1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
"""
Utility function to facilitate testing.
"""
import os
import sys
import time
import math
__all__ = ['assert_equal', 'assert_almost_equal','assert_approx_equal',
'assert_array_equal', 'assert_array_less',
'assert_array_almost_equal', 'jiffies', 'memusage', 'rand',
'runstring']
def rand(*args):
"""Returns an array of random numbers with the given shape.
This only uses the standard library, so it is useful for testing purposes.
"""
import random
from numpy.core import zeros, Float64
results = zeros(args,Float64)
f = results.flat
for i in range(len(f)):
f[i] = random.random()
return results
if sys.platform[:5]=='linux':
def jiffies(_proc_pid_stat = '/proc/%s/stat'%(os.getpid()),
_load_time=time.time()):
""" Return number of jiffies (1/100ths of a second) that this
process has been scheduled in user mode. See man 5 proc. """
try:
f=open(_proc_pid_stat,'r')
l = f.readline().split(' ')
f.close()
return int(l[13])
except:
return int(100*(time.time()-_load_time))
def memusage(_proc_pid_stat = '/proc/%s/stat'%(os.getpid())):
""" Return virtual memory size in bytes of the running python.
"""
try:
f=open(_proc_pid_stat,'r')
l = f.readline().split(' ')
f.close()
return int(l[22])
except:
return
else:
# os.getpid is not in all platforms available.
# Using time is safe but inaccurate, especially when process
# was suspended or sleeping.
def jiffies(_load_time=time.time()):
""" Return number of jiffies (1/100ths of a second) that this
process has been scheduled in user mode. [Emulation with time.time]. """
return int(100*(time.time()-_load_time))
def memusage():
""" Return memory usage of running python. [Not implemented]"""
return
def assert_equal(actual,desired,err_msg='',verbose=1):
""" Raise an assertion if two items are not
equal. I think this should be part of unittest.py
"""
from numpy.core import ArrayType
if isinstance(actual, ArrayType) or isinstance(desired, ArrayType):
return assert_array_equal(actual, desired, err_msg)
msg = '\nItems are not equal:\n' + err_msg
try:
if ( verbose and len(repr(desired)) < 100 and len(repr(actual)) ):
msg = msg \
+ 'DESIRED: ' + repr(desired) \
+ '\nACTUAL: ' + repr(actual)
except:
msg = msg \
+ 'DESIRED: ' + repr(desired) \
+ '\nACTUAL: ' + repr(actual)
assert desired == actual, msg
def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=1):
""" Raise an assertion if two items are not
equal. I think this should be part of unittest.py
"""
from numpy.core import ArrayType
if isinstance(actual, ArrayType) or isinstance(desired, ArrayType):
return assert_array_almost_equal(actual, desired, decimal, err_msg)
msg = '\nItems are not equal:\n' + err_msg
try:
if ( verbose and len(repr(desired)) < 100 and len(repr(actual)) ):
msg = msg \
+ 'DESIRED: ' + repr(desired) \
+ '\nACTUAL: ' + repr(actual)
except:
msg = msg \
+ 'DESIRED: ' + repr(desired) \
+ '\nACTUAL: ' + repr(actual)
assert round(abs(desired - actual),decimal) == 0, msg
def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=1):
""" Raise an assertion if two items are not
equal. I think this should be part of unittest.py
Approximately equal is defined as the number of significant digits
correct
"""
msg = '\nItems are not equal to %d significant digits:\n' % significant
msg += err_msg
actual, desired = map(float, (actual, desired))
if desired==actual:
return
# Normalized the numbers to be in range (-10.0,10.0)
scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
try:
sc_desired = desired/scale
except ZeroDivisionError:
sc_desired = 0.0
try:
sc_actual = actual/scale
except ZeroDivisionError:
sc_actual = 0.0
try:
if ( verbose and len(repr(desired)) < 100 and len(repr(actual)) ):
msg = msg \
+ 'DESIRED: ' + repr(desired) \
+ '\nACTUAL: ' + repr(actual)
except:
msg = msg \
+ 'DESIRED: ' + repr(desired) \
+ '\nACTUAL: ' + repr(actual)
assert math.fabs(sc_desired - sc_actual) < pow(10.,-1*significant), msg
def assert_array_equal(x,y,err_msg=''):
from numpy.core import asarray, alltrue, equal, shape, ravel, array2string
x,y = asarray(x), asarray(y)
msg = '\nArrays are not equal'
try:
assert 0 in [len(shape(x)),len(shape(y))] \
or (len(shape(x))==len(shape(y)) and \
alltrue(equal(shape(x),shape(y)))),\
msg + ' (shapes %s, %s mismatch):\n\t' \
% (shape(x),shape(y)) + err_msg
reduced = ravel(equal(x,y))
cond = alltrue(reduced)
if not cond:
s1 = array2string(x,precision=16)
s2 = array2string(y,precision=16)
if len(s1)>120: s1 = s1[:120] + '...'
if len(s2)>120: s2 = s2[:120] + '...'
match = 100-100.0*reduced.tolist().count(1)/len(reduced)
msg = msg + ' (mismatch %s%%):\n\tArray 1: %s\n\tArray 2: %s' % (match,s1,s2)
assert cond,\
msg + '\n\t' + err_msg
except ValueError:
raise ValueError, msg
def assert_array_almost_equal(x,y,decimal=6,err_msg=''):
from numpy.core import asarray, alltrue, equal, shape, ravel,\
array2string, less_equal, around
x = asarray(x)
y = asarray(y)
msg = '\nArrays are not almost equal'
try:
cond = alltrue(equal(shape(x),shape(y)))
if not cond:
msg = msg + ' (shapes mismatch):\n\t'\
'Shape of array 1: %s\n\tShape of array 2: %s' % (shape(x),shape(y))
assert cond, msg + '\n\t' + err_msg
reduced = ravel(equal(less_equal(around(abs(x-y),decimal),10.0**(-decimal)),1))
cond = alltrue(reduced)
if not cond:
s1 = array2string(x,precision=decimal+1)
s2 = array2string(y,precision=decimal+1)
if len(s1)>120: s1 = s1[:120] + '...'
if len(s2)>120: s2 = s2[:120] + '...'
match = 100-100.0*reduced.tolist().count(1)/len(reduced)
msg = msg + ' (mismatch %s%%):\n\tArray 1: %s\n\tArray 2: %s' % (match,s1,s2)
assert cond,\
msg + '\n\t' + err_msg
except ValueError:
print sys.exc_value
print shape(x),shape(y)
print x, y
raise ValueError, 'arrays are not almost equal'
def assert_array_less(x,y,err_msg=''):
from numpy.core import asarray, alltrue, less, equal, shape, ravel, array2string
x,y = asarray(x), asarray(y)
msg = '\nArrays are not less-ordered'
try:
assert alltrue(equal(shape(x),shape(y))),\
msg + ' (shapes mismatch):\n\t' + err_msg
reduced = ravel(less(x,y))
cond = alltrue(reduced)
if not cond:
s1 = array2string(x,precision=16)
s2 = array2string(y,precision=16)
if len(s1)>120: s1 = s1[:120] + '...'
if len(s2)>120: s2 = s2[:120] + '...'
match = 100-100.0*reduced.tolist().count(1)/len(reduced)
msg = msg + ' (mismatch %s%%):\n\tArray 1: %s\n\tArray 2: %s' % (match,s1,s2)
assert cond,\
msg + '\n\t' + err_msg
except ValueError:
print shape(x),shape(y)
raise ValueError, 'arrays are not less-ordered'
def runstring(astr, dict):
exec astr in dict
|