summaryrefslogtreecommitdiff
path: root/numpy/lib/ufunclike.py
blob: 6df52960990aed841c6aef3471cc635003150ede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
Module of functions that are like ufuncs in acting on arrays and optionally
storing results in an output array.
"""
__all__ = ['fix', 'isneginf', 'isposinf', 'log2']

import numpy.core.numeric as nx

def fix(x, y=None):
    """ Round x to nearest integer towards zero.
    """
    x = nx.asanyarray(x)
    if y is None:
        y = nx.zeros_like(x)
    y1 = nx.floor(x)
    y2 = nx.ceil(x)
    y[...] = nx.where(x >= 0, y1, y2)
    return y

def isposinf(x, y=None):
    """
    Return True where x is +infinity, and False otherwise.

    Parameters
    ----------
    x : array_like
      The input array.
    y : array_like
      A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
      A boolean array where y[i] = True only if x[i] = +Inf.

    See Also
    --------
    isneginf, isfinite

    Examples
    --------
    >>> np.isposinf([-np.inf, 0., np.inf])
    array([ False, False, True], dtype=bool)

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
    return y

def isneginf(x, y=None):
    """
    Return True where x is -infinity, and False otherwise.

    Parameters
    ----------
    x : array_like
      The input array.
    y : array_like
      A boolean array with the same shape as `x` to store the result.

    Returns
    -------
    y : ndarray
      A boolean array where y[i] = True only if x[i] = -Inf.

    See Also
    --------
    isposinf, isfinite

    Examples
    --------
    >>> np.isneginf([-np.inf, 0., np.inf])
    array([ True, False, False], dtype=bool)

    """
    if y is None:
        x = nx.asarray(x)
        y = nx.empty(x.shape, dtype=nx.bool_)
    nx.logical_and(nx.isinf(x), nx.signbit(x), y)
    return y

_log2 = nx.log(2)
def log2(x, y=None):
    """
    Return the base 2 logarithm.

    Parameters
    ----------
    x : array_like
      Input array.
    y : array_like
      Optional output array with the same shape as `x`.

    Returns
    -------
    y : {ndarray, scalar}
      The logarithm to the base 2 of `x` elementwise.
      NaNs are returned where `x` is negative.


    See Also
    --------
    log, log1p, log10

    Examples
    --------
    >>> np.log2([-1,2,4])
    array([ NaN,   1.,   2.])

    """
    x = nx.asanyarray(x)
    if y is None:
        y = nx.log(x)
    else:
        nx.log(x, y)
    y /= _log2
    return y