1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
"""
Module of functions that are like ufuncs in acting on arrays and optionally
storing results in an output array.
"""
__all__ = ['fix', 'isneginf', 'isposinf', 'log2']
import numpy.core.numeric as nx
def fix(x, y=None):
"""
Round to nearest integer towards zero.
Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.
Parameters
----------
x : array_like
An array of floats to be rounded
y : ndarray, optional
Output array
Returns
-------
out : ndarray of floats
The array of rounded numbers
See Also
--------
floor : Round downwards
around : Round to given number of decimals
Examples
--------
>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2., 2., -2., -2.])
"""
x = nx.asanyarray(x)
if y is None:
y = nx.zeros_like(x)
y1 = nx.floor(x)
y2 = nx.ceil(x)
y[...] = nx.where(x >= 0, y1, y2)
return y
def isposinf(x, y=None):
"""
Shows which elements of the input are positive infinity.
Returns a numpy array resulting from an element-wise test for positive
infinity.
Parameters
----------
x : array_like
The input array.
y : array_like
A boolean array with the same shape as `x` to store the result.
Returns
-------
y : ndarray
A numpy boolean array with the same dimensions as the input.
If second argument is not supplied then a numpy boolean array is returned
with values True where the corresponding element of the input is positive
infinity and values False where the element of the input is not positive
infinity.
If second argument is supplied then an numpy integer array is returned
with values 1 where the corresponding element of the input is positive
positive infinity.
See Also
--------
isinf : Shows which elements are negative or positive infinity.
isneginf : Shows which elements are negative infinity.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a number, positive and
negative infinity
Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
Errors result if second argument is also supplied with scalar input or
if first and second arguments have different shapes.
Numpy's definitions for positive infinity (PINF) and negative infinity
(NINF) may be change in the future versions.
Examples
--------
>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True], dtype=bool)
>>> x=np.array([-np.inf, 0., np.inf])
>>> y=np.array([2,2,2])
>>> np.isposinf(x,y)
array([1, 0, 0])
>>> y
array([1, 0, 0])
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
return y
def isneginf(x, y=None):
"""
Return True where x is -infinity, and False otherwise.
Parameters
----------
x : array_like
The input array.
y : array_like
A boolean array with the same shape as `x` to store the result.
Returns
-------
y : ndarray
A boolean array where y[i] = True only if x[i] = -Inf.
See Also
--------
isposinf, isfinite
Examples
--------
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False], dtype=bool)
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), nx.signbit(x), y)
return y
_log2 = nx.log(2)
def log2(x, y=None):
"""
Return the base 2 logarithm.
Parameters
----------
x : array_like
Input array.
y : array_like
Optional output array with the same shape as `x`.
Returns
-------
y : ndarray
The logarithm to the base 2 of `x` elementwise.
NaNs are returned where `x` is negative.
See Also
--------
log, log1p, log10
Examples
--------
>>> np.log2([-1,2,4])
array([ NaN, 1., 2.])
"""
x = nx.asanyarray(x)
if y is None:
y = nx.log(x)
else:
nx.log(x, y)
y /= _log2
return y
|