsneg
        xmax = xmax / (xmin*beta*beta*beta)
        i = maxexp + minexp + 3
        for j in range(i):
            if ibeta==2:
                xmax = xmax + xmax
            else:
                xmax = xmax * beta

        self.ibeta = ibeta
        self.it = it
        self.negep = negep
        self.epsneg = float_to_float(epsneg)
        self._str_epsneg = float_to_str(epsneg)
        self.machep = machep
        self.eps = float_to_float(eps)
        self._str_eps = float_to_str(eps)
        self.ngrd = ngrd
        self.iexp = iexp
        self.minexp = minexp
        self.xmin = float_to_float(xmin)
        self._str_xmin = float_to_str(xmin)
        self.maxexp = maxexp
        self.xmax = float_to_float(xmax)
        self._str_xmax = float_to_str(xmax)
        self.irnd = irnd

        self.title = title
        # Commonly used parameters
        self.epsilon = self.eps
        self.tiny = self.xmin
        self.huge = self.xmax

        import math
        self.precision = int(-math.log10(float_to_float(self.eps)))
        ten = two + two + two + two + two
        resolution = ten ** (-self.precision)
        self.resolution = float_to_float(resolution)
        self._str_resolution = float_to_str(resolution)

    def __str__(self):
        return '''\
Machine parameters for %(title)s
---------------------------------------------------------------------
ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s
machep=%(machep)s     eps=%(_str_eps)s (beta**machep == epsilon)
negep =%(negep)s  epsneg=%(_str_epsneg)s (beta**epsneg)
minexp=%(minexp)s   xmin=%(_str_xmin)s (beta**minexp == tiny)
maxexp=%(maxexp)s    xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)
---------------------------------------------------------------------
''' % self.__dict__


if __name__ == '__main__':
    print MachAr()