1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
import numpy as np
from numpy.testing import *
from numpy.ma.testutils import *
from numpy.ma.core import *
class SubArray(np.ndarray):
"""Defines a generic np.ndarray subclass, that stores some metadata
in the dictionary `info`."""
def __new__(cls,arr,info={}):
x = np.asanyarray(arr).view(cls)
x.info = info
return x
def __array_finalize__(self, obj):
self.info = getattr(obj,'info',{})
return
def __add__(self, other):
result = np.ndarray.__add__(self, other)
result.info.update({'added':result.info.pop('added',0)+1})
return result
subarray = SubArray
class MSubArray(SubArray,MaskedArray):
def __new__(cls, data, info={}, mask=nomask):
subarr = SubArray(data, info)
_data = MaskedArray.__new__(cls, data=subarr, mask=mask)
_data.info = subarr.info
return _data
def __array_finalize__(self,obj):
MaskedArray.__array_finalize__(self,obj)
SubArray.__array_finalize__(self, obj)
return
def _get_series(self):
_view = self.view(MaskedArray)
_view._sharedmask = False
return _view
_series = property(fget=_get_series)
msubarray = MSubArray
class MMatrix(MaskedArray, np.matrix,):
def __new__(cls, data, mask=nomask):
mat = np.matrix(data)
_data = MaskedArray.__new__(cls, data=mat, mask=mask)
return _data
def __array_finalize__(self,obj):
np.matrix.__array_finalize__(self, obj)
MaskedArray.__array_finalize__(self,obj)
return
def _get_series(self):
_view = self.view(MaskedArray)
_view._sharedmask = False
return _view
_series = property(fget=_get_series)
mmatrix = MMatrix
class TestSubclassing(TestCase):
"""Test suite for masked subclasses of ndarray."""
def test_data_subclassing(self):
"Tests whether the subclass is kept."
x = np.arange(5)
m = [0,0,1,0,0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
self.failUnless(isinstance(xmsub, MaskedArray))
assert_equal(xmsub._data, xsub)
self.failUnless(isinstance(xmsub._data, SubArray))
def test_maskedarray_subclassing(self):
"Tests subclassing MaskedArray"
x = np.arange(5)
mx = mmatrix(x,mask=[0,1,0,0,0])
self.failUnless(isinstance(mx._data, np.matrix))
"Tests masked_unary_operation"
self.failUnless(isinstance(add(mx,mx), mmatrix))
self.failUnless(isinstance(add(mx,x), mmatrix))
assert_equal(add(mx,x), mx+x)
self.failUnless(isinstance(add(mx,mx)._data, np.matrix))
self.failUnless(isinstance(add.outer(mx,mx), mmatrix))
"Tests masked_binary_operation"
self.failUnless(isinstance(hypot(mx,mx), mmatrix))
self.failUnless(isinstance(hypot(mx,x), mmatrix))
def test_attributepropagation(self):
x = array(arange(5), mask=[0]+[1]*4)
my = masked_array(subarray(x))
ym = msubarray(x)
#
z = (my+1)
self.failUnless(isinstance(z,MaskedArray))
self.failUnless(not isinstance(z, MSubArray))
self.failUnless(isinstance(z._data, SubArray))
assert_equal(z._data.info, {})
#
z = (ym+1)
self.failUnless(isinstance(z, MaskedArray))
self.failUnless(isinstance(z, MSubArray))
self.failUnless(isinstance(z._data, SubArray))
self.failUnless(z._data.info['added'] > 0)
#
ym._set_mask([1,0,0,0,1])
assert_equal(ym._mask, [1,0,0,0,1])
ym._series._set_mask([0,0,0,0,1])
assert_equal(ym._mask, [0,0,0,0,1])
#
xsub = subarray(x, info={'name':'x'})
mxsub = masked_array(xsub)
self.failUnless(hasattr(mxsub, 'info'))
assert_equal(mxsub.info, xsub.info)
def test_subclasspreservation(self):
"Checks that masked_array(...,subok=True) preserves the class."
x = np.arange(5)
m = [0,0,1,0,0]
xinfo = [(i,j) for (i,j) in zip(x,m)]
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
#
mxsub = masked_array(xsub, subok=False)
self.failUnless(not isinstance(mxsub, MSubArray))
self.failUnless(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = asarray(xsub)
self.failUnless(not isinstance(mxsub, MSubArray))
self.failUnless(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = masked_array(xsub, subok=True)
self.failUnless(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, xsub._mask)
#
mxsub = asanyarray(xsub)
self.failUnless(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, m)
################################################################################
if __name__ == '__main__':
run_module_suite()
|