summaryrefslogtreecommitdiff
path: root/numpy/lib/twodim_base.py
blob: d779009e738d52efe1469e011f87fdb9fffcd7e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
""" Basic functions for manipulating 2d arrays

"""

__all__ = ['diag','diagflat','eye','fliplr','flipud','rot90','tri','triu',
           'tril','vander','histogram2d']

from numpy.core.numeric import asanyarray, equal, subtract, arange, \
     zeros, arange, greater_equal, multiply, ones, asarray

def fliplr(m):
    """
    Left-right flip.

    Flip the entries in each row in the left/right direction.
    Columns are preserved, but appear in a different order than before.

    Parameters
    ----------
    m : array_like
        Input array.

    Returns
    -------
    f : ndarray
        A view of `m` with the columns reversed.  Since a view
        is returned, this operation is :math:`\\mathcal O(1)`.

    See Also
    --------
    flipud : Flip array in the up/down direction.
    rot90 : Rotate array counterclockwise.

    Notes
    -----
    Equivalent to A[::-1,...]. Does not require the array to be
    two-dimensional.

    Examples
    --------
    >>> A = np.diag([1.,2.,3.])
    >>> A
    array([[ 1.,  0.,  0.],
           [ 0.,  2.,  0.],
           [ 0.,  0.,  3.]])
    >>> np.fliplr(A)
    array([[ 0.,  0.,  1.],
           [ 0.,  2.,  0.],
           [ 3.,  0.,  0.]])

    >>> A = np.random.randn(2,3,5)
    >>> np.all(numpy.fliplr(A)==A[:,::-1,...])
    True

    """
    m = asanyarray(m)
    if m.ndim < 2:
        raise ValueError, "Input must be >= 2-d."
    return m[:, ::-1]

def flipud(m):
    """
    Up-down flip.

    Flip the entries in each column in the up/down direction.
    Rows are preserved, but appear in a different order than before.

    Parameters
    ----------
    m : array_like
        Input array.

    Returns
    -------
    out : array_like
        A view of `m` with the rows reversed.  Since a view is
        returned, this operation is :math:`\\mathcal O(1)`.

    Notes
    -----
    Equivalent to ``A[::-1,...]``.
    Does not require the array to be two-dimensional.

    Examples
    --------
    >>> A = np.diag([1.0, 2, 3])
    >>> A
    array([[ 1.,  0.,  0.],
           [ 0.,  2.,  0.],
           [ 0.,  0.,  3.]])
    >>> np.flipud(A)
    array([[ 0.,  0.,  3.],
           [ 0.,  2.,  0.],
           [ 1.,  0.,  0.]])

    >>> A = np.random.randn(2,3,5)
    >>> np.all(np.flipud(A)==A[::-1,...])
    True

    >>> np.flipud([1,2])
    array([2, 1])

    """
    m = asanyarray(m)
    if m.ndim < 1:
        raise ValueError, "Input must be >= 1-d."
    return m[::-1,...]

def rot90(m, k=1):
    """
    Rotate an array by 90 degrees in the counter-clockwise direction.

    The first two dimensions are rotated; therefore, the array must be at
    least 2-D.

    Parameters
    ----------
    m : array_like
        Array of two or more dimensions.
    k : integer
        Number of times the array is rotated by 90 degrees.

    Returns
    -------
    y : ndarray
        Rotated array.

    See Also
    --------
    fliplr : Flip an array horizontally.
    flipud : Flip an array vertically.

    Examples
    --------
    >>> m = np.array([[1,2],[3,4]], int)
    >>> m
    array([[1, 2],
           [3, 4]])
    >>> np.rot90(m)
    array([[2, 4],
           [1, 3]])
    >>> np.rot90(m, 2)
    array([[4, 3],
           [2, 1]])

    """
    m = asanyarray(m)
    if m.ndim < 2:
        raise ValueError, "Input must >= 2-d."
    k = k % 4
    if k == 0: return m
    elif k == 1: return fliplr(m).swapaxes(0,1)
    elif k == 2: return fliplr(flipud(m))
    else: return fliplr(m.swapaxes(0,1))  # k==3

def eye(N, M=None, k=0, dtype=float):
    """
    Return a 2-D array with ones on the diagonal and zeros elsewhere.

    Parameters
    ----------
    N : int
      Number of rows in the output.
    M : int, optional
      Number of columns in the output. If None, defaults to `N`.
    k : int, optional
      Index of the diagonal: 0 refers to the main diagonal, a positive value
      refers to an upper diagonal and a negative value to a lower diagonal.
    dtype : dtype, optional
      Data-type of the returned array.

    Returns
    -------
    I : ndarray (N,M)
      An array where all elements are equal to zero, except for the k'th
      diagonal, whose values are equal to one.

    See Also
    --------
    diag : Return a diagonal 2-D array using a 1-D array specified by the user.

    Examples
    --------
    >>> np.eye(2, dtype=int)
    array([[1, 0],
           [0, 1]])
    >>> np.eye(3, k=1)
    array([[ 0.,  1.,  0.],
           [ 0.,  0.,  1.],
           [ 0.,  0.,  0.]])

    """
    if M is None: M = N
    m = equal(subtract.outer(arange(N), arange(M)),-k)
    if m.dtype != dtype:
        m = m.astype(dtype)
    return m

def diag(v, k=0):
    """
    Extract a diagonal or construct a diagonal array.

    Parameters
    ----------
    v : array_like
        If `v` is a 2-dimensional array, return a copy of
        its `k`-th diagonal. If `v` is a 1-dimensional array,
        return a 2-dimensional array with `v` on the `k`-th diagonal.
    k : int, optional
        Diagonal in question.  The defaults is 0.

    Examples
    --------
    >>> x = np.arange(9).reshape((3,3))
    >>> x
    array([[0, 1, 2],
           [3, 4, 5],
           [6, 7, 8]])

    >>> np.diag(x)
    array([0, 4, 8])

    >>> np.diag(np.diag(x))
    array([[0, 0, 0],
           [0, 4, 0],
           [0, 0, 8]])

    """
    v = asarray(v)
    s = v.shape
    if len(s)==1:
        n = s[0]+abs(k)
        res = zeros((n,n), v.dtype)
        if (k>=0):
            i = arange(0,n-k)
            fi = i+k+i*n
        else:
            i = arange(0,n+k)
            fi = i+(i-k)*n
        res.flat[fi] = v
        return res
    elif len(s)==2:
        N1,N2 = s
        if k >= 0:
            M = min(N1,N2-k)
            i = arange(0,M)
            fi = i+k+i*N2
        else:
            M = min(N1+k,N2)
            i = arange(0,M)
            fi = i + (i-k)*N2
        return v.flat[fi]
    else:
        raise ValueError, "Input must be 1- or 2-d."

def diagflat(v,k=0):
    """
    Create a 2-dimensional array with the flattened input as a diagonal.

    Parameters
    ----------
    v : array_like
        Input data, which is flattened and set as the `k`-th
        diagonal of the output.
    k : int, optional
        Diagonal to set.  The default is 0.

    Examples
    --------
    >>> np.diagflat([[1,2],[3,4]])
    array([[1, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 0],
           [0, 0, 0, 4]])

    >>> np.diagflat([1,2], 1)
    array([[0, 1, 0],
           [0, 0, 2],
           [0, 0, 0]])

    """
    try:
        wrap = v.__array_wrap__
    except AttributeError:
        wrap = None
    v = asarray(v).ravel()
    s = len(v)
    n = s + abs(k)
    res = zeros((n,n), v.dtype)
    if (k>=0):
        i = arange(0,n-k)
        fi = i+k+i*n
    else:
        i = arange(0,n+k)
        fi = i+(i-k)*n
    res.flat[fi] = v
    if not wrap:
        return res
    return wrap(res)

def tri(N, M=None, k=0, dtype=float):
    """
    Construct an array filled with ones at and below the given diagonal.

    Parameters
    ----------
    N : int
        Number of rows in the array.
    M : int, optional
        Number of columns in the array.
        By default, `M` is taken to equal to `N`.
    k : int, optional
        The sub-diagonal below which the array is filled.
        ``k = 0`` is the main diagonal, while ``k < 0`` is below it,
        and ``k > 0`` is above.  The default is 0.
    dtype : dtype, optional
        Data type of the returned array.  The default is `float`.

    Returns
    -------
    T : (N,M) ndarray
        Array with a lower triangle filled with ones, in other words
        ``T[i,j] == 1`` for ``i <= j + k``.

    Examples
    --------
    >>> np.tri(3, 5, 2, dtype=int)
    array([[1, 1, 1, 0, 0],
           [1, 1, 1, 1, 0],
           [1, 1, 1, 1, 1]])

    >>> np.tri(3, 5, -1)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 1.,  0.,  0.,  0.,  0.],
           [ 1.,  1.,  0.,  0.,  0.]])

    """
    if M is None: M = N
    m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
    return m.astype(dtype)

def tril(m, k=0):
    """
    Lower triangular.

    Return a copy of an array with elements above the k-th diagonal zeroed.

    Parameters
    ----------
    m : array-like, shape (M, N)
        Input array.
    k : int
        Diagonal above which to zero elements.
        `k = 0` is the main diagonal, `k < 0` is below it and `k > 0` is above.

    Returns
    -------
    L : ndarray, shape (M, N)
        Lower triangle of `m`, of same shape and data-type as `m`.

    See Also
    --------
    triu

    Examples
    --------
    >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 0,  0,  0],
           [ 4,  0,  0],
           [ 7,  8,  0],
           [10, 11, 12]])

    """
    m = asanyarray(m)
    out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
    return out

def triu(m, k=0):
    """
    Upper triangular.

    Construct a copy of a matrix with elements below the k-th diagonal zeroed.

    Please refer to the documentation for `tril`.

    See Also
    --------
    tril

    Examples
    --------
    >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 0,  8,  9],
           [ 0,  0, 12]])

    """
    m = asanyarray(m)
    out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
    return out

# borrowed from John Hunter and matplotlib
def vander(x, N=None):
    """
    Generate a Van der Monde matrix.

    The columns of the output matrix are decreasing powers of the input
    vector.  Specifically, the i-th output column is the input vector to
    the power of ``N - i - 1``.

    Parameters
    ----------
    x : array_like
        Input array.
    N : int, optional
        Order of (number of columns in) the output.

    Returns
    -------
    out : ndarray
        Van der Monde matrix of order `N`.  The first column is ``x^(N-1)``,
        the second ``x^(N-2)`` and so forth.

    Examples
    --------
    >>> x = np.array([1, 2, 3, 5])
    >>> N = 3
    >>> np.vander(x, N)
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    >>> np.column_stack([x**(N-1-i) for i in range(N)])
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    """
    x = asarray(x)
    if N is None: N=len(x)
    X = ones( (len(x),N), x.dtype)
    for i in range(N-1):
        X[:,i] = x**(N-i-1)
    return X


def histogram2d(x,y, bins=10, range=None, normed=False, weights=None):
    """
    Compute the bidimensional histogram of two data samples.

    Parameters
    ----------
    x : array-like (N,)
      A sequence of values to be histogrammed along the first dimension.
    y : array-like (N,)
      A sequence of values to be histogrammed along the second dimension.
    bins : int or [int, int] or array-like or [array, array], optional
      The bin specification:

        * the number of bins for the two dimensions (nx=ny=bins),
        * the number of bins in each dimension (nx, ny = bins),
        * the bin edges for the two dimensions (x_edges=y_edges=bins),
        * the bin edges in each dimension (x_edges, y_edges = bins).

    range : array-like, (2,2), optional
      The leftmost and rightmost edges of the bins along each dimension
      (if not specified explicitly in the `bins` parameters):
      [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
      considered outliers and not tallied in the histogram.
    normed : boolean, optional
      If False, returns the number of samples in each bin. If True, returns
      the bin density, ie, the bin count divided by the bin area.
    weights : array-like (N,), optional
      An array of values `w_i` weighing each sample `(x_i, y_i)`. Weights are
      normalized to 1 if normed is True. If normed is False, the values of the
      returned histogram are equal to the sum of the weights belonging to the
      samples falling into each bin.

    Returns
    -------
    H : array (nx, ny)
      The bidimensional histogram of samples x and y. Values in x are
      histogrammed along the first dimension and values in y are histogrammed
      along the second dimension.
    xedges : array (nx,)
      The bin edges along the first dimension.
    yedges : array (ny,)
      The bin edges along the second dimension.

    See Also
    --------
    histogram: 1D histogram
    histogramdd: Multidimensional histogram

    Notes
    -----
    When normed is True, then the returned histogram is the sample density,
    defined such that:

      .. math::
        \\sum_{i=0}^{nx-1} \\sum_{j=0}^{ny-1} H_{i,j} \\Delta x_i \\Delta y_j = 1

    where :math:`H` is the histogram array and :math:`\\Delta x_i \\Delta y_i`
    the area of bin :math:`{i,j}`.

    Please note that the histogram does not follow the cartesian convention
    where `x` values are on the abcissa and `y` values on the ordinate axis.
    Rather, `x` is histogrammed along the first dimension of the array
    (vertical), and `y` along the second dimension of the array (horizontal).
    This ensures compatibility with `histogrammdd`.

    Examples
    --------
    >>> x,y = np.random.randn(2,100)
    >>> H, xedges, yedges = np.histogram2d(x, y, bins = (5, 8))
    >>> H.shape, xedges.shape, yedges.shape
    ((5,8), (6,), (9,))

    """
    from numpy import histogramdd

    try:
        N = len(bins)
    except TypeError:
        N = 1

    if N != 1 and N != 2:
        xedges = yedges = asarray(bins, float)
        bins = [xedges, yedges]
    hist, edges = histogramdd([x,y], bins, range, normed, weights)
    return hist, edges[0], edges[1]