1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
|
__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack',
'column_stack','row_stack', 'dstack','array_split','split','hsplit',
'vsplit','dsplit','apply_over_axes','expand_dims',
'apply_along_axis', 'kron', 'tile', 'get_array_wrap']
import numpy.core.numeric as _nx
from numpy.core.numeric import asarray, zeros, newaxis, outer, \
concatenate, isscalar, array, asanyarray
from numpy.core.fromnumeric import product, reshape
def apply_along_axis(func1d,axis,arr,*args):
"""
Apply function to 1-D slices along the given axis.
Execute `func1d(arr[i],*args)` where `func1d` takes 1-D arrays, `arr` is
the input array, and `i` is an integer that varies in order to apply the
function along the given axis for each 1-D subarray in `arr`.
Parameters
----------
func1d : function
This function should be able to take 1-D arrays. It is applied to 1-D
slices of `arr` along the specified axis.
axis : integer
Axis along which `func1d` is applied.
arr : ndarray
Input array.
args : any
Additional arguments to `func1d`.
Returns
-------
outarr : ndarray
The output array. The shape of `outarr` depends on the return
value of `func1d`. If it returns arrays with the same shape as the
input arrays it receives, `outarr` has the same shape as `arr`.
See Also
--------
apply_over_axes : Apply a function repeatedly over multiple axes.
Examples
--------
>>> def my_func(a):
... \"\"\"Average first and last element of a 1-D array\"\"\"
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])
"""
arr = asarray(arr)
nd = arr.ndim
if axis < 0:
axis += nd
if (axis >= nd):
raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
% (axis,nd))
ind = [0]*(nd-1)
i = zeros(nd,'O')
indlist = range(nd)
indlist.remove(axis)
i[axis] = slice(None,None)
outshape = asarray(arr.shape).take(indlist)
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
# if res is a number, then we have a smaller output array
if isscalar(res):
outarr = zeros(outshape,asarray(res).dtype)
outarr[tuple(ind)] = res
Ntot = product(outshape)
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= outshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist,ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(ind)] = res
k += 1
return outarr
else:
Ntot = product(outshape)
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = len(res)
outarr = zeros(outshape,asarray(res).dtype)
outarr[tuple(i.tolist())] = res
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= holdshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(i.tolist())] = res
k += 1
return outarr
def apply_over_axes(func, a, axes):
"""
Apply a function repeatedly over multiple axes.
`func` is called as `res = func(a, axis)`, with `axis` the first element
of `axes`. The result `res` of the function call has to have
the same or one less dimension(s) as `a`. If `res` has one less dimension
than `a`, a dimension is then inserted before `axis`.
The call to `func` is then repeated for each axis in `axes`,
with `res` as the first argument.
Parameters
----------
func : function
This function should take two arguments, `func(a, axis)`.
arr : ndarray
Input array.
axes : array_like
Axes over which `func` has to be applied, the elements should be
integers.
Returns
-------
val : ndarray
The output array. The number of dimensions is the same as `a`,
the shape can be different, this depends on whether `func` changes
the shape of its output with respect to its input.
See Also
--------
apply_along_axis :
Apply a function to 1-D slices of an array along the given axis.
Examples
--------
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
<BLANKLINE>
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Sum over axes 0 and 2. The result has same number of dimensions
as the original array:
>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[ 60],
[ 92],
[124]]])
"""
val = asarray(a)
N = a.ndim
if array(axes).ndim == 0:
axes = (axes,)
for axis in axes:
if axis < 0: axis = N + axis
args = (val, axis)
res = func(*args)
if res.ndim == val.ndim:
val = res
else:
res = expand_dims(res,axis)
if res.ndim == val.ndim:
val = res
else:
raise ValueError, "function is not returning"\
" an array of correct shape"
return val
def expand_dims(a, axis):
"""
Expand the shape of an array.
Insert a new axis, corresponding to a given position in the array shape.
Parameters
----------
a : array_like
Input array.
axis : int
Position (amongst axes) where new axis is to be inserted.
Returns
-------
res : ndarray
Output array. The number of dimensions is one greater than that of
the input array.
See Also
--------
doc.indexing, atleast_1d, atleast_2d, atleast_3d
Examples
--------
>>> x = np.array([1,2])
>>> x.shape
(2,)
The following is equivalent to ``x[np.newaxis,:]`` or ``x[np.newaxis]``:
>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)
>>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis]
>>> y
array([[1],
[2]])
>>> y.shape
(2, 1)
Note that some examples may use ``None`` instead of ``np.newaxis``. These
are the same objects:
>>> np.newaxis is None
True
"""
a = asarray(a)
shape = a.shape
if axis < 0:
axis = axis + len(shape) + 1
return a.reshape(shape[:axis] + (1,) + shape[axis:])
def atleast_1d(*arys):
"""
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.
Parameters
----------
array1, array2, ... : array_like
One or more input arrays.
Returns
-------
ret : ndarray
An array, or sequence of arrays, each with ``a.ndim >= 1``.
Copies are made only if necessary.
See Also
--------
atleast_2d, atleast_3d
Examples
--------
>>> np.atleast_1d(1.0)
array([ 1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]])
>>> np.atleast_1d(x) is x
True
>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]
"""
res = []
for ary in arys:
res.append(array(ary,copy=False,subok=True,ndmin=1))
if len(res) == 1:
return res[0]
else:
return res
def atleast_2d(*arys):
"""
View inputs as arrays with at least two dimensions.
Parameters
----------
array1, array2, ... : array_like
One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have two or more dimensions are
preserved.
Returns
-------
res, res2, ... : ndarray
An array, or tuple of arrays, each with ``a.ndim >= 2``.
Copies are avoided where possible, and views with two or more
dimensions are returned.
See Also
--------
atleast_1d, atleast_3d
Examples
--------
>>> numpy.atleast_2d(3.0)
array([[ 3.]])
>>> x = numpy.arange(3.0)
>>> numpy.atleast_2d(x)
array([[ 0., 1., 2.]])
>>> numpy.atleast_2d(x).base is x
True
>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]
"""
res = []
for ary in arys:
res.append(array(ary,copy=False,subok=True,ndmin=2))
if len(res) == 1:
return res[0]
else:
return res
def atleast_3d(*arys):
"""
View inputs as arrays with at least three dimensions.
Parameters
----------
array1, array2, ... : array_like
One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have three or more dimensions are
preserved.
Returns
-------
res1, res2, ... : ndarray
An array, or tuple of arrays, each with ``a.ndim >= 3``.
Copies are avoided where possible, and views with three or more
dimensions are returned. For example, a one-dimensional array of
shape ``N`` becomes a view of shape ``(1, N, 1)``. An ``(M, N)``
array becomes a view of shape ``(N, M, 1)``.
See Also
--------
numpy.atleast_1d, numpy.atleast_2d
Examples
--------
>>> numpy.atleast_3d(3.0)
array([[[ 3.]]])
>>> x = numpy.arange(3.0)
>>> numpy.atleast_3d(x).shape
(1, 3, 1)
>>> x = numpy.arange(12.0).reshape(4,3)
>>> numpy.atleast_3d(x).shape
(4, 3, 1)
>>> numpy.atleast_3d(x).base is x
True
>>> for arr in np.atleast_3d(1, [1, 2], [[1, 2]]): print arr, "\\n"
...
[[[1]]]
[[[1]
[2]]]
[[[1]
[2]]]
"""
res = []
for ary in arys:
ary = asarray(ary)
if len(ary.shape) == 0:
result = ary.reshape(1,1,1)
elif len(ary.shape) == 1:
result = ary[newaxis,:,newaxis]
elif len(ary.shape) == 2:
result = ary[:,:,newaxis]
else:
result = ary
res.append(result)
if len(res) == 1:
return res[0]
else:
return res
def vstack(tup):
"""
Stack arrays vertically.
`vstack` can be used to rebuild arrays divided by `vsplit`.
Parameters
----------
tup : sequence of arrays
Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.
See Also
--------
array_split : Split an array into a list of multiple sub-arrays of
near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
vsplit : Split array into a list of multiple sub-arrays vertically.
dsplit : Split array into a list of multiple sub-arrays along the 3rd axis
(depth).
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
Examples
--------
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
"""
return _nx.concatenate(map(atleast_2d,tup),0)
def hstack(tup):
"""
Stack arrays in sequence horizontally (column wise)
Take a sequence of arrays and stack them horizontally to make
a single array. hstack will rebuild arrays divided by hsplit.
Parameters
----------
tup : sequence of ndarrays
All arrays must have the same shape along all but the second axis.
Returns
-------
stacked : ndarray
Ndarray formed by stacking the given arrays.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
return _nx.concatenate(map(atleast_1d,tup),1)
row_stack = vstack
def column_stack(tup):
"""
Stack 1-D arrays as columns into a 2-D array
Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns
first.
Parameters
----------
tup : sequence of 1-D or 2-D arrays.
Arrays to stack. All of them must have the same first dimension.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
arrays = []
for v in tup:
arr = array(v,copy=False,subok=True)
if arr.ndim < 2:
arr = array(arr,copy=False,subok=True,ndmin=2).T
arrays.append(arr)
return _nx.concatenate(arrays,1)
def dstack(tup):
"""
Stack arrays in sequence depth wise (along third dimension)
Take a sequence of arrays and stack them along the third axis.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing. dstack will rebuild arrays divided by dsplit.
Parameters
----------
tup : sequence of arrays
Arrays to stack. All of them must have the same shape along all
but the third axis.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
<BLANKLINE>
[[2, 3]],
<BLANKLINE>
[[3, 4]]])
"""
return _nx.concatenate(map(atleast_3d,tup),2)
def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if len(_nx.shape(sub_arys[i])) == 0:
sub_arys[i] = _nx.array([])
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]),0)):
sub_arys[i] = _nx.array([])
return sub_arys
def array_split(ary,indices_or_sections,axis = 0):
"""
Split an array into multiple sub-arrays of equal or near-equal size.
Please refer to the `numpy.split` documentation. The only difference
between these functions is that `array_split` allows `indices_or_sections`
to be an integer that does *not* equally divide the axis.
See Also
--------
numpy.split : Split array into multiple sub-arrays.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try: # handle scalar case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError: #indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError, 'number sections must be larger than 0.'
Neach_section,extras = divmod(Ntotal,Nsections)
section_sizes = [0] + \
extras * [Neach_section+1] + \
(Nsections-extras) * [Neach_section]
div_points = _nx.array(section_sizes).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary,axis,0)
for i in range(Nsections):
st = div_points[i]; end = div_points[i+1]
sub_arys.append(_nx.swapaxes(sary[st:end],axis,0))
# there is a wierd issue with array slicing that allows
# 0x10 arrays and other such things. The following cluge is needed
# to get around this issue.
sub_arys = _replace_zero_by_x_arrays(sub_arys)
# end cluge.
return sub_arys
def split(ary,indices_or_sections,axis=0):
"""
Split an array into multiple sub-arrays of equal size.
Parameters
----------
ary : ndarray
Array to be divided into sub-arrays.
indices_or_sections: integer or 1D array
If `indices_or_sections` is an integer, N, the array will be divided
into N equal arrays along `axis`. If such a split is not possible,
an error is raised.
If `indices_or_sections` is a 1D array of sorted integers, the entries
indicate where along `axis` the array is split. For example,
``[2, 3]`` would, for ``axis = 0``, result in
- ary[:2]
- ary[2:3]
- ary[3:]
If an index exceeds the dimension of the array along `axis`,
an empty sub-array is returned correspondingly.
axis : integer, optional
The axis along which to split. Default is 0.
Returns
-------
sub-arrays : list
A list of sub-arrays.
Raises
------
ValueError
If `indices_or_sections` is given as an integer, but
a split does not result in equal division.
See Also
--------
array_split : Split an array into multiple sub-arrays of equal or
near-equal size. Does not raise an exception if
an equal division cannot be made.
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
vsplit : Split array into multiple sub-arrays vertically (row wise).
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise).
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
Examples
--------
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
<BLANKLINE>
[array([ 0., 1., 2.]),
array([ 3., 4.]),
array([ 5.]),
array([ 6., 7.]),
array([], dtype=float64)]
"""
try: len(indices_or_sections)
except TypeError:
sections = indices_or_sections
N = ary.shape[axis]
if N % sections:
raise ValueError, 'array split does not result in an equal division'
res = array_split(ary,indices_or_sections,axis)
return res
def hsplit(ary,indices_or_sections):
"""
Split array into multiple sub-arrays horizontally.
Please refer to the `numpy.split` documentation. `hsplit` is
equivalent to `numpy.split` with ``axis = 1``.
See Also
--------
split : Split array into multiple sub-arrays.
Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> np.hsplit(x, 2)
<BLANKLINE>
[array([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
[ 12., 13.]]),
array([[ 2., 3.],
[ 6., 7.],
[ 10., 11.],
[ 14., 15.]])]
>>> np.hsplit(x, array([3, 6]))
<BLANKLINE>
[array([[ 0., 1., 2.],
[ 4., 5., 6.],
[ 8., 9., 10.],
[ 12., 13., 14.]]),
array([[ 3.],
[ 7.],
[ 11.],
[ 15.]]),
array([], dtype=float64)]
"""
if len(_nx.shape(ary)) == 0:
raise ValueError, 'hsplit only works on arrays of 1 or more dimensions'
if len(ary.shape) > 1:
return split(ary,indices_or_sections,1)
else:
return split(ary,indices_or_sections,0)
def vsplit(ary,indices_or_sections):
"""
Split array into multiple sub-arrays vertically.
Please refer to the `numpy.split` documentation.
See Also
--------
numpy.split : The default behaviour of this function implements
`vsplit`.
"""
if len(_nx.shape(ary)) < 2:
raise ValueError, 'vsplit only works on arrays of 2 or more dimensions'
return split(ary,indices_or_sections,0)
def dsplit(ary,indices_or_sections):
"""
Split array into multiple sub-arrays along the 3rd axis (depth).
Parameters
----------
ary : ndarray
An array, with at least 3 dimensions, to be divided into sub-arrays
depth-wise, or along the third axis.
indices_or_sections: integer or 1D array
If `indices_or_sections` is an integer, N, the array will be divided
into N equal arrays along `axis`. If an equal split is not possible,
a ValueError is raised.
if `indices_or_sections` is a 1D array of sorted integers representing
indices along `axis`, the array will be divided such that each index
marks the start of each sub-array. If an index exceeds the dimension of
the array along `axis`, and empty sub-array is returned for that index.
axis : integer, optional
the axis along which to split. Default is 0.
Returns
-------
sub-arrays : list
A list of sub-arrays.
See Also
--------
array_split : Split an array into a list of multiple sub-arrays
of near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into a list of multiple sub-arrays horizontally
vsplit : Split array into a list of multiple sub-arrays vertically
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)
Notes
-----
`dsplit` requires that sub-arrays are of equal shape, whereas
`array_split` allows for sub-arrays to have nearly-equal shape.
Equivalent to `split` with `axis` = 2.
Examples
--------
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> np.dsplit(x, 2)
<BLANKLINE>
[array([[[ 0., 1.],
[ 4., 5.]],
<BLANKLINE>
[[ 8., 9.],
[ 12., 13.]]]),
array([[[ 2., 3.],
[ 6., 7.]],
<BLANKLINE>
[[ 10., 11.],
[ 14., 15.]]])]
<BLANKLINE>
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> np.dsplit(x, array([3, 6]))
<BLANKLINE>
[array([[[ 0., 1., 2.],
[ 4., 5., 6.]],
<BLANKLINE>
[[ 8., 9., 10.],
[ 12., 13., 14.]]]),
array([[[ 3.],
[ 7.]],
<BLANKLINE>
[[ 11.],
[ 15.]]]),
array([], dtype=float64)]
"""
if len(_nx.shape(ary)) < 3:
raise ValueError, 'vsplit only works on arrays of 3 or more dimensions'
return split(ary,indices_or_sections,2)
def get_array_wrap(*args):
"""Find the wrapper for the array with the highest priority.
In case of ties, leftmost wins. If no wrapper is found, return None
"""
wrappers = [(getattr(x, '__array_priority__', 0), -i,
x.__array_wrap__) for i, x in enumerate(args)
if hasattr(x, '__array_wrap__')]
wrappers.sort()
if wrappers:
return wrappers[-1][-1]
return None
def kron(a,b):
"""
Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the
second array scaled by the first.
Parameters
----------
a, b : array_like
Returns
-------
out : ndarray
See Also
--------
outer : The outer product
Notes
-----
The function assumes that the number of dimenensions of `a` and `b`
are the same, if necessary prepending the smallest with ones.
If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`,
the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`.
The elements are products of elements from `a` and `b`, organized
explicitly by::
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
where::
kt = it * st + jt, t = 0,...,N
In the common 2-D case (N=1), the block structure can be visualized::
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
[ ... ... ],
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
Examples
--------
>>> np.kron([1,10,100], [5,6,7])
array([ 5, 6, 7, 50, 60, 70, 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([ 5, 50, 500, 6, 60, 600, 7, 70, 700])
>>> np.kron(np.eye(2), np.ones((2,2)))
array([[ 1., 1., 0., 0.],
[ 1., 1., 0., 0.],
[ 0., 0., 1., 1.],
[ 0., 0., 1., 1.]])
>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> C[K] == A[I]*B[J]
True
"""
wrapper = get_array_wrap(a, b)
b = asanyarray(b)
a = array(a,copy=False,subok=True,ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
return _nx.multiply(a,b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
a = reshape(a, as_)
if not b.flags.contiguous:
b = reshape(b, bs)
nd = ndb
if (ndb != nda):
if (ndb > nda):
as_ = (1,)*(ndb-nda) + as_
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
result = outer(a,b).reshape(as_+bs)
axis = nd-1
for _ in xrange(nd):
result = concatenate(result, axis=axis)
if wrapper is not None:
result = wrapper(result)
return result
def tile(A, reps):
"""
Construct an array by repeating A the number of times given by reps.
Parameters
----------
A : array_like
The input array.
reps : array_like
The number of repetitions of `A` along each axis.
Returns
-------
c : ndarray
The output array.
See Also
--------
repeat
Notes
-----
If `reps` has length d, the result will have dimension of max(d, `A`.ndim).
If `A`.ndim < d, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1,3) for 2-D replication,
or shape (1,1,3) for 3-D replication. If this is not the desired behavior,
promote `A` to d-dimensions manually before calling this function.
If `A`.ndim > d, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2,3,4,5), a `reps` of (2,2) is treated as
(1,1,2,2).
Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
<BLANKLINE>
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
"""
try:
tup = tuple(reps)
except TypeError:
tup = (reps,)
d = len(tup)
c = _nx.array(A,copy=False,subok=True,ndmin=d)
shape = list(c.shape)
n = max(c.size,1)
if (d < c.ndim):
tup = (1,)*(c.ndim-d) + tup
for i, nrep in enumerate(tup):
if nrep!=1:
c = c.reshape(-1,n).repeat(nrep,0)
dim_in = shape[i]
dim_out = dim_in*nrep
shape[i] = dim_out
n /= max(dim_in,1)
return c.reshape(shape)
|