1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
import numerix as _nx
from numerix import *
from scimath import *
from type_check import isscalar, asarray
from matrix_base import diag
from shape_base import hstack, atleast_1d
from function_base import trim_zeros, sort_complex
__all__ = ['poly','roots','polyint','polyder','polyadd','polysub','polymul',
'polydiv','polyval','poly1d']
def get_eigval_func():
try:
import scipy.linalg
eigvals = scipy.linalg.eigvals
except ImportError:
try:
import linalg
eigvals = linalg.eigvals
except ImportError:
from numerix import eigenvalues as eigvals
return eigvals
def poly(seq_of_zeros):
""" Return a sequence representing a polynomial given a sequence of roots.
If the input is a matrix, return the characteristic polynomial.
Example:
>>> b = roots([1,3,1,5,6])
>>> poly(b)
array([1., 3., 1., 5., 6.])
"""
seq_of_zeros = atleast_1d(seq_of_zeros)
sh = shape(seq_of_zeros)
if len(sh) == 2 and sh[0] == sh[1]:
eig = get_eigval_func()
seq_of_zeros=eig(seq_of_zeros)
elif len(sh) ==1:
pass
else:
raise ValueError, "input must be 1d or square 2d array."
if len(seq_of_zeros) == 0:
return 1.0
a = [1]
for k in range(len(seq_of_zeros)):
a = convolve(a,[1, -seq_of_zeros[k]], mode=2)
if a.typecode() in ['F','D']:
# if complex roots are all complex conjugates, the roots are real.
roots = asarray(seq_of_zeros,'D')
pos_roots = sort_complex(compress(roots.imag > 0,roots))
neg_roots = conjugate(sort_complex(compress(roots.imag < 0,roots)))
if (len(pos_roots) == len(neg_roots) and
alltrue(neg_roots == pos_roots)):
a = a.real.copy()
return a
def roots(p):
""" Return the roots of the polynomial coefficients in p.
The values in the rank-1 array p are coefficients of a polynomial.
If the length of p is n+1 then the polynomial is
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
"""
# If input is scalar, this makes it an array
eig = get_eigval_func()
p = atleast_1d(p)
if len(p.shape) != 1:
raise ValueError,"Input must be a rank-1 array."
# find non-zero array entries
non_zero = nonzero(ravel(p))
# find the number of trailing zeros -- this is the number of roots at 0.
trailing_zeros = len(p) - non_zero[-1] - 1
# strip leading and trailing zeros
p = p[int(non_zero[0]):int(non_zero[-1])+1]
# casting: if incoming array isn't floating point, make it floating point.
if p.typecode() not in ['f','d','F','D']:
p = p.astype('d')
N = len(p)
if N > 1:
# build companion matrix and find its eigenvalues (the roots)
A = diag(ones((N-2,),p.typecode()),-1)
A[0,:] = -p[1:] / p[0]
roots = eig(A)
else:
return array([])
# tack any zeros onto the back of the array
roots = hstack((roots,zeros(trailing_zeros,roots.typecode())))
return roots
def polyint(p,m=1,k=None):
"""Return the mth analytical integral of the polynomial p.
If k is None, then zero-valued constants of integration are used.
otherwise, k should be a list of length m (or a scalar if m=1) to
represent the constants of integration to use for each integration
(starting with k[0])
"""
m = int(m)
if m < 0:
raise ValueError, "Order of integral must be positive (see polyder)"
if k is None:
k = _nx.zeros(m)
k = atleast_1d(k)
if len(k) == 1 and m > 1:
k = k[0]*_nx.ones(m)
if len(k) < m:
raise ValueError, \
"k must be a scalar or a rank-1 array of length 1 or >m."
if m == 0:
return p
else:
truepoly = isinstance(p,poly1d)
p = asarray(p)
y = _nx.zeros(len(p)+1,'d')
y[:-1] = p*1.0/_nx.arange(len(p),0,-1)
y[-1] = k[0]
val = polyint(y,m-1,k=k[1:])
if truepoly:
val = poly1d(val)
return val
def polyder(p,m=1):
"""Return the mth derivative of the polynomial p.
"""
m = int(m)
truepoly = isinstance(p,poly1d)
p = asarray(p)
n = len(p)-1
y = p[:-1] * _nx.arange(n,0,-1)
if m < 0:
raise ValueError, "Order of derivative must be positive (see polyint)"
if m == 0:
return p
else:
val = polyder(y,m-1)
if truepoly:
val = poly1d(val)
return val
def polyval(p,x):
"""Evaluate the polynomial p at x. If x is a polynomial then composition.
Description:
If p is of length N, this function returns the value:
p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]
x can be a sequence and p(x) will be returned for all elements of x.
or x can be another polynomial and the composite polynomial p(x) will be
returned.
"""
p = asarray(p)
if isinstance(x,poly1d):
y = 0
else:
x = asarray(x)
y = _nx.zeros(x.shape,x.typecode())
for i in range(len(p)):
y = x * y + p[i]
return y
def polyadd(a1,a2):
"""Adds two polynomials represented as lists
"""
truepoly = (isinstance(a1,poly1d) or isinstance(a2,poly1d))
a1,a2 = map(atleast_1d,(a1,a2))
diff = len(a2) - len(a1)
if diff == 0:
return a1 + a2
elif diff > 0:
zr = _nx.zeros(diff)
val = _nx.concatenate((zr,a1)) + a2
else:
zr = _nx.zeros(abs(diff))
val = a1 + _nx.concatenate((zr,a2))
if truepoly:
val = poly1d(val)
return val
def polysub(a1,a2):
"""Subtracts two polynomials represented as lists
"""
truepoly = (isinstance(a1,poly1d) or isinstance(a2,poly1d))
a1,a2 = map(atleast_1d,(a1,a2))
diff = len(a2) - len(a1)
if diff == 0:
return a1 - a2
elif diff > 0:
zr = _nx.zeros(diff)
val = _nx.concatenate((zr,a1)) - a2
else:
zr = _nx.zeros(abs(diff))
val = a1 - _nx.concatenate((zr,a2))
if truepoly:
val = poly1d(val)
return val
def polymul(a1,a2):
"""Multiplies two polynomials represented as lists.
"""
truepoly = (isinstance(a1,poly1d) or isinstance(a2,poly1d))
val = _nx.convolve(a1,a2)
if truepoly:
val = poly1d(val)
return val
def polydiv(a1,a2):
"""Computes q and r polynomials so that a1(s) = q(s)*a2(s) + r(s)
"""
truepoly = (isinstance(a1,poly1d) or isinstance(a2,poly1d))
q, r = deconvolve(a1,a2)
while _nx.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
r = r[1:]
if truepoly:
q, r = map(poly1d,(q,r))
return q, r
def deconvolve(signal, divisor):
"""Deconvolves divisor out of signal.
"""
try:
import scipy.signal
except:
print "You need scipy.signal to use this function."
num = atleast_1d(signal)
den = atleast_1d(divisor)
N = len(num)
D = len(den)
if D > N:
quot = [];
rem = num;
else:
input = _nx.ones(N-D+1,_nx.Float)
input[1:] = 0
quot = scipy.signal.lfilter(num, den, input)
rem = num - _nx.convolve(den,quot,mode=2)
return quot, rem
import re
_poly_mat = re.compile(r"[*][*]([0-9]*)")
def _raise_power(astr, wrap=70):
n = 0
line1 = ''
line2 = ''
output = ' '
while 1:
mat = _poly_mat.search(astr,n)
if mat is None:
break
span = mat.span()
power = mat.groups()[0]
partstr = astr[n:span[0]]
n = span[1]
toadd2 = partstr + ' '*(len(power)-1)
toadd1 = ' '*(len(partstr)-1) + power
if ((len(line2)+len(toadd2) > wrap) or \
(len(line1)+len(toadd1) > wrap)):
output += line1 + "\n" + line2 + "\n "
line1 = toadd1
line2 = toadd2
else:
line2 += partstr + ' '*(len(power)-1)
line1 += ' '*(len(partstr)-1) + power
output += line1 + "\n" + line2
return output + astr[n:]
class poly1d:
"""A one-dimensional polynomial class.
p = poly1d([1,2,3]) constructs the polynomial x**2 + 2 x + 3
p(0.5) evaluates the polynomial at the location
p.r is a list of roots
p.c is the coefficient array [1,2,3]
p.order is the polynomial order (after leading zeros in p.c are removed)
p[k] is the coefficient on the kth power of x (backwards from
sequencing the coefficient array.
polynomials can be added, substracted, multplied and divided (returns
quotient and remainder).
asarray(p) will also give the coefficient array, so polynomials can
be used in all functions that accept arrays.
"""
def __init__(self, c_or_r, r=0):
if isinstance(c_or_r,poly1d):
for key in c_or_r.__dict__.keys():
self.__dict__[key] = c_or_r.__dict__[key]
return
if r:
c_or_r = poly(c_or_r)
c_or_r = atleast_1d(c_or_r)
if len(c_or_r.shape) > 1:
raise ValueError, "Polynomial must be 1d only."
c_or_r = trim_zeros(c_or_r, trim='f')
if len(c_or_r) == 0:
c_or_r = _nx.array([0])
self.__dict__['coeffs'] = c_or_r
self.__dict__['order'] = len(c_or_r) - 1
def __array__(self,t=None):
if t:
return asarray(self.coeffs,t)
else:
return asarray(self.coeffs)
def __coerce__(self,other):
return None
def __repr__(self):
vals = repr(self.coeffs)
vals = vals[6:-1]
return "poly1d(%s)" % vals
def __len__(self):
return self.order
def __str__(self):
N = self.order
thestr = "0"
for k in range(len(self.coeffs)):
coefstr ='%.4g' % abs(self.coeffs[k])
if coefstr[-4:] == '0000':
coefstr = coefstr[:-5]
power = (N-k)
if power == 0:
if coefstr != '0':
newstr = '%s' % (coefstr,)
else:
if k == 0:
newstr = '0'
else:
newstr = ''
elif power == 1:
if coefstr == '0':
newstr = ''
elif coefstr == '1':
newstr = 'x'
else:
newstr = '%s x' % (coefstr,)
else:
if coefstr == '0':
newstr = ''
elif coefstr == '1':
newstr = 'x**%d' % (power,)
else:
newstr = '%s x**%d' % (coefstr, power)
if k > 0:
if newstr != '':
if self.coeffs[k] < 0:
thestr = "%s - %s" % (thestr, newstr)
else:
thestr = "%s + %s" % (thestr, newstr)
elif (k == 0) and (newstr != '') and (self.coeffs[k] < 0):
thestr = "-%s" % (newstr,)
else:
thestr = newstr
return _raise_power(thestr)
def __call__(self, val):
return polyval(self.coeffs, val)
def __mul__(self, other):
if isscalar(other):
return poly1d(self.coeffs * other)
else:
other = poly1d(other)
return poly1d(polymul(self.coeffs, other.coeffs))
def __rmul__(self, other):
if isscalar(other):
return poly1d(other * self.coeffs)
else:
other = poly1d(other)
return poly1d(polymul(self.coeffs, other.coeffs))
def __add__(self, other):
other = poly1d(other)
return poly1d(polyadd(self.coeffs, other.coeffs))
def __radd__(self, other):
other = poly1d(other)
return poly1d(polyadd(self.coeffs, other.coeffs))
def __pow__(self, val):
if not isscalar(val) or int(val) != val or val < 0:
raise ValueError, "Power to non-negative integers only."
res = [1]
for k in range(val):
res = polymul(self.coeffs, res)
return poly1d(res)
def __sub__(self, other):
other = poly1d(other)
return poly1d(polysub(self.coeffs, other.coeffs))
def __rsub__(self, other):
other = poly1d(other)
return poly1d(polysub(other.coeffs, self.coeffs))
def __div__(self, other):
if isscalar(other):
return poly1d(self.coeffs/other)
else:
other = poly1d(other)
return map(poly1d,polydiv(self.coeffs, other.coeffs))
def __rdiv__(self, other):
if isscalar(other):
return poly1d(other/self.coeffs)
else:
other = poly1d(other)
return map(poly1d,polydiv(other.coeffs, self.coeffs))
def __setattr__(self, key, val):
raise ValueError, "Attributes cannot be changed this way."
def __getattr__(self, key):
if key in ['r','roots']:
return roots(self.coeffs)
elif key in ['c','coef','coefficients']:
return self.coeffs
elif key in ['o']:
return self.order
else:
return self.__dict__[key]
def __getitem__(self, val):
ind = self.order - val
if val > self.order:
return 0
if val < 0:
return 0
return self.coeffs[ind]
def __setitem__(self, key, val):
ind = self.order - key
if key < 0:
raise ValueError, "Does not support negative powers."
if key > self.order:
zr = _nx.zeros(key-self.order,self.coeffs.typecode())
self.__dict__['coeffs'] = _nx.concatenate((zr,self.coeffs))
self.__dict__['order'] = key
ind = 0
self.__dict__['coeffs'][ind] = val
return
def integ(self, m=1, k=0):
return poly1d(polyint(self.coeffs,m=m,k=k))
def deriv(self, m=1):
return poly1d(polyder(self.coeffs,m=m))
|