summaryrefslogtreecommitdiff
path: root/numpy/ma/tests/test_extras.py
blob: 6612e83a1e3fe41c9acb26bc07687a7ff5f1f86f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# pylint: disable-msg=W0611, W0612, W0511
"""Tests suite for MaskedArray.
Adapted from the original test_ma by Pierre Gerard-Marchant

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
__date__     = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'

import numpy as N
from numpy.testing import NumpyTest, NumpyTestCase
from numpy.testing.utils import build_err_msg

import numpy.ma.testutils
from numpy.ma.testutils import *

import numpy.ma.core
from numpy.ma.core import *
import numpy.ma.extras
from numpy.ma.extras import *

class TestAverage(NumpyTestCase):
    "Several tests of average. Why so many ? Good point..."
    def check_testAverage1(self):
        "Test of average."
        ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
        assert_equal(2.0, average(ott,axis=0))
        assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
        result, wts = average(ott, weights=[1.,1.,2.,1.], returned=1)
        assert_equal(2.0, result)
        assert(wts == 4.0)
        ott[:] = masked
        assert_equal(average(ott,axis=0).mask, [True])
        ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
        ott = ott.reshape(2,2)
        ott[:,1] = masked
        assert_equal(average(ott,axis=0), [2.0, 0.0])
        assert_equal(average(ott,axis=1).mask[0], [True])
        assert_equal([2.,0.], average(ott, axis=0))
        result, wts = average(ott, axis=0, returned=1)
        assert_equal(wts, [1., 0.])

    def check_testAverage2(self):
        "More tests of average."
        w1 = [0,1,1,1,1,0]
        w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]]
        x = arange(6, dtype=float_)
        assert_equal(average(x, axis=0), 2.5)
        assert_equal(average(x, axis=0, weights=w1), 2.5)
        y = array([arange(6, dtype=float_), 2.0*arange(6)])
        assert_equal(average(y, None), N.add.reduce(N.arange(6))*3./12.)
        assert_equal(average(y, axis=0), N.arange(6) * 3./2.)
        assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0])
        assert_equal(average(y, None, weights=w2), 20./6.)
        assert_equal(average(y, axis=0, weights=w2), [0.,1.,2.,3.,4.,10.])
        assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0])
        m1 = zeros(6)
        m2 = [0,0,1,1,0,0]
        m3 = [[0,0,1,1,0,0],[0,1,1,1,1,0]]
        m4 = ones(6)
        m5 = [0, 1, 1, 1, 1, 1]
        assert_equal(average(masked_array(x, m1),axis=0), 2.5)
        assert_equal(average(masked_array(x, m2),axis=0), 2.5)
        assert_equal(average(masked_array(x, m4),axis=0).mask, [True])
        assert_equal(average(masked_array(x, m5),axis=0), 0.0)
        assert_equal(count(average(masked_array(x, m4),axis=0)), 0)
        z = masked_array(y, m3)
        assert_equal(average(z, None), 20./6.)
        assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5])
        assert_equal(average(z, axis=1), [2.5, 5.0])
        assert_equal(average(z,axis=0, weights=w2), [0.,1., 99., 99., 4.0, 10.0])

    def check_testAverage3(self):
        "Yet more tests of average!"
        a = arange(6)
        b = arange(6) * 3
        r1, w1 = average([[a,b],[b,a]], axis=1, returned=1)
        assert_equal(shape(r1) , shape(w1))
        assert_equal(r1.shape , w1.shape)
        r2, w2 = average(ones((2,2,3)), axis=0, weights=[3,1], returned=1)
        assert_equal(shape(w2) , shape(r2))
        r2, w2 = average(ones((2,2,3)), returned=1)
        assert_equal(shape(w2) , shape(r2))
        r2, w2 = average(ones((2,2,3)), weights=ones((2,2,3)), returned=1)
        assert_equal(shape(w2), shape(r2))
        a2d = array([[1,2],[0,4]], float)
        a2dm = masked_array(a2d, [[0,0],[1,0]])
        a2da = average(a2d, axis=0)
        assert_equal(a2da, [0.5, 3.0])
        a2dma = average(a2dm, axis=0)
        assert_equal(a2dma, [1.0, 3.0])
        a2dma = average(a2dm, axis=None)
        assert_equal(a2dma, 7./3.)
        a2dma = average(a2dm, axis=1)
        assert_equal(a2dma, [1.5, 4.0])

class TestConcatenator(NumpyTestCase):
    "Tests for mr_, the equivalent of r_ for masked arrays."
    def check_1d(self):
        "Tests mr_ on 1D arrays."
        assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6]))
        b = ones(5)
        m = [1,0,0,0,0]
        d = masked_array(b,mask=m)
        c = mr_[d,0,0,d]
        assert(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray))
        assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1])
        assert_array_equal(c.mask, mr_[m,0,0,m])

    def check_2d(self):
        "Tests mr_ on 2D arrays."
        a_1 = rand(5,5)
        a_2 = rand(5,5)
        m_1 = N.round_(rand(5,5),0)
        m_2 = N.round_(rand(5,5),0)
        b_1 = masked_array(a_1,mask=m_1)
        b_2 = masked_array(a_2,mask=m_2)
        d = mr_['1',b_1,b_2]  # append columns
        assert(d.shape == (5,10))
        assert_array_equal(d[:,:5],b_1)
        assert_array_equal(d[:,5:],b_2)
        assert_array_equal(d.mask, N.r_['1',m_1,m_2])
        d = mr_[b_1,b_2]
        assert(d.shape == (10,5))
        assert_array_equal(d[:5,:],b_1)
        assert_array_equal(d[5:,:],b_2)
        assert_array_equal(d.mask, N.r_[m_1,m_2])

class TestNotMasked(NumpyTestCase):
    "Tests notmasked_edges and notmasked_contiguous."
    def check_edges(self):
        "Tests unmasked_edges"
        a = masked_array(N.arange(24).reshape(3,8),
                         mask=[[0,0,0,0,1,1,1,0],
                               [1,1,1,1,1,1,1,1],
                               [0,0,0,0,0,0,1,0],])
        #
        assert_equal(notmasked_edges(a, None), [0,23])
        #
        tmp = notmasked_edges(a, 0)
        assert_equal(tmp[0], (array([0,0,0,0,2,2,0]), array([0,1,2,3,4,5,7])))
        assert_equal(tmp[1], (array([2,2,2,2,2,2,2]), array([0,1,2,3,4,5,7])))
        #
        tmp = notmasked_edges(a, 1)
        assert_equal(tmp[0], (array([0,2,]), array([0,0])))
        assert_equal(tmp[1], (array([0,2,]), array([7,7])))

    def check_contiguous(self):
        "Tests notmasked_contiguous"
        a = masked_array(N.arange(24).reshape(3,8),
                         mask=[[0,0,0,0,1,1,1,1],
                               [1,1,1,1,1,1,1,1],
                               [0,0,0,0,0,0,1,0],])
        tmp = notmasked_contiguous(a, None)
        assert_equal(tmp[-1], slice(23,23,None))
        assert_equal(tmp[-2], slice(16,21,None))
        assert_equal(tmp[-3], slice(0,3,None))
        #
        tmp = notmasked_contiguous(a, 0)
        assert(len(tmp[-1]) == 1)
        assert(tmp[-2] is None)
        assert_equal(tmp[-3],tmp[-1])
        assert(len(tmp[0]) == 2)
        #
        tmp = notmasked_contiguous(a, 1)
        assert_equal(tmp[0][-1], slice(0,3,None))
        assert(tmp[1] is None)
        assert_equal(tmp[2][-1], slice(7,7,None))
        assert_equal(tmp[2][-2], slice(0,5,None))

class Test2DFunctions(NumpyTestCase):
    "Tests 2D functions"
    def check_compress2d(self):
        "Tests compress2d"
        x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
        assert_equal(compress_rowcols(x), [[4,5],[7,8]] )
        assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] )
        assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] )
        x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
        assert_equal(compress_rowcols(x), [[0,2],[6,8]] )
        assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] )
        assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] )
        x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
        assert_equal(compress_rowcols(x), [[8]] )
        assert_equal(compress_rowcols(x,0), [[6,7,8]] )
        assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] )
        x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
        assert_equal(compress_rowcols(x).size, 0 )
        assert_equal(compress_rowcols(x,0).size, 0 )
        assert_equal(compress_rowcols(x,1).size, 0 )
    #
    def check_mask_rowcols(self):
        "Tests mask_rowcols."
        x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
        assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] )
        assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] )
        assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] )
        x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
        assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] )
        assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] )
        assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] )
        x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
        assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] )
        assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] )
        assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] )
        x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
        assert(mask_rowcols(x).all())
        assert(mask_rowcols(x,0).all())
        assert(mask_rowcols(x,1).all())
    #
    def test_dot(self):
        "Tests dot product"
        n = N.arange(1,7)
        #
        m = [1,0,0,0,0,0]
        a = masked_array(n, mask=m).reshape(2,3)
        b = masked_array(n, mask=m).reshape(3,2)
        c = dot(a,b,True)
        assert_equal(c.mask, [[1,1],[1,0]])
        c = dot(b,a,True)
        assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]])
        c = dot(a,b,False)
        assert_equal(c, N.dot(a.filled(0), b.filled(0)))
        c = dot(b,a,False)
        assert_equal(c, N.dot(b.filled(0), a.filled(0)))
        #
        m = [0,0,0,0,0,1]
        a = masked_array(n, mask=m).reshape(2,3)
        b = masked_array(n, mask=m).reshape(3,2)
        c = dot(a,b,True)
        assert_equal(c.mask,[[0,1],[1,1]])
        c = dot(b,a,True)
        assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]])
        c = dot(a,b,False)
        assert_equal(c, N.dot(a.filled(0), b.filled(0)))
        assert_equal(c, dot(a,b))
        c = dot(b,a,False)
        assert_equal(c, N.dot(b.filled(0), a.filled(0)))
        #
        m = [0,0,0,0,0,0]
        a = masked_array(n, mask=m).reshape(2,3)
        b = masked_array(n, mask=m).reshape(3,2)
        c = dot(a,b)
        assert_equal(c.mask,nomask)
        c = dot(b,a)
        assert_equal(c.mask,nomask)
        #
        a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3)
        b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
        c = dot(a,b,True)
        assert_equal(c.mask,[[1,1],[0,0]])
        c = dot(a,b,False)
        assert_equal(c, N.dot(a.filled(0),b.filled(0)))
        c = dot(b,a,True)
        assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]])
        c = dot(b,a,False)
        assert_equal(c, N.dot(b.filled(0),a.filled(0)))
        #
        a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
        b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
        c = dot(a,b,True)
        assert_equal(c.mask,[[0,0],[1,1]])
        c = dot(a,b)
        assert_equal(c, N.dot(a.filled(0),b.filled(0)))
        c = dot(b,a,True)
        assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]])
        c = dot(b,a,False)
        assert_equal(c, N.dot(b.filled(0), a.filled(0)))
        #
        a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
        b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2)
        c = dot(a,b,True)
        assert_equal(c.mask,[[1,0],[1,1]])
        c = dot(a,b,False)
        assert_equal(c, N.dot(a.filled(0),b.filled(0)))
        c = dot(b,a,True)
        assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]])
        c = dot(b,a,False)
        assert_equal(c, N.dot(b.filled(0),a.filled(0)))

    def test_ediff1d(self):
        "Tests mediff1d"
        x = masked_array(N.arange(5), mask=[1,0,0,0,1])
        difx_d = (x._data[1:]-x._data[:-1])
        difx_m = (x._mask[1:]-x._mask[:-1])
        dx = ediff1d(x)
        assert_equal(dx._data, difx_d)
        assert_equal(dx._mask, difx_m)
        #
        dx = ediff1d(x, to_begin=masked)
        assert_equal(dx._data, N.r_[0,difx_d])
        assert_equal(dx._mask, N.r_[1,difx_m])
        dx = ediff1d(x, to_begin=[1,2,3])
        assert_equal(dx._data, N.r_[[1,2,3],difx_d])
        assert_equal(dx._mask, N.r_[[0,0,0],difx_m])
        #
        dx = ediff1d(x, to_end=masked)
        assert_equal(dx._data, N.r_[difx_d,0])
        assert_equal(dx._mask, N.r_[difx_m,1])
        dx = ediff1d(x, to_end=[1,2,3])
        assert_equal(dx._data, N.r_[difx_d,[1,2,3]])
        assert_equal(dx._mask, N.r_[difx_m,[0,0,0]])
        #
        dx = ediff1d(x, to_end=masked, to_begin=masked)
        assert_equal(dx._data, N.r_[0,difx_d,0])
        assert_equal(dx._mask, N.r_[1,difx_m,1])
        dx = ediff1d(x, to_end=[1,2,3], to_begin=masked)
        assert_equal(dx._data, N.r_[0,difx_d,[1,2,3]])
        assert_equal(dx._mask, N.r_[1,difx_m,[0,0,0]])
        #
        dx = ediff1d(x._data, to_end=masked, to_begin=masked)
        assert_equal(dx._data, N.r_[0,difx_d,0])
        assert_equal(dx._mask, N.r_[1,0,0,0,0,1])

class TestApplyAlongAxis(NumpyTestCase):
    "Tests 2D functions"
    def check_3d(self):
        a = arange(12.).reshape(2,2,3)
        def myfunc(b):
            return b[1]
        xa = apply_along_axis(myfunc,2,a)
        assert_equal(xa,[[1,4],[7,10]])

class TestMedian(NumpyTestCase):
    def __init__(self, *args, **kwds):
        NumpyTestCase.__init__(self, *args, **kwds)
    #
    def test_2d(self):
        "Tests median w/ 2D"
        (n,p) = (101,30)
        x = masked_array(numpy.linspace(-1.,1.,n),)
        x[:10] = x[-10:] = masked
        z = masked_array(numpy.empty((n,p), dtype=numpy.float_))
        z[:,0] = x[:]
        idx = numpy.arange(len(x))
        for i in range(1,p):
            numpy.random.shuffle(idx)
            z[:,i] = x[idx]
        assert_equal(median(z[:,0]), 0)
        assert_equal(median(z), numpy.zeros((p,)))
    #
    def test_3d(self):
        "Tests median w/ 3D"
        x = numpy.ma.arange(24).reshape(3,4,2)
        x[x%3==0] = masked
        assert_equal(median(x,0), [[12,9],[6,15],[12,9],[18,15]])
        x.shape = (4,3,2)
        assert_equal(median(x,0),[[99,10],[11,99],[13,14]])
        x = numpy.ma.arange(24).reshape(4,3,2)
        x[x%5==0] = masked
        assert_equal(median(x,0), [[12,10],[8,9],[16,17]])


class TestPolynomial(NumpyTestCase):
    #
    def test_polyfit(self):
        "Tests polyfit"
        # On ndarrays
        x = numpy.random.rand(10)
        y = numpy.random.rand(20).reshape(-1,2)
        assert_almost_equal(polyfit(x,y,3),numpy.polyfit(x,y,3))
        # ON 1D maskedarrays
        x = x.view(MaskedArray)
        x[0] = masked
        y = y.view(MaskedArray)
        y[0,0] = y[-1,-1] = masked
        #
        (C,R,K,S,D) = polyfit(x,y[:,0],3,full=True)
        (c,r,k,s,d) = numpy.polyfit(x[1:], y[1:,0].compressed(), 3, full=True)
        for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
            assert_almost_equal(a, a_)
        #
        (C,R,K,S,D) = polyfit(x,y[:,-1],3,full=True)
        (c,r,k,s,d) = numpy.polyfit(x[1:-1], y[1:-1,-1], 3, full=True)
        for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
            assert_almost_equal(a, a_)
        #
        (C,R,K,S,D) = polyfit(x,y,3,full=True)
        (c,r,k,s,d) = numpy.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
        for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
            assert_almost_equal(a, a_)


###############################################################################
#------------------------------------------------------------------------------
if __name__ == "__main__":
    NumpyTest().run()