1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
|
"""
Utility function to facilitate testing.
"""
from __future__ import division, absolute_import, print_function
import os
import sys
import re
import operator
import warnings
from functools import partial
from .nosetester import import_nose
from numpy.core import float32, empty, arange, array_repr, ndarray
if sys.version_info[0] >= 3:
from io import StringIO
else:
from StringIO import StringIO
__all__ = ['assert_equal', 'assert_almost_equal', 'assert_approx_equal',
'assert_array_equal', 'assert_array_less', 'assert_string_equal',
'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure',
'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex',
'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
'assert_allclose', 'IgnoreException']
verbose = 0
def assert_(val, msg='') :
"""
Assert that works in release mode.
Accepts callable msg to allow deferring evaluation until failure.
The Python built-in ``assert`` does not work when executing code in
optimized mode (the ``-O`` flag) - no byte-code is generated for it.
For documentation on usage, refer to the Python documentation.
"""
if not val :
try:
smsg = msg()
except TypeError:
smsg = msg
raise AssertionError(smsg)
def gisnan(x):
"""like isnan, but always raise an error if type not supported instead of
returning a TypeError object.
Notes
-----
isnan and other ufunc sometimes return a NotImplementedType object instead
of raising any exception. This function is a wrapper to make sure an
exception is always raised.
This should be removed once this problem is solved at the Ufunc level."""
from numpy.core import isnan
st = isnan(x)
if isinstance(st, type(NotImplemented)):
raise TypeError("isnan not supported for this type")
return st
def gisfinite(x):
"""like isfinite, but always raise an error if type not supported instead of
returning a TypeError object.
Notes
-----
isfinite and other ufunc sometimes return a NotImplementedType object instead
of raising any exception. This function is a wrapper to make sure an
exception is always raised.
This should be removed once this problem is solved at the Ufunc level."""
from numpy.core import isfinite, errstate
with errstate(invalid='ignore'):
st = isfinite(x)
if isinstance(st, type(NotImplemented)):
raise TypeError("isfinite not supported for this type")
return st
def gisinf(x):
"""like isinf, but always raise an error if type not supported instead of
returning a TypeError object.
Notes
-----
isinf and other ufunc sometimes return a NotImplementedType object instead
of raising any exception. This function is a wrapper to make sure an
exception is always raised.
This should be removed once this problem is solved at the Ufunc level."""
from numpy.core import isinf, errstate
with errstate(invalid='ignore'):
st = isinf(x)
if isinstance(st, type(NotImplemented)):
raise TypeError("isinf not supported for this type")
return st
def rand(*args):
"""Returns an array of random numbers with the given shape.
This only uses the standard library, so it is useful for testing purposes.
"""
import random
from numpy.core import zeros, float64
results = zeros(args, float64)
f = results.flat
for i in range(len(f)):
f[i] = random.random()
return results
if sys.platform[:5]=='linux':
def jiffies(_proc_pid_stat = '/proc/%s/stat'%(os.getpid()),
_load_time=[]):
""" Return number of jiffies (1/100ths of a second) that this
process has been scheduled in user mode. See man 5 proc. """
import time
if not _load_time:
_load_time.append(time.time())
try:
f=open(_proc_pid_stat, 'r')
l = f.readline().split(' ')
f.close()
return int(l[13])
except:
return int(100*(time.time()-_load_time[0]))
def memusage(_proc_pid_stat = '/proc/%s/stat'%(os.getpid())):
""" Return virtual memory size in bytes of the running python.
"""
try:
f=open(_proc_pid_stat, 'r')
l = f.readline().split(' ')
f.close()
return int(l[22])
except:
return
else:
# os.getpid is not in all platforms available.
# Using time is safe but inaccurate, especially when process
# was suspended or sleeping.
def jiffies(_load_time=[]):
""" Return number of jiffies (1/100ths of a second) that this
process has been scheduled in user mode. [Emulation with time.time]. """
import time
if not _load_time:
_load_time.append(time.time())
return int(100*(time.time()-_load_time[0]))
def memusage():
""" Return memory usage of running python. [Not implemented]"""
raise NotImplementedError
if os.name=='nt' and sys.version[:3] > '2.3':
# Code "stolen" from enthought/debug/memusage.py
def GetPerformanceAttributes(object, counter, instance = None,
inum=-1, format = None, machine=None):
# NOTE: Many counters require 2 samples to give accurate results,
# including "% Processor Time" (as by definition, at any instant, a
# thread's CPU usage is either 0 or 100). To read counters like this,
# you should copy this function, but keep the counter open, and call
# CollectQueryData() each time you need to know.
# See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp
# My older explanation for this was that the "AddCounter" process forced
# the CPU to 100%, but the above makes more sense :)
import win32pdh
if format is None: format = win32pdh.PDH_FMT_LONG
path = win32pdh.MakeCounterPath( (machine, object, instance, None, inum, counter) )
hq = win32pdh.OpenQuery()
try:
hc = win32pdh.AddCounter(hq, path)
try:
win32pdh.CollectQueryData(hq)
type, val = win32pdh.GetFormattedCounterValue(hc, format)
return val
finally:
win32pdh.RemoveCounter(hc)
finally:
win32pdh.CloseQuery(hq)
def memusage(processName="python", instance=0):
# from win32pdhutil, part of the win32all package
import win32pdh
return GetPerformanceAttributes("Process", "Virtual Bytes",
processName, instance,
win32pdh.PDH_FMT_LONG, None)
def build_err_msg(arrays, err_msg, header='Items are not equal:',
verbose=True, names=('ACTUAL', 'DESIRED'), precision=8):
msg = ['\n' + header]
if err_msg:
if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header):
msg = [msg[0] + ' ' + err_msg]
else:
msg.append(err_msg)
if verbose:
for i, a in enumerate(arrays):
if isinstance(a, ndarray):
# precision argument is only needed if the objects are ndarrays
r_func = partial(array_repr, precision=precision)
else:
r_func = repr
try:
r = r_func(a)
except:
r = '[repr failed]'
if r.count('\n') > 3:
r = '\n'.join(r.splitlines()[:3])
r += '...'
msg.append(' %s: %s' % (names[i], r))
return '\n'.join(msg)
def assert_equal(actual,desired,err_msg='',verbose=True):
"""
Raise an assertion if two objects are not equal.
Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
check that all elements of these objects are equal. An exception is raised
at the first conflicting values.
Parameters
----------
actual : array_like
The object to check.
desired : array_like
The expected object.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal.
Examples
--------
>>> np.testing.assert_equal([4,5], [4,6])
...
<type 'exceptions.AssertionError'>:
Items are not equal:
item=1
ACTUAL: 5
DESIRED: 6
"""
if isinstance(desired, dict):
if not isinstance(actual, dict) :
raise AssertionError(repr(type(actual)))
assert_equal(len(actual), len(desired), err_msg, verbose)
for k, i in desired.items():
if k not in actual :
raise AssertionError(repr(k))
assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg), verbose)
return
if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
assert_equal(len(actual), len(desired), err_msg, verbose)
for k in range(len(desired)):
assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg), verbose)
return
from numpy.core import ndarray, isscalar, signbit
from numpy.lib import iscomplexobj, real, imag
if isinstance(actual, ndarray) or isinstance(desired, ndarray):
return assert_array_equal(actual, desired, err_msg, verbose)
msg = build_err_msg([actual, desired], err_msg, verbose=verbose)
# Handle complex numbers: separate into real/imag to handle
# nan/inf/negative zero correctly
# XXX: catch ValueError for subclasses of ndarray where iscomplex fail
try:
usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
except ValueError:
usecomplex = False
if usecomplex:
if iscomplexobj(actual):
actualr = real(actual)
actuali = imag(actual)
else:
actualr = actual
actuali = 0
if iscomplexobj(desired):
desiredr = real(desired)
desiredi = imag(desired)
else:
desiredr = desired
desiredi = 0
try:
assert_equal(actualr, desiredr)
assert_equal(actuali, desiredi)
except AssertionError:
raise AssertionError(msg)
# Inf/nan/negative zero handling
try:
# isscalar test to check cases such as [np.nan] != np.nan
if isscalar(desired) != isscalar(actual):
raise AssertionError(msg)
# If one of desired/actual is not finite, handle it specially here:
# check that both are nan if any is a nan, and test for equality
# otherwise
if not (gisfinite(desired) and gisfinite(actual)):
isdesnan = gisnan(desired)
isactnan = gisnan(actual)
if isdesnan or isactnan:
if not (isdesnan and isactnan):
raise AssertionError(msg)
else:
if not desired == actual:
raise AssertionError(msg)
return
elif desired == 0 and actual == 0:
if not signbit(desired) == signbit(actual):
raise AssertionError(msg)
# If TypeError or ValueError raised while using isnan and co, just handle
# as before
except (TypeError, ValueError, NotImplementedError):
pass
# Explicitly use __eq__ for comparison, ticket #2552
if not (desired == actual):
raise AssertionError(msg)
def print_assert_equal(test_string, actual, desired):
"""
Test if two objects are equal, and print an error message if test fails.
The test is performed with ``actual == desired``.
Parameters
----------
test_string : str
The message supplied to AssertionError.
actual : object
The object to test for equality against `desired`.
desired : object
The expected result.
Examples
--------
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1])
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2])
Traceback (most recent call last):
...
AssertionError: Test XYZ of func xyz failed
ACTUAL:
[0, 1]
DESIRED:
[0, 2]
"""
import pprint
if not (actual == desired):
msg = StringIO()
msg.write(test_string)
msg.write(' failed\nACTUAL: \n')
pprint.pprint(actual, msg)
msg.write('DESIRED: \n')
pprint.pprint(desired, msg)
raise AssertionError(msg.getvalue())
def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True):
"""
Raise an assertion if two items are not equal up to desired precision.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
The test is equivalent to ``abs(desired-actual) < 0.5 * 10**(-decimal)``.
Given two objects (numbers or ndarrays), check that all elements of these
objects are almost equal. An exception is raised at conflicting values.
For ndarrays this delegates to assert_array_almost_equal
Parameters
----------
actual : array_like
The object to check.
desired : array_like
The expected object.
decimal : int, optional
Desired precision, default is 7.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
>>> import numpy.testing as npt
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334)
>>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
...
<type 'exceptions.AssertionError'>:
Items are not equal:
ACTUAL: 2.3333333333333002
DESIRED: 2.3333333399999998
>>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal
<BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 2.33333333])
y: array([ 1. , 2.33333334])
"""
from numpy.core import ndarray
from numpy.lib import iscomplexobj, real, imag
# Handle complex numbers: separate into real/imag to handle
# nan/inf/negative zero correctly
# XXX: catch ValueError for subclasses of ndarray where iscomplex fail
try:
usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
except ValueError:
usecomplex = False
def _build_err_msg():
header = ('Arrays are not almost equal to %d decimals' % decimal)
return build_err_msg([actual, desired], err_msg, verbose=verbose,
header=header)
if usecomplex:
if iscomplexobj(actual):
actualr = real(actual)
actuali = imag(actual)
else:
actualr = actual
actuali = 0
if iscomplexobj(desired):
desiredr = real(desired)
desiredi = imag(desired)
else:
desiredr = desired
desiredi = 0
try:
assert_almost_equal(actualr, desiredr, decimal=decimal)
assert_almost_equal(actuali, desiredi, decimal=decimal)
except AssertionError:
raise AssertionError(_build_err_msg())
if isinstance(actual, (ndarray, tuple, list)) \
or isinstance(desired, (ndarray, tuple, list)):
return assert_array_almost_equal(actual, desired, decimal, err_msg)
try:
# If one of desired/actual is not finite, handle it specially here:
# check that both are nan if any is a nan, and test for equality
# otherwise
if not (gisfinite(desired) and gisfinite(actual)):
if gisnan(desired) or gisnan(actual):
if not (gisnan(desired) and gisnan(actual)):
raise AssertionError(_build_err_msg())
else:
if not desired == actual:
raise AssertionError(_build_err_msg())
return
except (NotImplementedError, TypeError):
pass
if round(abs(desired - actual), decimal) != 0 :
raise AssertionError(_build_err_msg())
def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True):
"""
Raise an assertion if two items are not equal up to significant digits.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
Given two numbers, check that they are approximately equal.
Approximately equal is defined as the number of significant digits
that agree.
Parameters
----------
actual : scalar
The object to check.
desired : scalar
The expected object.
significant : int, optional
Desired precision, default is 7.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
significant=8)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
significant=8)
...
<type 'exceptions.AssertionError'>:
Items are not equal to 8 significant digits:
ACTUAL: 1.234567e-021
DESIRED: 1.2345672000000001e-021
the evaluated condition that raises the exception is
>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
True
"""
import numpy as np
(actual, desired) = map(float, (actual, desired))
if desired==actual:
return
# Normalized the numbers to be in range (-10.0,10.0)
# scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
with np.errstate(invalid='ignore'):
scale = 0.5*(np.abs(desired) + np.abs(actual))
scale = np.power(10, np.floor(np.log10(scale)))
try:
sc_desired = desired/scale
except ZeroDivisionError:
sc_desired = 0.0
try:
sc_actual = actual/scale
except ZeroDivisionError:
sc_actual = 0.0
msg = build_err_msg([actual, desired], err_msg,
header='Items are not equal to %d significant digits:' %
significant,
verbose=verbose)
try:
# If one of desired/actual is not finite, handle it specially here:
# check that both are nan if any is a nan, and test for equality
# otherwise
if not (gisfinite(desired) and gisfinite(actual)):
if gisnan(desired) or gisnan(actual):
if not (gisnan(desired) and gisnan(actual)):
raise AssertionError(msg)
else:
if not desired == actual:
raise AssertionError(msg)
return
except (TypeError, NotImplementedError):
pass
if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)) :
raise AssertionError(msg)
def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
header='', precision=6):
from numpy.core import array, isnan, isinf, any, all, inf
x = array(x, copy=False, subok=True)
y = array(y, copy=False, subok=True)
def isnumber(x):
return x.dtype.char in '?bhilqpBHILQPefdgFDG'
def chk_same_position(x_id, y_id, hasval='nan'):
"""Handling nan/inf: check that x and y have the nan/inf at the same
locations."""
try:
assert_array_equal(x_id, y_id)
except AssertionError:
msg = build_err_msg([x, y],
err_msg + '\nx and y %s location mismatch:' \
% (hasval), verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
raise AssertionError(msg)
try:
cond = (x.shape==() or y.shape==()) or x.shape == y.shape
if not cond:
msg = build_err_msg([x, y],
err_msg
+ '\n(shapes %s, %s mismatch)' % (x.shape,
y.shape),
verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
if not cond :
raise AssertionError(msg)
if isnumber(x) and isnumber(y):
x_isnan, y_isnan = isnan(x), isnan(y)
x_isinf, y_isinf = isinf(x), isinf(y)
# Validate that the special values are in the same place
if any(x_isnan) or any(y_isnan):
chk_same_position(x_isnan, y_isnan, hasval='nan')
if any(x_isinf) or any(y_isinf):
# Check +inf and -inf separately, since they are different
chk_same_position(x == +inf, y == +inf, hasval='+inf')
chk_same_position(x == -inf, y == -inf, hasval='-inf')
# Combine all the special values
x_id, y_id = x_isnan, y_isnan
x_id |= x_isinf
y_id |= y_isinf
# Only do the comparison if actual values are left
if all(x_id):
return
if any(x_id):
val = comparison(x[~x_id], y[~y_id])
else:
val = comparison(x, y)
else:
val = comparison(x, y)
if isinstance(val, bool):
cond = val
reduced = [0]
else:
reduced = val.ravel()
cond = reduced.all()
reduced = reduced.tolist()
if not cond:
match = 100-100.0*reduced.count(1)/len(reduced)
msg = build_err_msg([x, y],
err_msg
+ '\n(mismatch %s%%)' % (match,),
verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
if not cond :
raise AssertionError(msg)
except ValueError as e:
import traceback
efmt = traceback.format_exc()
header = 'error during assertion:\n\n%s\n\n%s' % (efmt, header)
msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header,
names=('x', 'y'), precision=precision)
raise ValueError(msg)
def assert_array_equal(x, y, err_msg='', verbose=True):
"""
Raise an assertion if two array_like objects are not equal.
Given two array_like objects, check that the shape is equal and all
elements of these objects are equal. An exception is raised at
shape mismatch or conflicting values. In contrast to the standard usage
in numpy, NaNs are compared like numbers, no assertion is raised if
both objects have NaNs in the same positions.
The usual caution for verifying equality with floating point numbers is
advised.
Parameters
----------
x : array_like
The actual object to check.
y : array_like
The desired, expected object.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired objects are not equal.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
The first assert does not raise an exception:
>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])
Assert fails with numerical inprecision with floats:
>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
...
<type 'exceptions.ValueError'>:
AssertionError:
Arrays are not equal
<BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 3.14159265, NaN])
y: array([ 1. , 3.14159265, NaN])
Use `assert_allclose` or one of the nulp (number of floating point values)
functions for these cases instead:
>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)
"""
assert_array_compare(operator.__eq__, x, y, err_msg=err_msg,
verbose=verbose, header='Arrays are not equal')
def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
"""
Raise an assertion if two objects are not equal up to desired precision.
.. note:: It is recommended to use one of `assert_allclose`,
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
instead of this function for more consistent floating point
comparisons.
The test verifies identical shapes and verifies values with
``abs(desired-actual) < 0.5 * 10**(-decimal)``.
Given two array_like objects, check that the shape is equal and all
elements of these objects are almost equal. An exception is raised at
shape mismatch or conflicting values. In contrast to the standard usage
in numpy, NaNs are compared like numbers, no assertion is raised if
both objects have NaNs in the same positions.
Parameters
----------
x : array_like
The actual object to check.
y : array_like
The desired, expected object.
decimal : int, optional
Desired precision, default is 6.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_allclose: Compare two array_like objects for equality with desired
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
Examples
--------
the first assert does not raise an exception
>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
[1.0,2.333,np.nan])
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33339,np.nan], decimal=5)
...
<type 'exceptions.AssertionError'>:
AssertionError:
Arrays are not almost equal
<BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33339, NaN])
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33333, 5], decimal=5)
<type 'exceptions.ValueError'>:
ValueError:
Arrays are not almost equal
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33333, 5. ])
"""
from numpy.core import around, number, float_, result_type, array
from numpy.core.numerictypes import issubdtype
from numpy.core.fromnumeric import any as npany
def compare(x, y):
try:
if npany(gisinf(x)) or npany( gisinf(y)):
xinfid = gisinf(x)
yinfid = gisinf(y)
if not xinfid == yinfid:
return False
# if one item, x and y is +- inf
if x.size == y.size == 1:
return x == y
x = x[~xinfid]
y = y[~yinfid]
except (TypeError, NotImplementedError):
pass
# make sure y is an inexact type to avoid abs(MIN_INT); will cause
# casting of x later.
dtype = result_type(y, 1.)
y = array(y, dtype=dtype, copy=False)
z = abs(x-y)
if not issubdtype(z.dtype, number):
z = z.astype(float_) # handle object arrays
return around(z, decimal) <= 10.0**(-decimal)
assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
header=('Arrays are not almost equal to %d decimals' % decimal),
precision=decimal)
def assert_array_less(x, y, err_msg='', verbose=True):
"""
Raise an assertion if two array_like objects are not ordered by less than.
Given two array_like objects, check that the shape is equal and all
elements of the first object are strictly smaller than those of the
second object. An exception is raised at shape mismatch or incorrectly
ordered values. Shape mismatch does not raise if an object has zero
dimension. In contrast to the standard usage in numpy, NaNs are
compared, no assertion is raised if both objects have NaNs in the same
positions.
Parameters
----------
x : array_like
The smaller object to check.
y : array_like
The larger object to compare.
err_msg : string
The error message to be printed in case of failure.
verbose : bool
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired objects are not equal.
See Also
--------
assert_array_equal: tests objects for equality
assert_array_almost_equal: test objects for equality up to precision
Examples
--------
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([ 1., 1., NaN])
y: array([ 1., 2., NaN])
>>> np.testing.assert_array_less([1.0, 4.0], 3)
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(mismatch 50.0%)
x: array([ 1., 4.])
y: array(3)
>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
...
<type 'exceptions.ValueError'>:
Arrays are not less-ordered
(shapes (3,), (1,) mismatch)
x: array([ 1., 2., 3.])
y: array([4])
"""
assert_array_compare(operator.__lt__, x, y, err_msg=err_msg,
verbose=verbose,
header='Arrays are not less-ordered')
def runstring(astr, dict):
exec(astr, dict)
def assert_string_equal(actual, desired):
"""
Test if two strings are equal.
If the given strings are equal, `assert_string_equal` does nothing.
If they are not equal, an AssertionError is raised, and the diff
between the strings is shown.
Parameters
----------
actual : str
The string to test for equality against the expected string.
desired : str
The expected string.
Examples
--------
>>> np.testing.assert_string_equal('abc', 'abc')
>>> np.testing.assert_string_equal('abc', 'abcd')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
...
AssertionError: Differences in strings:
- abc+ abcd? +
"""
# delay import of difflib to reduce startup time
import difflib
if not isinstance(actual, str) :
raise AssertionError(repr(type(actual)))
if not isinstance(desired, str):
raise AssertionError(repr(type(desired)))
if re.match(r'\A'+desired+r'\Z', actual, re.M):
return
diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1)))
diff_list = []
while diff:
d1 = diff.pop(0)
if d1.startswith(' '):
continue
if d1.startswith('- '):
l = [d1]
d2 = diff.pop(0)
if d2.startswith('? '):
l.append(d2)
d2 = diff.pop(0)
if not d2.startswith('+ ') :
raise AssertionError(repr(d2))
l.append(d2)
d3 = diff.pop(0)
if d3.startswith('? '):
l.append(d3)
else:
diff.insert(0, d3)
if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]):
continue
diff_list.extend(l)
continue
raise AssertionError(repr(d1))
if not diff_list:
return
msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip()
if actual != desired :
raise AssertionError(msg)
def rundocs(filename=None, raise_on_error=True):
"""
Run doctests found in the given file.
By default `rundocs` raises an AssertionError on failure.
Parameters
----------
filename : str
The path to the file for which the doctests are run.
raise_on_error : bool
Whether to raise an AssertionError when a doctest fails. Default is
True.
Notes
-----
The doctests can be run by the user/developer by adding the ``doctests``
argument to the ``test()`` call. For example, to run all tests (including
doctests) for `numpy.lib`:
>>> np.lib.test(doctests=True) #doctest: +SKIP
"""
import doctest, imp
if filename is None:
f = sys._getframe(1)
filename = f.f_globals['__file__']
name = os.path.splitext(os.path.basename(filename))[0]
path = [os.path.dirname(filename)]
file, pathname, description = imp.find_module(name, path)
try:
m = imp.load_module(name, file, pathname, description)
finally:
file.close()
tests = doctest.DocTestFinder().find(m)
runner = doctest.DocTestRunner(verbose=False)
msg = []
if raise_on_error:
out = lambda s: msg.append(s)
else:
out = None
for test in tests:
runner.run(test, out=out)
if runner.failures > 0 and raise_on_error:
raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg))
def raises(*args,**kwargs):
nose = import_nose()
return nose.tools.raises(*args,**kwargs)
def assert_raises(*args,**kwargs):
"""
assert_raises(exception_class, callable, *args, **kwargs)
Fail unless an exception of class exception_class is thrown
by callable when invoked with arguments args and keyword
arguments kwargs. If a different type of exception is
thrown, it will not be caught, and the test case will be
deemed to have suffered an error, exactly as for an
unexpected exception.
"""
nose = import_nose()
return nose.tools.assert_raises(*args,**kwargs)
assert_raises_regex_impl = None
def assert_raises_regex(exception_class, expected_regexp,
callable_obj=None, *args, **kwargs):
"""
Fail unless an exception of class exception_class and with message that
matches expected_regexp is thrown by callable when invoked with arguments
args and keyword arguments kwargs.
Name of this function adheres to Python 3.2+ reference, but should work in
all versions down to 2.6.
"""
nose = import_nose()
global assert_raises_regex_impl
if assert_raises_regex_impl is None:
try:
# Python 3.2+
assert_raises_regex_impl = nose.tools.assert_raises_regex
except AttributeError:
try:
# 2.7+
assert_raises_regex_impl = nose.tools.assert_raises_regexp
except AttributeError:
# 2.6
# This class is copied from Python2.7 stdlib almost verbatim
class _AssertRaisesContext(object):
"""A context manager used to implement TestCase.assertRaises* methods."""
def __init__(self, expected, expected_regexp=None):
self.expected = expected
self.expected_regexp = expected_regexp
def failureException(self, msg):
return AssertionError(msg)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, tb):
if exc_type is None:
try:
exc_name = self.expected.__name__
except AttributeError:
exc_name = str(self.expected)
raise self.failureException(
"{0} not raised".format(exc_name))
if not issubclass(exc_type, self.expected):
# let unexpected exceptions pass through
return False
self.exception = exc_value # store for later retrieval
if self.expected_regexp is None:
return True
expected_regexp = self.expected_regexp
if isinstance(expected_regexp, basestring):
expected_regexp = re.compile(expected_regexp)
if not expected_regexp.search(str(exc_value)):
raise self.failureException(
'"%s" does not match "%s"' %
(expected_regexp.pattern, str(exc_value)))
return True
def impl(cls, regex, callable_obj, *a, **kw):
mgr = _AssertRaisesContext(cls, regex)
if callable_obj is None:
return mgr
with mgr:
callable_obj(*a, **kw)
assert_raises_regex_impl = impl
return assert_raises_regex_impl(exception_class, expected_regexp,
callable_obj, *args, **kwargs)
def decorate_methods(cls, decorator, testmatch=None):
"""
Apply a decorator to all methods in a class matching a regular expression.
The given decorator is applied to all public methods of `cls` that are
matched by the regular expression `testmatch`
(``testmatch.search(methodname)``). Methods that are private, i.e. start
with an underscore, are ignored.
Parameters
----------
cls : class
Class whose methods to decorate.
decorator : function
Decorator to apply to methods
testmatch : compiled regexp or str, optional
The regular expression. Default value is None, in which case the
nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``)
is used.
If `testmatch` is a string, it is compiled to a regular expression
first.
"""
if testmatch is None:
testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
else:
testmatch = re.compile(testmatch)
cls_attr = cls.__dict__
# delayed import to reduce startup time
from inspect import isfunction
methods = [_m for _m in cls_attr.values() if isfunction(_m)]
for function in methods:
try:
if hasattr(function, 'compat_func_name'):
funcname = function.compat_func_name
else:
funcname = function.__name__
except AttributeError:
# not a function
continue
if testmatch.search(funcname) and not funcname.startswith('_'):
setattr(cls, funcname, decorator(function))
return
def measure(code_str,times=1,label=None):
"""
Return elapsed time for executing code in the namespace of the caller.
The supplied code string is compiled with the Python builtin ``compile``.
The precision of the timing is 10 milli-seconds. If the code will execute
fast on this timescale, it can be executed many times to get reasonable
timing accuracy.
Parameters
----------
code_str : str
The code to be timed.
times : int, optional
The number of times the code is executed. Default is 1. The code is
only compiled once.
label : str, optional
A label to identify `code_str` with. This is passed into ``compile``
as the second argument (for run-time error messages).
Returns
-------
elapsed : float
Total elapsed time in seconds for executing `code_str` `times` times.
Examples
--------
>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)',
... times=times)
>>> print "Time for a single execution : ", etime / times, "s"
Time for a single execution : 0.005 s
"""
frame = sys._getframe(1)
locs, globs = frame.f_locals, frame.f_globals
code = compile(code_str,
'Test name: %s ' % label,
'exec')
i = 0
elapsed = jiffies()
while i < times:
i += 1
exec(code, globs, locs)
elapsed = jiffies() - elapsed
return 0.01*elapsed
def _assert_valid_refcount(op):
"""
Check that ufuncs don't mishandle refcount of object `1`.
Used in a few regression tests.
"""
import numpy as np
a = np.arange(100 * 100)
b = np.arange(100*100).reshape(100, 100)
c = b
i = 1
rc = sys.getrefcount(i)
for j in range(15):
d = op(b, c)
assert_(sys.getrefcount(i) >= rc)
def assert_allclose(actual, desired, rtol=1e-7, atol=0,
err_msg='', verbose=True):
"""
Raise an assertion if two objects are not equal up to desired tolerance.
The test is equivalent to ``allclose(actual, desired, rtol, atol)``.
It compares the difference between `actual` and `desired` to
``atol + rtol * abs(desired)``.
.. versionadded:: 1.5.0
Parameters
----------
actual : array_like
Array obtained.
desired : array_like
Array desired.
rtol : float, optional
Relative tolerance.
atol : float, optional
Absolute tolerance.
err_msg : str, optional
The error message to be printed in case of failure.
verbose : bool, optional
If True, the conflicting values are appended to the error message.
Raises
------
AssertionError
If actual and desired are not equal up to specified precision.
See Also
--------
assert_array_almost_equal_nulp, assert_array_max_ulp
Examples
--------
>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> assert_allclose(x, y, rtol=1e-5, atol=0)
"""
import numpy as np
def compare(x, y):
return np.allclose(x, y, rtol=rtol, atol=atol)
actual, desired = np.asanyarray(actual), np.asanyarray(desired)
header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol)
assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
verbose=verbose, header=header)
def assert_array_almost_equal_nulp(x, y, nulp=1):
"""
Compare two arrays relatively to their spacing.
This is a relatively robust method to compare two arrays whose amplitude
is variable.
Parameters
----------
x, y : array_like
Input arrays.
nulp : int, optional
The maximum number of unit in the last place for tolerance (see Notes).
Default is 1.
Returns
-------
None
Raises
------
AssertionError
If the spacing between `x` and `y` for one or more elements is larger
than `nulp`.
See Also
--------
assert_array_max_ulp : Check that all items of arrays differ in at most
N Units in the Last Place.
spacing : Return the distance between x and the nearest adjacent number.
Notes
-----
An assertion is raised if the following condition is not met::
abs(x - y) <= nulps * spacing(max(abs(x), abs(y)))
Examples
--------
>>> x = np.array([1., 1e-10, 1e-20])
>>> eps = np.finfo(x.dtype).eps
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
------------------------------------------------------------
Traceback (most recent call last):
...
AssertionError: X and Y are not equal to 1 ULP (max is 2)
"""
import numpy as np
ax = np.abs(x)
ay = np.abs(y)
ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
if not np.all(np.abs(x-y) <= ref):
if np.iscomplexobj(x) or np.iscomplexobj(y):
msg = "X and Y are not equal to %d ULP" % nulp
else:
max_nulp = np.max(nulp_diff(x, y))
msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp)
raise AssertionError(msg)
def assert_array_max_ulp(a, b, maxulp=1, dtype=None):
"""
Check that all items of arrays differ in at most N Units in the Last Place.
Parameters
----------
a, b : array_like
Input arrays to be compared.
maxulp : int, optional
The maximum number of units in the last place that elements of `a` and
`b` can differ. Default is 1.
dtype : dtype, optional
Data-type to convert `a` and `b` to if given. Default is None.
Returns
-------
ret : ndarray
Array containing number of representable floating point numbers between
items in `a` and `b`.
Raises
------
AssertionError
If one or more elements differ by more than `maxulp`.
See Also
--------
assert_array_almost_equal_nulp : Compare two arrays relatively to their
spacing.
Examples
--------
>>> a = np.linspace(0., 1., 100)
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))
"""
import numpy as np
ret = nulp_diff(a, b, dtype)
if not np.all(ret <= maxulp):
raise AssertionError("Arrays are not almost equal up to %g ULP" % \
maxulp)
return ret
def nulp_diff(x, y, dtype=None):
"""For each item in x and y, return the number of representable floating
points between them.
Parameters
----------
x : array_like
first input array
y : array_like
second input array
Returns
-------
nulp : array_like
number of representable floating point numbers between each item in x
and y.
Examples
--------
# By definition, epsilon is the smallest number such as 1 + eps != 1, so
# there should be exactly one ULP between 1 and 1 + eps
>>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
1.0
"""
import numpy as np
if dtype:
x = np.array(x, dtype=dtype)
y = np.array(y, dtype=dtype)
else:
x = np.array(x)
y = np.array(y)
t = np.common_type(x, y)
if np.iscomplexobj(x) or np.iscomplexobj(y):
raise NotImplementedError("_nulp not implemented for complex array")
x = np.array(x, dtype=t)
y = np.array(y, dtype=t)
if not x.shape == y.shape:
raise ValueError("x and y do not have the same shape: %s - %s" % \
(x.shape, y.shape))
def _diff(rx, ry, vdt):
diff = np.array(rx-ry, dtype=vdt)
return np.abs(diff)
rx = integer_repr(x)
ry = integer_repr(y)
return _diff(rx, ry, t)
def _integer_repr(x, vdt, comp):
# Reinterpret binary representation of the float as sign-magnitude:
# take into account two-complement representation
# See also
# http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
rx = x.view(vdt)
if not (rx.size == 1):
rx[rx < 0] = comp - rx[rx<0]
else:
if rx < 0:
rx = comp - rx
return rx
def integer_repr(x):
"""Return the signed-magnitude interpretation of the binary representation of
x."""
import numpy as np
if x.dtype == np.float32:
return _integer_repr(x, np.int32, np.int32(-2**31))
elif x.dtype == np.float64:
return _integer_repr(x, np.int64, np.int64(-2**63))
else:
raise ValueError("Unsupported dtype %s" % x.dtype)
# The following two classes are copied from python 2.6 warnings module (context
# manager)
class WarningMessage(object):
"""
Holds the result of a single showwarning() call.
Deprecated in 1.8.0
Notes
-----
`WarningMessage` is copied from the Python 2.6 warnings module,
so it can be used in NumPy with older Python versions.
"""
_WARNING_DETAILS = ("message", "category", "filename", "lineno", "file",
"line")
def __init__(self, message, category, filename, lineno, file=None,
line=None):
local_values = locals()
for attr in self._WARNING_DETAILS:
setattr(self, attr, local_values[attr])
if category:
self._category_name = category.__name__
else:
self._category_name = None
def __str__(self):
return ("{message : %r, category : %r, filename : %r, lineno : %s, "
"line : %r}" % (self.message, self._category_name,
self.filename, self.lineno, self.line))
class WarningManager(object):
"""
A context manager that copies and restores the warnings filter upon
exiting the context.
The 'record' argument specifies whether warnings should be captured by a
custom implementation of ``warnings.showwarning()`` and be appended to a
list returned by the context manager. Otherwise None is returned by the
context manager. The objects appended to the list are arguments whose
attributes mirror the arguments to ``showwarning()``.
The 'module' argument is to specify an alternative module to the module
named 'warnings' and imported under that name. This argument is only useful
when testing the warnings module itself.
Deprecated in 1.8.0
Notes
-----
`WarningManager` is a copy of the ``catch_warnings`` context manager
from the Python 2.6 warnings module, with slight modifications.
It is copied so it can be used in NumPy with older Python versions.
"""
def __init__(self, record=False, module=None):
self._record = record
if module is None:
self._module = sys.modules['warnings']
else:
self._module = module
self._entered = False
def __enter__(self):
if self._entered:
raise RuntimeError("Cannot enter %r twice" % self)
self._entered = True
self._filters = self._module.filters
self._module.filters = self._filters[:]
self._showwarning = self._module.showwarning
if self._record:
log = []
def showwarning(*args, **kwargs):
log.append(WarningMessage(*args, **kwargs))
self._module.showwarning = showwarning
return log
else:
return None
def __exit__(self):
if not self._entered:
raise RuntimeError("Cannot exit %r without entering first" % self)
self._module.filters = self._filters
self._module.showwarning = self._showwarning
def assert_warns(warning_class, func, *args, **kw):
"""
Fail unless the given callable throws the specified warning.
A warning of class warning_class should be thrown by the callable when
invoked with arguments args and keyword arguments kwargs.
If a different type of warning is thrown, it will not be caught, and the
test case will be deemed to have suffered an error.
.. versionadded:: 1.4.0
Parameters
----------
warning_class : class
The class defining the warning that `func` is expected to throw.
func : callable
The callable to test.
\\*args : Arguments
Arguments passed to `func`.
\\*\\*kwargs : Kwargs
Keyword arguments passed to `func`.
Returns
-------
The value returned by `func`.
"""
with warnings.catch_warnings(record=True) as l:
warnings.simplefilter('always')
result = func(*args, **kw)
if not len(l) > 0:
raise AssertionError("No warning raised when calling %s"
% func.__name__)
if not l[0].category is warning_class:
raise AssertionError("First warning for %s is not a " \
"%s( is %s)" % (func.__name__, warning_class, l[0]))
return result
def assert_no_warnings(func, *args, **kw):
"""
Fail if the given callable produces any warnings.
.. versionadded:: 1.7.0
Parameters
----------
func : callable
The callable to test.
\\*args : Arguments
Arguments passed to `func`.
\\*\\*kwargs : Kwargs
Keyword arguments passed to `func`.
Returns
-------
The value returned by `func`.
"""
with warnings.catch_warnings(record=True) as l:
warnings.simplefilter('always')
result = func(*args, **kw)
if len(l) > 0:
raise AssertionError("Got warnings when calling %s: %s"
% (func.__name__, l))
return result
def _gen_alignment_data(dtype=float32, type='binary', max_size=24):
"""
generator producing data with different alignment and offsets
to test simd vectorization
Parameters
----------
dtype : dtype
data type to produce
type : string
'unary': create data for unary operations, creates one input
and output array
'binary': create data for unary operations, creates two input
and output array
max_size : integer
maximum size of data to produce
Returns
-------
if type is 'unary' yields one output, one input array and a message
containing information on the data
if type is 'binary' yields one output array, two input array and a message
containing information on the data
"""
ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s'
bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s'
for o in range(3):
for s in range(o + 2, max(o + 3, max_size)):
if type == 'unary':
inp = lambda : arange(s, dtype=dtype)[o:]
out = empty((s,), dtype=dtype)[o:]
yield out, inp(), ufmt % (o, o, s, dtype, 'out of place')
yield inp(), inp(), ufmt % (o, o, s, dtype, 'in place')
yield out[1:], inp()[:-1], ufmt % \
(o + 1, o, s - 1, dtype, 'out of place')
yield out[:-1], inp()[1:], ufmt % \
(o, o + 1, s - 1, dtype, 'out of place')
yield inp()[:-1], inp()[1:], ufmt % \
(o, o + 1, s - 1, dtype, 'aliased')
yield inp()[1:], inp()[:-1], ufmt % \
(o + 1, o, s - 1, dtype, 'aliased')
if type == 'binary':
inp1 = lambda :arange(s, dtype=dtype)[o:]
inp2 = lambda :arange(s, dtype=dtype)[o:]
out = empty((s,), dtype=dtype)[o:]
yield out, inp1(), inp2(), bfmt % \
(o, o, o, s, dtype, 'out of place')
yield inp1(), inp1(), inp2(), bfmt % \
(o, o, o, s, dtype, 'in place1')
yield inp2(), inp1(), inp2(), bfmt % \
(o, o, o, s, dtype, 'in place2')
yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \
(o + 1, o, o, s - 1, dtype, 'out of place')
yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \
(o, o + 1, o, s - 1, dtype, 'out of place')
yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \
(o, o, o + 1, s - 1, dtype, 'out of place')
yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \
(o + 1, o, o, s - 1, dtype, 'aliased')
yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \
(o, o + 1, o, s - 1, dtype, 'aliased')
yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \
(o, o, o + 1, s - 1, dtype, 'aliased')
class IgnoreException(Exception):
"Ignoring this exception due to disabled feature"
|