summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
blob: 8dec6731878eec9b8e7b9431d9964419d695da67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
"""Lite version of scipy.linalg.

This module is a lite version of the linalg.py module in SciPy which contains
high-level Python interface to the LAPACK library.  The lite version
only accesses the following LAPACK functions: dgesv, zgesv, dgeev,
zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf.
"""

__all__ = ['solve',
           'inv', 'cholesky',
           'eigvals',
           'eigvalsh', 'pinv',
           'det', 'svd',
           'eig', 'eigh','lstsq', 'norm',
           'qr',
           'LinAlgError'
           ]

from numpy.core import array, asarray, zeros, empty, transpose, \
        intc, single, double, csingle, cdouble, inexact, complexfloating, \
        newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \
        maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \
        argsort
from numpy.lib import triu
from numpy.linalg import lapack_lite

fortran_int = intc

# Error object
class LinAlgError(Exception):
    pass

def _makearray(a):
    new = asarray(a)
    wrap = getattr(a, "__array_wrap__", new.__array_wrap__)
    return new, wrap

def isComplexType(t):
    return issubclass(t, complexfloating)

_real_types_map = {single : single,
                   double : double,
                   csingle : single,
                   cdouble : double}

_complex_types_map = {single : csingle,
                      double : cdouble,
                      csingle : csingle,
                      cdouble : cdouble}

def _realType(t, default=double):
    return _real_types_map.get(t, default)

def _complexType(t, default=cdouble):
    return _complex_types_map.get(t, default)

def _linalgRealType(t):
    """Cast the type t to either double or cdouble."""
    return double

_complex_types_map = {single : csingle,
                      double : cdouble,
                      csingle : csingle,
                      cdouble : cdouble}

def _commonType(*arrays):
    # in lite version, use higher precision (always double or cdouble)
    result_type = single
    is_complex = False
    for a in arrays:
        if issubclass(a.dtype.type, inexact):
            if isComplexType(a.dtype.type):
                is_complex = True
            rt = _realType(a.dtype.type, default=None)
            if rt is None:
                # unsupported inexact scalar
                raise TypeError("array type %s is unsupported in linalg" %
                        (a.dtype.name,))
        else:
            rt = double
        if rt is double:
            result_type = double
    if is_complex:
        t = cdouble
        result_type = _complex_types_map[result_type]
    else:
        t = double
    return t, result_type

def _castCopyAndTranspose(type, *arrays):
    if len(arrays) == 1:
        return transpose(arrays[0]).astype(type)
    else:
        return [transpose(a).astype(type) for a in arrays]

# _fastCopyAndTranpose is an optimized version of _castCopyAndTranspose.
# It assumes the input is 2D (as all the calls in here are).

_fastCT = fastCopyAndTranspose

def _fastCopyAndTranspose(type, *arrays):
    cast_arrays = ()
    for a in arrays:
        if a.dtype.type is type:
            cast_arrays = cast_arrays + (_fastCT(a),)
        else:
            cast_arrays = cast_arrays + (_fastCT(a.astype(type)),)
    if len(cast_arrays) == 1:
        return cast_arrays[0]
    else:
        return cast_arrays

def _assertRank2(*arrays):
    for a in arrays:
        if len(a.shape) != 2:
            raise LinAlgError, 'Array must be two-dimensional'

def _assertSquareness(*arrays):
    for a in arrays:
        if max(a.shape) != min(a.shape):
            raise LinAlgError, 'Array must be square'

# Linear equations

def solve(a, b):
    """Return the solution of a*x = b
    """
    one_eq = len(b.shape) == 1
    if one_eq:
        b = b[:, newaxis]
    _assertRank2(a, b)
    _assertSquareness(a)
    n_eq = a.shape[0]
    n_rhs = b.shape[1]
    if n_eq != b.shape[0]:
        raise LinAlgError, 'Incompatible dimensions'
    t, result_t = _commonType(a, b)
#    lapack_routine = _findLapackRoutine('gesv', t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgesv
    else:
        lapack_routine = lapack_lite.dgesv
    a, b = _fastCopyAndTranspose(t, a, b)
    pivots = zeros(n_eq, fortran_int)
    results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Singular matrix'
    if one_eq:
        return b.ravel().astype(result_t)
    else:
        return b.transpose().astype(result_t)


# Matrix inversion

def inv(a):
    a, wrap = _makearray(a)
    return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))

# Cholesky decomposition

def cholesky(a):
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    m = a.shape[0]
    n = a.shape[1]
    if isComplexType(t):
        lapack_routine = lapack_lite.zpotrf
    else:
        lapack_routine = lapack_lite.dpotrf
    results = lapack_routine('L', n, a, m, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Matrix is not positive definite - Cholesky decomposition cannot be computed'
    s = triu(a, k=0).transpose()
    if (s.dtype != result_t):
        return s.astype(result_t)
    return s

# QR decompostion

def qr(a, mode='full'):
    """cacluates A=QR, Q orthonormal, R upper triangular
    
    mode:  'full' --> (Q,R)
           'r'    --> R
           'economic' --> A2 where the diagonal + upper triangle
                   part of A2 is R. This is faster if you only need R
    """
    _assertRank2(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    m,n = a.shape
    mn = min(m,n)
    tau = zeros((mn,), t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgeqrf
        routine_name = 'zgeqrf'
    else:
        lapack_routine = lapack_lite.dgeqrf
        routine_name = 'dgeqrf'        
        
    # calculate optimal size of work data 'work'
    lwork = 1
    work = zeros((lwork,), t)
    results=lapack_routine(m, n, a, m, tau, work, -1, 0)
    if results['info'] > 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    # do qr decomposition
    lwork = int(abs(work[0]))
    work = zeros((lwork,),t)
    results=lapack_routine(m, n, a, m, tau, work, lwork, 0)

    if results['info'] > 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    #  atemp: convert fortrag storing order to num storing order
    atemp = a.transpose()

    if atemp.dtype != result_t:
        atemp = atemp.astype(result_t)

    #  economic mode
    if mode[0]=='e':
        return atemp

    #  generate r
    r = zeros((mn,n), result_t)
    for i in range(mn):
            r[i, i:] = atemp[i, i:]

    #  'r'-mode, that is, calculate only r
    if mode[0]=='r':
        return r

    #  from here on: build orthonormal matrix q from a

    if isComplexType(t):
        lapack_routine = lapack_lite.zungqr
        routine_name = 'zungqr'                
    else:
        lapack_routine = lapack_lite.dorgqr
        routine_name = 'dorgqr'

    # determine optimal lwork
    lwork = 1
    work=zeros((lwork,), t)
    results=lapack_routine(m,mn,mn, a, m, tau, work, -1, 0)
    if results['info'] > 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])

    # compute q
    lwork = int(abs(work[0]))
    work=zeros((lwork,), t)
    results=lapack_routine(m,mn,mn, a, m, tau, work, lwork, 0)

    if results['info'] > 0:
        raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
    
    q = a[:mn,:].transpose()

    if (q.dtype != result_t):
        q = q.astype(result_t)

    return q,r


# Eigenvalues
def eigvals(a):
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    dummy = zeros((1,), t)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgeev
        w = zeros((n,), t)
        rwork = zeros((n,), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, w,
                                 dummy, 1, dummy, 1, work, -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, w,
                                 dummy, 1, dummy, 1, work, lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n,), t)
        wi = zeros((n,), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, wr, wi,
                                 dummy, 1, dummy, 1, work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', 'N', n, a, n, wr, wi,
                                 dummy, 1, dummy, 1, work, lwork, 0)
        if all(wi == 0.):
            w = wr
            result_t = _realType(result_t)
        else:
            w = wr+1j*wi
            result_t = _complexType(result_t)
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    return w.astype(result_t)


def eigvalsh(a, UPLO='L'):
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    liwork = 5*n+3
    iwork = zeros((liwork,), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zheevd
        w = zeros((n,), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        lrwork = 1
        rwork = zeros((lrwork,),real_t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
                                 rwork, -1, iwork, liwork,  0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        lrwork = int(rwork[0])
        rwork = zeros((lrwork,),real_t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
                                rwork, lrwork, iwork, liwork,  0)
    else:
        lapack_routine = lapack_lite.dsyevd
        w = zeros((n,), t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
                                 iwork, liwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
                                 iwork, liwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    return w.astype(result_t)

def _convertarray(a):
    t, result_t = _commonType(a)
    a = _fastCT(a.astype(t))
    return a, t, result_t

# Eigenvectors

def eig(a):
    """eig(a) returns u,v  where u is the eigenvalues and
v is a matrix of eigenvectors with vector v[:,i] corresponds to
eigenvalue u[i].  Satisfies the equation dot(a, v[:,i]) = u[i]*v[:,i]
"""
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    a, t, result_t = _convertarray(a) # convert to double or cdouble type
    real_t = _linalgRealType(t)
    n = a.shape[0]
    dummy = zeros((1,), t)
    if isComplexType(t):
        # Complex routines take different arguments
        lapack_routine = lapack_lite.zgeev
        w = zeros((n,), t)
        v = zeros((n,n), t)
        lwork = 1
        work = zeros((lwork,),t)
        rwork = zeros((2*n,),real_t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, -1, rwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,),t)
        results = lapack_routine('N', 'V', n, a, n, w,
                                 dummy, 1, v, n, work, lwork, rwork, 0)
    else:
        lapack_routine = lapack_lite.dgeev
        wr = zeros((n,), t)
        wi = zeros((n,), t)
        vr = zeros((n,n), t)
        lwork = 1
        work = zeros((lwork,),t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, -1, 0)
        lwork = int(work[0])
        work = zeros((lwork,),t)
        results = lapack_routine('N', 'V', n, a, n, wr, wi,
                                  dummy, 1, vr, n, work, lwork, 0)
        if all(wi == 0.0):
            w = wr
            v = vr
            result_t = _realType(result_t)
        else:
            w = wr+1j*wi
            v = array(vr, w.dtype)
            ind = flatnonzero(wi != 0.0)      # indices of complex e-vals
            for i in range(len(ind)/2):
                v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]]
                v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]]
            result_t = _complexType(result_t)
            
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    vt = v.transpose().astype(result_t)
    return w.astype(result_t), wrap(vt)

def eigh(a, UPLO='L'):
    """Compute eigenvalues for a Hermitian-symmetric matrix.
    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    liwork = 5*n+3
    iwork = zeros((liwork,), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zheevd
        w = zeros((n,), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        lrwork = 1
        rwork = zeros((lrwork,),real_t)
        results = lapack_routine('V', UPLO, n, a, n,w, work, -1,
                                 rwork, -1, iwork, liwork,  0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        lrwork = int(rwork[0])
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine('V', UPLO, n, a, n,w, work, lwork,
                                 rwork, lrwork, iwork, liwork,  0)
    else:
        lapack_routine = lapack_lite.dsyevd
        w = zeros((n,), t)
        lwork = 1
        work = zeros((lwork,),t)
        results = lapack_routine('V', UPLO, n, a, n,w, work, -1,
                iwork, liwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,),t)
        results = lapack_routine('V', UPLO, n, a, n,w, work, lwork,
                iwork, liwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'Eigenvalues did not converge'
    at = a.transpose().astype(result_t)
    return w.astype(_realType(result_t)), wrap(at)


# Singular value decomposition

def svd(a, full_matrices=1, compute_uv=1):
    """Singular Value Decomposition.

    u,s,vh = svd(a)

    If a is an M x N array, then the svd produces a factoring of the array
    into two unitary (orthogonal) 2-d arrays u (MxM) and vh (NxN) and a 
    min(M,N)-length array of singular values such that

                     a == dot(u,dot(S,vh))

    where S is an MxN array of zeros whose main diagonal is s.

    if compute_uv == 0, then return only the singular values
    if full_matrices == 0, then only part of either u or vh is
                           returned so that it is MxN
    """
    a, wrap = _makearray(a)
    _assertRank2(a)
    m, n = a.shape
    t, result_t = _commonType(a)
    real_t = _linalgRealType(t)
    a = _fastCopyAndTranspose(t, a)
    s = zeros((min(n,m),), real_t)
    if compute_uv:
        if full_matrices:
            nu = m
            nvt = n
            option = 'A'
        else:
            nu = min(n,m)
            nvt = min(n,m)
            option = 'S'
        u = zeros((nu, m), t)
        vt = zeros((n, nvt), t)
    else:
        option = 'N'
        nu = 1
        nvt = 1
        u = empty((1,1), t)
        vt = empty((1,1), t)

    iwork = zeros((8*min(m,n),), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgesdd
        rwork = zeros((5*min(m,n)*min(m,n) + 5*min(m,n),), real_t)
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, -1, rwork, iwork, 0)
        lwork = int(abs(work[0]))
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, lwork, rwork, iwork, 0)
    else:
        lapack_routine = lapack_lite.dgesdd
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, -1, iwork, 0)
        lwork = int(work[0])
        if option == 'N' and lwork==1:
            # there seems to be a bug in dgesdd of lapack
            #   (NNemec, 060310)
            # returning the wrong lwork size for option == 'N'
            results = lapack_routine('A', m, n, a, m, s, u, m, vt, n,
                                     work, -1, iwork, 0)
            lwork = int(work[0])
            assert lwork > 1

        work = zeros((lwork,), t)
        results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
                                 work, lwork, iwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'SVD did not converge'
    s = s.astype(_realType(result_t))
    if compute_uv:
        u = u.transpose().astype(result_t)
        vt = vt.transpose().astype(result_t)
        return wrap(u), s, wrap(vt)
    else:
        return s

# Generalized inverse

def pinv(a, rcond = 1.e-10):
    """Return the (Moore-Penrose) pseudo-inverse of a 2-d array

    This method computes the generalized inverse using the 
    singular-value decomposition and all singular values larger than
    rcond of the largest.
    """
    a, wrap = _makearray(a)
    a = a.conjugate()
    u, s, vt = svd(a, 0)
    m = u.shape[0]
    n = vt.shape[1]
    cutoff = rcond*maximum.reduce(s)
    for i in range(min(n,m)):
        if s[i] > cutoff:
            s[i] = 1./s[i]
        else:
            s[i] = 0.;
    return wrap(dot(transpose(vt),
                       multiply(s[:, newaxis],transpose(u))))

# Determinant

def det(a):
    "The determinant of the 2-d array a"
    a = asarray(a)
    _assertRank2(a)
    _assertSquareness(a)
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    n = a.shape[0]
    if isComplexType(t):
        lapack_routine = lapack_lite.zgetrf
    else:
        lapack_routine = lapack_lite.dgetrf
    pivots = zeros((n,), fortran_int)
    results = lapack_routine(n, n, a, n, pivots, 0)
    info = results['info']
    if (info < 0):
        raise TypeError, "Illegal input to Fortran routine"
    elif (info > 0):
        return 0.0
    sign = add.reduce(pivots != arange(1, n+1)) % 2
    return (1.-2.*sign)*multiply.reduce(diagonal(a),axis=-1)

# Linear Least Squares

def lstsq(a, b, rcond=1.e-10):
    """returns x,resids,rank,s
where x minimizes 2-norm(|b - Ax|)
      resids is the sum square residuals
      rank is the rank of A
      s is the rank of the singular values of A in descending order

If b is a matrix then x is also a matrix with corresponding columns.
If the rank of A is less than the number of columns of A or greater than
the number of rows, then residuals will be returned as an empty array
otherwise resids = sum((b-dot(A,x)**2).
Singular values less than s[0]*rcond are treated as zero.
"""
    import math
    a = asarray(a)
    b, wrap = _makearray(b)
    one_eq = len(b.shape) == 1
    if one_eq:
        b = b[:, newaxis]
    _assertRank2(a, b)
    m  = a.shape[0]
    n  = a.shape[1]
    n_rhs = b.shape[1]
    ldb = max(n,m)
    if m != b.shape[0]:
        raise LinAlgError, 'Incompatible dimensions'
    t, result_t = _commonType(a, b)
    real_t = _linalgRealType(t)
    bstar = zeros((ldb,n_rhs),t)
    bstar[:b.shape[0],:n_rhs] = b.copy()
    a, bstar = _fastCopyAndTranspose(t, a, bstar)
    s = zeros((min(m,n),),real_t)
    nlvl = max( 0, int( math.log( float(min( m,n ))/2. ) ) + 1 )
    iwork = zeros((3*min(m,n)*nlvl+11*min(m,n),), fortran_int)
    if isComplexType(t):
        lapack_routine = lapack_lite.zgelsd
        lwork = 1
        rwork = zeros((lwork,), real_t)
        work = zeros((lwork,),t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, -1, rwork, iwork, 0)
        lwork = int(abs(work[0]))
        rwork = zeros((lwork,),real_t)
        a_real = zeros((m,n),real_t)
        bstar_real = zeros((ldb,n_rhs,),real_t)
        results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m,
                                     bstar_real, ldb, s, rcond,
                                     0, rwork, -1, iwork, 0)
        lrwork = int(rwork[0])
        work = zeros((lwork,), t)
        rwork = zeros((lrwork,), real_t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, lwork, rwork, iwork, 0)
    else:
        lapack_routine = lapack_lite.dgelsd
        lwork = 1
        work = zeros((lwork,), t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, -1, iwork, 0)
        lwork = int(work[0])
        work = zeros((lwork,), t)
        results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
                                 0, work, lwork, iwork, 0)
    if results['info'] > 0:
        raise LinAlgError, 'SVD did not converge in Linear Least Squares'
    resids = array([], t)
    if one_eq:
        x = array(ravel(bstar)[:n], dtype=result_t, copy=True)
        if results['rank']==n and m>n:
            resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_t)
    else:
        x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True)
        if results['rank']==n and m>n:
            resids = sum((transpose(bstar)[n:,:])**2).astype(result_t)
    st = s[:min(n,m)].copy().astype(_realType(result_t))
    return wrap(x), resids, results['rank'], st

def norm(x, ord=None):
    """ norm(x, ord=None) -> n

    Matrix or vector norm.

    Inputs:

      x -- a rank-1 (vector) or rank-2 (matrix) array
      ord -- the order of the norm.

     Comments:
       For arrays of any rank, if ord is None:
         calculate the square norm (Euclidean norm for vectors,
         Frobenius norm for matrices)

       For vectors ord can be any real number including Inf or -Inf.
         ord = Inf, computes the maximum of the magnitudes
         ord = -Inf, computes minimum of the magnitudes
         ord is finite, computes sum(abs(x)**ord)**(1.0/ord)

       For matrices ord can only be one of the following values:
         ord = 2 computes the largest singular value
         ord = -2 computes the smallest singular value
         ord = 1 computes the largest column sum of absolute values
         ord = -1 computes the smallest column sum of absolute values
         ord = Inf computes the largest row sum of absolute values
         ord = -Inf computes the smallest row sum of absolute values
         ord = 'fro' computes the frobenius norm sqrt(sum(diag(X.H * X)))

       For values ord < 0, the result is, strictly speaking, not a
       mathematical 'norm', but it may still be useful for numerical purposes.
    """
    x = asarray(x)
    nd = len(x.shape)
    if ord is None: # check the default case first and handle it immediately
        return sqrt(add.reduce((x.conj() * x).ravel().real))

    if nd == 1:
        if ord == Inf:
            return abs(x).max()
        elif ord == -Inf:
            return abs(x).min()
        elif ord == 1:
            return abs(x).sum() # special case for speedup
        elif ord == 2:
            return sqrt(((x.conj()*x).real).sum()) # special case for speedup
        else:
            return ((abs(x)**ord).sum())**(1.0/ord)
    elif nd == 2:
        if ord == 2:
            return svd(x,compute_uv=0).max()
        elif ord == -2:
            return svd(x,compute_uv=0).min()
        elif ord == 1:
            return abs(x).sum(axis=0).max()
        elif ord == Inf:
            return abs(x).sum(axis=1).max()
        elif ord == -1:
            return abs(x).sum(axis=0).min()
        elif ord == -Inf:
            return abs(x).sum(axis=1).min()
        elif ord in ['fro','f']:
            return sqrt(add.reduce((x.conj() * x).real.ravel()))
        else:
            raise ValueError, "Invalid norm order for matrices."
    else:
        raise ValueError, "Improper number of dimensions to norm."