1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
import numeric as N
from numeric import ArrayType, concatenate
from function_base import binary_repr
import types
import string as str_
__all__ = ['matrix', 'bmat', 'mat']
# make translation table
_table = [None]*256
for k in range(256):
_table[k] = chr(k)
_table = ''.join(_table)
_numchars = str_.digits + ".-+jeEL"
del str_
_todelete = []
for k in _table:
if k not in _numchars:
_todelete.append(k)
_todelete = ''.join(_todelete)
def _eval(astr):
return eval(astr.translate(_table,_todelete))
def _convert_from_string(data):
rows = data.split(';')
newdata = []
count = 0
for row in rows:
trow = row.split(',')
newrow = []
for col in trow:
temp = col.split()
newrow.extend(map(_eval,temp))
if count == 0:
Ncols = len(newrow)
elif len(newrow) != Ncols:
raise ValueError, "Rows not the same size."
count += 1
newdata.append(newrow)
return newdata
class matrix(N.ndarray):
__array_priority__ = 10.0
def __new__(self, data, dtype=None, copy=0):
if isinstance(data, matrix):
dtype2 = data.dtype
if (dtype is None):
dtype = dtype2
if (dtype2 is dtype) and (not copy):
return data
return data.astype(dtype)
if dtype is None:
if isinstance(data, N.ndarray):
dtype = data.dtype
intype = N.obj2dtype(dtype)
if isinstance(data, types.StringType):
data = _convert_from_string(data)
# now convert data to an array
arr = N.array(data, dtype=intype, copy=copy)
ndim = arr.ndim
shape = arr.shape
if (ndim > 2):
raise ValueError, "matrix must be 2-dimensional"
elif ndim == 0:
shape = (1,1)
elif ndim == 1:
shape = (1,shape[0])
fortran = False;
if (ndim == 2) and arr.flags['FORTRAN']:
fortran = True
if not (fortran or arr.flags['CONTIGUOUS']):
arr = arr.copy()
ret = N.ndarray.__new__(matrix, shape, arr.dtype, buffer=arr,
fortran=fortran,
swap=(not arr.flags['NOTSWAPPED']))
return ret;
# special methods
def __array_wrap__(self, obj):
try:
ret = matrix(obj,dtype=obj.dtype)
except:
ret = obj
return ret
def _update_meta(self, obj):
ndim = self.ndim
if ndim == 0:
self.shape = (1,1)
elif ndim == 1:
self.shape = (1, self.shape[0])
return
def __getitem__(self, index):
out = N.ndarray.__getitem__(self, index)
# Need to swap if slice is on first index
try:
n = len(index)
if (n > 1) and isinstance(index[0], types.SliceType) \
and (isinstance(index[1], types.IntType) or
isinstance(index[1], types.LongType)):
sh = out.shape
out.shape = (sh[1], sh[0])
except TypeError:
pass
return out
def __mul__(self, other):
if isinstance(other, N.ndarray) and other.ndim == 0:
return N.multiply(self, other)
else:
return N.dot(self, other)
def __rmul__(self, other):
if isinstance(other, N.ndarray) and other.ndim == 0:
return N.multiply(other, self)
else:
return N.dot(other, self)
def __pow__(self, other):
if len(shape)!=2 or shape[0]!=shape[1]:
raise TypeError, "matrix is not square"
if type(other) in (type(1), type(1L)):
if other==0:
return matrix(N.identity(shape[0]))
if other<0:
x = self.I
other=-other
else:
x=self
result = x
if other <= 3:
while(other>1):
result=result*x
other=other-1
return result
# binary decomposition to reduce the number of Matrix
# Multiplies for other > 3.
beta = binary_repr(other)
t = len(beta)
Z,q = x.copy(),0
while beta[t-q-1] == '0':
Z *= Z
q += 1
result = Z.copy()
for k in range(q+1,t):
Z *= Z
if beta[t-k-1] == '1':
result *= Z
return result
else:
raise TypeError, "exponent must be an integer"
def __rpow__(self, other):
raise NotImplementedError
def __repr__(self):
return repr(self.A).replace('array','matrix')
def __str__(self):
return str(self.A)
def tolist(self):
return self.A.tolist()
def getA(self):
arr = self
fortran = False;
if (self.ndim == 2) and arr.flags['FORTRAN']:
fortran = True
if not (fortran or arr.flags['CONTIGUOUS']):
arr = arr.copy()
return N.ndarray.__new__(N.ndarray, self.shape, self.dtype, buffer=arr,
fortran=fortran,
swap=(not arr.flags['NOTSWAPPED']))
def getT(self):
return self.transpose()
def getH(self):
if issubclass(self.dtype, N.complexfloating):
return self.transpose(self.conjugate())
else:
return self.transpose()
# inverse doesn't work yet....
def getI(self):
from scipy.linalg import inv
return matrix(inv(self))
A = property(getA, None, doc="base array")
T = property(getT, None, doc="transpose")
H = property(getH, None, doc="hermitian (conjugate) transpose")
I = property(getI, None, doc="inverse")
def _from_string(str,gdict,ldict):
rows = str.split(';')
rowtup = []
for row in rows:
trow = row.split(',')
coltup = []
for col in trow:
col = col.strip()
try:
thismat = gdict[col]
except KeyError:
try:
thismat = ldict[col]
except KeyError:
raise KeyError, "%s not found" % (col,)
coltup.append(thismat)
rowtup.append(concatenate(coltup,axis=-1))
return concatenate(rowtup,axis=0)
def bmat(obj,gdict=None,ldict=None):
"""Build a matrix object from string, nested sequence, or array.
Ex: F = bmat('A, B; C, D')
F = bmat([[A,B],[C,D]])
F = bmat(r_[c_[A,B],c_[C,D]])
all produce the same Matrix Object [ A B ]
[ C D ]
if A, B, C, and D are appropriately shaped 2-d arrays.
"""
if isinstance(obj, types.StringType):
if gdict is None:
# get previous frame
frame = sys._getframe().f_back
glob_dict = frame.f_globals
loc_dict = frame.f_locals
else:
glob_dict = gdict
loc_dict = ldict
return matrix(_from_string(obj, glob_dict, loc_dict))
if isinstance(obj, (types.TupleType, types.ListType)):
# [[A,B],[C,D]]
arr_rows = []
for row in obj:
if isinstance(row, ArrayType): # not 2-d
return matrix(concatenate(obj,axis=-1))
else:
arr_rows.append(concatenate(row,axis=-1))
return matrix(concatenate(arr_rows,axis=0))
if isinstance(obj, ArrayType):
return matrix(obj)
mat = matrix
|