1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
|
"""Lite version of scipy.linalg.
This module is a lite version of the linalg.py module in SciPy which contains
high-level Python interface to the LAPACK library. The lite version
only accesses the following LAPACK functions: dgesv, zgesv, dgeev,
zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf.
"""
__all__ = ['solve', 'tensorsolve', 'tensorinv',
'inv', 'cholesky',
'eigvals',
'eigvalsh', 'pinv',
'det', 'svd',
'eig', 'eigh','lstsq', 'norm',
'qr',
'LinAlgError'
]
from numpy.core import array, asarray, zeros, empty, transpose, \
intc, single, double, csingle, cdouble, inexact, complexfloating, \
newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \
maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \
isfinite, size
from numpy.lib import triu
from numpy.linalg import lapack_lite
fortran_int = intc
# Error object
class LinAlgError(Exception):
pass
def _makearray(a):
new = asarray(a)
wrap = getattr(a, "__array_wrap__", new.__array_wrap__)
return new, wrap
def isComplexType(t):
return issubclass(t, complexfloating)
_real_types_map = {single : single,
double : double,
csingle : single,
cdouble : double}
_complex_types_map = {single : csingle,
double : cdouble,
csingle : csingle,
cdouble : cdouble}
def _realType(t, default=double):
return _real_types_map.get(t, default)
def _complexType(t, default=cdouble):
return _complex_types_map.get(t, default)
def _linalgRealType(t):
"""Cast the type t to either double or cdouble."""
return double
_complex_types_map = {single : csingle,
double : cdouble,
csingle : csingle,
cdouble : cdouble}
def _commonType(*arrays):
# in lite version, use higher precision (always double or cdouble)
result_type = single
is_complex = False
for a in arrays:
if issubclass(a.dtype.type, inexact):
if isComplexType(a.dtype.type):
is_complex = True
rt = _realType(a.dtype.type, default=None)
if rt is None:
# unsupported inexact scalar
raise TypeError("array type %s is unsupported in linalg" %
(a.dtype.name,))
else:
rt = double
if rt is double:
result_type = double
if is_complex:
t = cdouble
result_type = _complex_types_map[result_type]
else:
t = double
return t, result_type
def _castCopyAndTranspose(type, *arrays):
if len(arrays) == 1:
return transpose(arrays[0]).astype(type)
else:
return [transpose(a).astype(type) for a in arrays]
# _fastCopyAndTranpose is an optimized version of _castCopyAndTranspose.
# It assumes the input is 2D (as all the calls in here are).
_fastCT = fastCopyAndTranspose
def _fastCopyAndTranspose(type, *arrays):
cast_arrays = ()
for a in arrays:
if a.dtype.type is type:
cast_arrays = cast_arrays + (_fastCT(a),)
else:
cast_arrays = cast_arrays + (_fastCT(a.astype(type)),)
if len(cast_arrays) == 1:
return cast_arrays[0]
else:
return cast_arrays
def _assertRank2(*arrays):
for a in arrays:
if len(a.shape) != 2:
raise LinAlgError, '%d-dimensional array given. Array must be \
two-dimensional' % len(a.shape)
def _assertSquareness(*arrays):
for a in arrays:
if max(a.shape) != min(a.shape):
raise LinAlgError, 'Array must be square'
def _assertFinite(*arrays):
for a in arrays:
if not (isfinite(a).all()):
raise LinAlgError, "Array must not contain infs or NaNs"
def _assertNonEmpty(*arrays):
for a in arrays:
if size(a) == 0:
raise LinAlgError("Arrays cannot be empty")
# Linear equations
def tensorsolve(a, b, axes=None):
"""Solves the tensor equation a x = b for x
where it is assumed that all the indices of x are summed over in
the product.
a can be N-dimensional. x will have the dimensions of A subtracted from
the dimensions of b.
"""
a = asarray(a)
b = asarray(b)
an = a.ndim
if axes is not None:
allaxes = range(0, an)
for k in axes:
allaxes.remove(k)
allaxes.insert(an, k)
a = a.transpose(allaxes)
oldshape = a.shape[-(an-b.ndim):]
prod = 1
for k in oldshape:
prod *= k
a = a.reshape(-1, prod)
b = b.ravel()
res = solve(a, b)
res.shape = oldshape
return res
def solve(a, b):
"""Return the solution of a*x = b
"""
one_eq = len(b.shape) == 1
if one_eq:
b = b[:, newaxis]
_assertRank2(a, b)
_assertSquareness(a)
n_eq = a.shape[0]
n_rhs = b.shape[1]
if n_eq != b.shape[0]:
raise LinAlgError, 'Incompatible dimensions'
t, result_t = _commonType(a, b)
# lapack_routine = _findLapackRoutine('gesv', t)
if isComplexType(t):
lapack_routine = lapack_lite.zgesv
else:
lapack_routine = lapack_lite.dgesv
a, b = _fastCopyAndTranspose(t, a, b)
pivots = zeros(n_eq, fortran_int)
results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0)
if results['info'] > 0:
raise LinAlgError, 'Singular matrix'
if one_eq:
return b.ravel().astype(result_t)
else:
return b.transpose().astype(result_t)
def tensorinv(a, ind=2):
"""Find the 'inverse' of a N-d array
ind must be a positive integer specifying
how many indices at the front of the array are involved
in the inverse sum.
the result is ainv with shape a.shape[ind:] + a.shape[:ind]
tensordot(ainv, a, ind) is an identity operator
and so is
tensordot(a, ainv, a.shape-newind)
Example:
a = rand(4,6,8,3)
ainv = tensorinv(a)
# ainv.shape is (8,3,4,6)
# suppose b has shape (4,6)
tensordot(ainv, b) # produces same (8,3)-shaped output as
tensorsolve(a, b)
a = rand(24,8,3)
ainv = tensorinv(a,1)
# ainv.shape is (8,3,24)
# suppose b has shape (24,)
tensordot(ainv, b, 1) # produces the same (8,3)-shaped output as
tensorsolve(a, b)
"""
a = asarray(a)
oldshape = a.shape
prod = 1
if ind > 0:
invshape = oldshape[ind:] + oldshape[:ind]
for k in oldshape[ind:]:
prod *= k
else:
raise ValueError, "Invalid ind argument."
a = a.reshape(prod, -1)
ia = inv(a)
return ia.reshape(*invshape)
# Matrix inversion
def inv(a):
a, wrap = _makearray(a)
return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
# Cholesky decomposition
def cholesky(a):
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
a = _fastCopyAndTranspose(t, a)
m = a.shape[0]
n = a.shape[1]
if isComplexType(t):
lapack_routine = lapack_lite.zpotrf
else:
lapack_routine = lapack_lite.dpotrf
results = lapack_routine('L', n, a, m, 0)
if results['info'] > 0:
raise LinAlgError, 'Matrix is not positive definite - \
Cholesky decomposition cannot be computed'
s = triu(a, k=0).transpose()
if (s.dtype != result_t):
return s.astype(result_t)
return s
# QR decompostion
def qr(a, mode='full'):
"""cacluates A=QR, Q orthonormal, R upper triangular
mode: 'full' --> (Q,R)
'r' --> R
'economic' --> A2 where the diagonal + upper triangle
part of A2 is R. This is faster if you only need R
"""
_assertRank2(a)
m, n = a.shape
t, result_t = _commonType(a)
a = _fastCopyAndTranspose(t, a)
mn = min(m, n)
tau = zeros((mn,), t)
if isComplexType(t):
lapack_routine = lapack_lite.zgeqrf
routine_name = 'zgeqrf'
else:
lapack_routine = lapack_lite.dgeqrf
routine_name = 'dgeqrf'
# calculate optimal size of work data 'work'
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(m, n, a, m, tau, work, -1, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
# do qr decomposition
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine(m, n, a, m, tau, work, lwork, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
# economic mode. Isn't actually economic.
if mode[0] == 'e':
if t != result_t :
a = a.astype(result_t)
return a.T
# generate r
r = _fastCopyAndTranspose(result_t, a[:,:mn])
for i in range(mn):
r[i,:i].fill(0.0)
# 'r'-mode, that is, calculate only r
if mode[0] == 'r':
return r
# from here on: build orthonormal matrix q from a
if isComplexType(t):
lapack_routine = lapack_lite.zungqr
routine_name = 'zungqr'
else:
lapack_routine = lapack_lite.dorgqr
routine_name = 'dorgqr'
# determine optimal lwork
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(m, mn, mn, a, m, tau, work, -1, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
# compute q
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine(m, mn, mn, a, m, tau, work, lwork, 0)
if results['info'] != 0:
raise LinAlgError, '%s returns %d' % (routine_name, results['info'])
q = _fastCopyAndTranspose(result_t, a[:mn,:])
return q, r
# Eigenvalues
def eigvals(a):
"""Compute the eigenvalues of the general 2-d array a.
A simple interface to the LAPACK routines dgeev and zgeev that sets the
flags to return only the eigenvalues of general real and complex arrays
respectively.
:Parameters:
a : 2-d array
A complex or real 2-d array whose eigenvalues and eigenvectors
will be computed.
:Returns:
w : 1-d double or complex array
The eigenvalues. The eigenvalues are not necessarily ordered, nor
are they necessarily real for real matrices.
:SeeAlso:
- eig : eigenvalues and right eigenvectors of general arrays
- eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
- eigh : eigenvalues and eigenvectors of symmetric/Hermitean arrays.
:Notes:
-------
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix.
"""
_assertRank2(a)
_assertSquareness(a)
_assertFinite(a)
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
dummy = zeros((1,), t)
if isComplexType(t):
lapack_routine = lapack_lite.zgeev
w = zeros((n,), t)
rwork = zeros((n,), real_t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, w,
dummy, 1, dummy, 1, work, -1, rwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, w,
dummy, 1, dummy, 1, work, lwork, rwork, 0)
else:
lapack_routine = lapack_lite.dgeev
wr = zeros((n,), t)
wi = zeros((n,), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, wr, wi,
dummy, 1, dummy, 1, work, -1, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('N', 'N', n, a, n, wr, wi,
dummy, 1, dummy, 1, work, lwork, 0)
if all(wi == 0.):
w = wr
result_t = _realType(result_t)
else:
w = wr+1j*wi
result_t = _complexType(result_t)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
return w.astype(result_t)
def eigvalsh(a, UPLO='L'):
"""Compute the eigenvalues of the symmetric or Hermitean 2-d array a.
A simple interface to the LAPACK routines dsyevd and zheevd that sets the
flags to return only the eigenvalues of real symmetric and complex
Hermetian arrays respectively.
:Parameters:
a : 2-d array
A complex or real 2-d array whose eigenvalues and eigenvectors
will be computed.
UPLO : string
Specifies whether the pertinent array date is taken from the upper
or lower triangular part of a. Possible values are 'L', and 'U' for
upper and lower respectively. Default is 'L'.
:Returns:
w : 1-d double array
The eigenvalues. The eigenvalues are not necessarily ordered.
:SeeAlso:
- eigh : eigenvalues and eigenvectors of symmetric/Hermitean arrays.
- eigvals : eigenvalues of general real or complex arrays.
- eig : eigenvalues and eigenvectors of general real or complex arrays.
:Notes:
-------
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix. The eigenvalues of real
symmetric or complex Hermitean matrices are always real.
"""
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
liwork = 5*n+3
iwork = zeros((liwork,), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zheevd
w = zeros((n,), real_t)
lwork = 1
work = zeros((lwork,), t)
lrwork = 1
rwork = zeros((lrwork,), real_t)
results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
rwork, -1, iwork, liwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
lrwork = int(rwork[0])
rwork = zeros((lrwork,), real_t)
results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
rwork, lrwork, iwork, liwork, 0)
else:
lapack_routine = lapack_lite.dsyevd
w = zeros((n,), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', UPLO, n, a, n, w, work, -1,
iwork, liwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('N', UPLO, n, a, n, w, work, lwork,
iwork, liwork, 0)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
return w.astype(result_t)
def _convertarray(a):
t, result_t = _commonType(a)
a = _fastCT(a.astype(t))
return a, t, result_t
# Eigenvectors
def eig(a):
"""Eigenvalues and right eigenvectors of a general matrix.
A simple interface to the LAPACK routines dgeev and zgeev that compute the
eigenvalues and eigenvectors of general real and complex arrays
respectively.
:Parameters:
a : 2-d array
A complex or real 2-d array whose eigenvalues and eigenvectors
will be computed.
:Returns:
w : 1-d double or complex array
The eigenvalues. The eigenvalues are not necessarily ordered, nor
are they necessarily real for real matrices.
v : 2-d double or complex double array.
The normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].
:SeeAlso:
- eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
- eig : eigenvalues and right eigenvectors for non-symmetric arrays
- eigvals : eigenvalues of non-symmetric array.
:Notes:
-------
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix. The arrays a, w, and v
satisfy the equation dot(a,v[i]) = w[i]*v[:,i].
The array v of eigenvectors may not be of maximum rank, that is, some
of the columns may be dependent, although roundoff error may obscure
that fact. If the eigenvalues are all different, then theoretically the
eigenvectors are independent. Likewise, the matrix of eigenvectors is
unitary if the matrix a is normal, i.e., if dot(a, a.H) = dot(a.H, a).
The left and right eigenvectors are not necessarily the (Hemitian)
transposes of each other.
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
_assertFinite(a)
a, t, result_t = _convertarray(a) # convert to double or cdouble type
real_t = _linalgRealType(t)
n = a.shape[0]
dummy = zeros((1,), t)
if isComplexType(t):
# Complex routines take different arguments
lapack_routine = lapack_lite.zgeev
w = zeros((n,), t)
v = zeros((n, n), t)
lwork = 1
work = zeros((lwork,), t)
rwork = zeros((2*n,), real_t)
results = lapack_routine('N', 'V', n, a, n, w,
dummy, 1, v, n, work, -1, rwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine('N', 'V', n, a, n, w,
dummy, 1, v, n, work, lwork, rwork, 0)
else:
lapack_routine = lapack_lite.dgeev
wr = zeros((n,), t)
wi = zeros((n,), t)
vr = zeros((n, n), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('N', 'V', n, a, n, wr, wi,
dummy, 1, vr, n, work, -1, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('N', 'V', n, a, n, wr, wi,
dummy, 1, vr, n, work, lwork, 0)
if all(wi == 0.0):
w = wr
v = vr
result_t = _realType(result_t)
else:
w = wr+1j*wi
v = array(vr, w.dtype)
ind = flatnonzero(wi != 0.0) # indices of complex e-vals
for i in range(len(ind)/2):
v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]]
v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]]
result_t = _complexType(result_t)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
vt = v.transpose().astype(result_t)
return w.astype(result_t), wrap(vt)
def eigh(a, UPLO='L'):
"""Compute eigenvalues for a Hermitian-symmetric matrix.
A simple interface to the LAPACK routines dsyevd and zheevd that compute
the eigenvalues and eigenvectors of real symmetric and complex Hermitian
arrays respectively.
:Parameters:
a : 2-d array
A complex Hermitian or symmetric real 2-d array whose eigenvalues
and eigenvectors will be computed.
UPLO : string
Specifies whether the pertinent array date is taken from the upper
or lower triangular part of a. Possible values are 'L', and 'U'.
Default is 'L'.
:Returns:
w : 1-d double array
The eigenvalues. The eigenvalues are not necessarily ordered.
v : 2-d double or complex double array, depending on input array type
The normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].
:SeeAlso:
- eigvalsh : eigenvalues of symmetric or Hemitiean arrays.
- eig : eigenvalues and right eigenvectors for non-symmetric arrays
- eigvals : eigenvalues of non-symmetric array.
:Notes:
-------
The number w is an eigenvalue of a if there exists a vector v
satisfying the equation dot(a,v) = w*v. Alternately, if w is a root of
the characteristic equation det(a - w[i]*I) = 0, where det is the
determinant and I is the identity matrix. The eigenvalues of real
symmetric or complex Hermitean matrices are always real. The array v
of eigenvectors is unitary and a, w, and v satisfy the equation
dot(a,v[i]) = w[i]*v[:,i].
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
liwork = 5*n+3
iwork = zeros((liwork,), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zheevd
w = zeros((n,), real_t)
lwork = 1
work = zeros((lwork,), t)
lrwork = 1
rwork = zeros((lrwork,), real_t)
results = lapack_routine('V', UPLO, n, a, n, w, work, -1,
rwork, -1, iwork, liwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
lrwork = int(rwork[0])
rwork = zeros((lrwork,), real_t)
results = lapack_routine('V', UPLO, n, a, n, w, work, lwork,
rwork, lrwork, iwork, liwork, 0)
else:
lapack_routine = lapack_lite.dsyevd
w = zeros((n,), t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine('V', UPLO, n, a, n, w, work, -1,
iwork, liwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine('V', UPLO, n, a, n, w, work, lwork,
iwork, liwork, 0)
if results['info'] > 0:
raise LinAlgError, 'Eigenvalues did not converge'
at = a.transpose().astype(result_t)
return w.astype(_realType(result_t)), wrap(at)
# Singular value decomposition
def svd(a, full_matrices=1, compute_uv=1):
"""Singular Value Decomposition.
u,s,vh = svd(a)
If a is an M x N array, then the svd produces a factoring of the array
into two unitary (orthogonal) 2-d arrays u (MxM) and vh (NxN) and a
min(M,N)-length array of singular values such that
a == dot(u,dot(S,vh))
where S is an MxN array of zeros whose main diagonal is s.
if compute_uv == 0, then return only the singular values
if full_matrices == 0, then only part of either u or vh is
returned so that it is MxN
"""
a, wrap = _makearray(a)
_assertRank2(a)
_assertNonEmpty(a)
m, n = a.shape
t, result_t = _commonType(a)
real_t = _linalgRealType(t)
a = _fastCopyAndTranspose(t, a)
s = zeros((min(n, m),), real_t)
if compute_uv:
if full_matrices:
nu = m
nvt = n
option = 'A'
else:
nu = min(n, m)
nvt = min(n, m)
option = 'S'
u = zeros((nu, m), t)
vt = zeros((n, nvt), t)
else:
option = 'N'
nu = 1
nvt = 1
u = empty((1, 1), t)
vt = empty((1, 1), t)
iwork = zeros((8*min(m, n),), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zgesdd
rwork = zeros((5*min(m, n)*min(m, n) + 5*min(m, n),), real_t)
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, -1, rwork, iwork, 0)
lwork = int(abs(work[0]))
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, lwork, rwork, iwork, 0)
else:
lapack_routine = lapack_lite.dgesdd
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, -1, iwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt,
work, lwork, iwork, 0)
if results['info'] > 0:
raise LinAlgError, 'SVD did not converge'
s = s.astype(_realType(result_t))
if compute_uv:
u = u.transpose().astype(result_t)
vt = vt.transpose().astype(result_t)
return wrap(u), s, wrap(vt)
else:
return s
# Generalized inverse
def pinv(a, rcond=1e-15 ):
"""Return the (Moore-Penrose) pseudo-inverse of a 2-d array
This method computes the generalized inverse using the
singular-value decomposition and all singular values larger than
rcond of the largest.
"""
a, wrap = _makearray(a)
_assertNonEmpty(a)
a = a.conjugate()
u, s, vt = svd(a, 0)
m = u.shape[0]
n = vt.shape[1]
cutoff = rcond*maximum.reduce(s)
for i in range(min(n, m)):
if s[i] > cutoff:
s[i] = 1./s[i]
else:
s[i] = 0.;
return wrap(dot(transpose(vt),
multiply(s[:, newaxis],transpose(u))))
# Determinant
def det(a):
"The determinant of the 2-d array a"
a = asarray(a)
_assertRank2(a)
_assertSquareness(a)
t, result_t = _commonType(a)
a = _fastCopyAndTranspose(t, a)
n = a.shape[0]
if isComplexType(t):
lapack_routine = lapack_lite.zgetrf
else:
lapack_routine = lapack_lite.dgetrf
pivots = zeros((n,), fortran_int)
results = lapack_routine(n, n, a, n, pivots, 0)
info = results['info']
if (info < 0):
raise TypeError, "Illegal input to Fortran routine"
elif (info > 0):
return 0.0
sign = add.reduce(pivots != arange(1, n+1)) % 2
return (1.-2.*sign)*multiply.reduce(diagonal(a), axis=-1)
# Linear Least Squares
def lstsq(a, b, rcond=-1):
"""returns x,resids,rank,s
where x minimizes 2-norm(|b - Ax|)
resids is the sum square residuals
rank is the rank of A
s is the rank of the singular values of A in descending order
If b is a matrix then x is also a matrix with corresponding columns.
If the rank of A is less than the number of columns of A or greater than
the number of rows, then residuals will be returned as an empty array
otherwise resids = sum((b-dot(A,x)**2).
Singular values less than s[0]*rcond are treated as zero.
"""
import math
a = asarray(a)
b, wrap = _makearray(b)
one_eq = len(b.shape) == 1
if one_eq:
b = b[:, newaxis]
_assertRank2(a, b)
m = a.shape[0]
n = a.shape[1]
n_rhs = b.shape[1]
ldb = max(n, m)
if m != b.shape[0]:
raise LinAlgError, 'Incompatible dimensions'
t, result_t = _commonType(a, b)
real_t = _linalgRealType(t)
bstar = zeros((ldb, n_rhs), t)
bstar[:b.shape[0],:n_rhs] = b.copy()
a, bstar = _fastCopyAndTranspose(t, a, bstar)
s = zeros((min(m, n),), real_t)
nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 )
iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int)
if isComplexType(t):
lapack_routine = lapack_lite.zgelsd
lwork = 1
rwork = zeros((lwork,), real_t)
work = zeros((lwork,), t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, -1, rwork, iwork, 0)
lwork = int(abs(work[0]))
rwork = zeros((lwork,), real_t)
a_real = zeros((m, n), real_t)
bstar_real = zeros((ldb, n_rhs,), real_t)
results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m,
bstar_real, ldb, s, rcond,
0, rwork, -1, iwork, 0)
lrwork = int(rwork[0])
work = zeros((lwork,), t)
rwork = zeros((lrwork,), real_t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, lwork, rwork, iwork, 0)
else:
lapack_routine = lapack_lite.dgelsd
lwork = 1
work = zeros((lwork,), t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, -1, iwork, 0)
lwork = int(work[0])
work = zeros((lwork,), t)
results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond,
0, work, lwork, iwork, 0)
if results['info'] > 0:
raise LinAlgError, 'SVD did not converge in Linear Least Squares'
resids = array([], t)
if one_eq:
x = array(ravel(bstar)[:n], dtype=result_t, copy=True)
if results['rank'] == n and m > n:
resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_t)
else:
x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True)
if results['rank'] == n and m > n:
resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype(result_t)
st = s[:min(n, m)].copy().astype(_realType(result_t))
return wrap(x), resids, results['rank'], st
def norm(x, ord=None):
""" norm(x, ord=None) -> n
Matrix or vector norm.
Inputs:
x -- a rank-1 (vector) or rank-2 (matrix) array
ord -- the order of the norm.
Comments:
For arrays of any rank, if ord is None:
calculate the square norm (Euclidean norm for vectors,
Frobenius norm for matrices)
For vectors ord can be any real number including Inf or -Inf.
ord = Inf, computes the maximum of the magnitudes
ord = -Inf, computes minimum of the magnitudes
ord is finite, computes sum(abs(x)**ord,axis=0)**(1.0/ord)
For matrices ord can only be one of the following values:
ord = 2 computes the largest singular value
ord = -2 computes the smallest singular value
ord = 1 computes the largest column sum of absolute values
ord = -1 computes the smallest column sum of absolute values
ord = Inf computes the largest row sum of absolute values
ord = -Inf computes the smallest row sum of absolute values
ord = 'fro' computes the frobenius norm sqrt(sum(diag(X.H * X),axis=0))
For values ord < 0, the result is, strictly speaking, not a
mathematical 'norm', but it may still be useful for numerical purposes.
"""
x = asarray(x)
nd = len(x.shape)
if ord is None: # check the default case first and handle it immediately
return sqrt(add.reduce((x.conj() * x).ravel().real))
if nd == 1:
if ord == Inf:
return abs(x).max()
elif ord == -Inf:
return abs(x).min()
elif ord == 1:
return abs(x).sum() # special case for speedup
elif ord == 2:
return sqrt(((x.conj()*x).real).sum()) # special case for speedup
else:
return ((abs(x)**ord).sum())**(1.0/ord)
elif nd == 2:
if ord == 2:
return svd(x, compute_uv=0).max()
elif ord == -2:
return svd(x, compute_uv=0).min()
elif ord == 1:
return abs(x).sum(axis=0).max()
elif ord == Inf:
return abs(x).sum(axis=1).max()
elif ord == -1:
return abs(x).sum(axis=0).min()
elif ord == -Inf:
return abs(x).sum(axis=1).min()
elif ord in ['fro','f']:
return sqrt(add.reduce((x.conj() * x).real.ravel()))
else:
raise ValueError, "Invalid norm order for matrices."
else:
raise ValueError, "Improper number of dimensions to norm."
|