diff options
Diffstat (limited to 'tests/examplefiles/example.thy')
| -rw-r--r-- | tests/examplefiles/example.thy | 751 | 
1 files changed, 751 insertions, 0 deletions
diff --git a/tests/examplefiles/example.thy b/tests/examplefiles/example.thy new file mode 100644 index 00000000..abaa1af8 --- /dev/null +++ b/tests/examplefiles/example.thy @@ -0,0 +1,751 @@ +(* from Isabelle2013-2 src/HOL/Power.thy; BSD license *) + +(*  Title:      HOL/Power.thy +    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory +    Copyright   1997  University of Cambridge +*) + +header {* Exponentiation *} + +theory Power +imports Num +begin + +subsection {* Powers for Arbitrary Monoids *} + +class power = one + times +begin + +primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where +    power_0: "a ^ 0 = 1" +  | power_Suc: "a ^ Suc n = a * a ^ n" + +notation (latex output) +  power ("(_\<^bsup>_\<^esup>)" [1000] 1000) + +notation (HTML output) +  power ("(_\<^bsup>_\<^esup>)" [1000] 1000) + +text {* Special syntax for squares. *} + +abbreviation (xsymbols) +  power2 :: "'a \<Rightarrow> 'a"  ("(_\<^sup>2)" [1000] 999) where +  "x\<^sup>2 \<equiv> x ^ 2" + +notation (latex output) +  power2  ("(_\<^sup>2)" [1000] 999) + +notation (HTML output) +  power2  ("(_\<^sup>2)" [1000] 999) + +end + +context monoid_mult +begin + +subclass power . + +lemma power_one [simp]: +  "1 ^ n = 1" +  by (induct n) simp_all + +lemma power_one_right [simp]: +  "a ^ 1 = a" +  by simp + +lemma power_commutes: +  "a ^ n * a = a * a ^ n" +  by (induct n) (simp_all add: mult_assoc) + +lemma power_Suc2: +  "a ^ Suc n = a ^ n * a" +  by (simp add: power_commutes) + +lemma power_add: +  "a ^ (m + n) = a ^ m * a ^ n" +  by (induct m) (simp_all add: algebra_simps) + +lemma power_mult: +  "a ^ (m * n) = (a ^ m) ^ n" +  by (induct n) (simp_all add: power_add) + +lemma power2_eq_square: "a\<^sup>2 = a * a" +  by (simp add: numeral_2_eq_2) + +lemma power3_eq_cube: "a ^ 3 = a * a * a" +  by (simp add: numeral_3_eq_3 mult_assoc) + +lemma power_even_eq: +  "a ^ (2 * n) = (a ^ n)\<^sup>2" +  by (subst mult_commute) (simp add: power_mult) + +lemma power_odd_eq: +  "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" +  by (simp add: power_even_eq) + +lemma power_numeral_even: +  "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" +  unfolding numeral_Bit0 power_add Let_def .. + +lemma power_numeral_odd: +  "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" +  unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right +  unfolding power_Suc power_add Let_def mult_assoc .. + +lemma funpow_times_power: +  "(times x ^^ f x) = times (x ^ f x)" +proof (induct "f x" arbitrary: f) +  case 0 then show ?case by (simp add: fun_eq_iff) +next +  case (Suc n) +  def g \<equiv> "\<lambda>x. f x - 1" +  with Suc have "n = g x" by simp +  with Suc have "times x ^^ g x = times (x ^ g x)" by simp +  moreover from Suc g_def have "f x = g x + 1" by simp +  ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult_assoc) +qed + +end + +context comm_monoid_mult +begin + +lemma power_mult_distrib: +  "(a * b) ^ n = (a ^ n) * (b ^ n)" +  by (induct n) (simp_all add: mult_ac) + +end + +context semiring_numeral +begin + +lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" +  by (simp only: sqr_conv_mult numeral_mult) + +lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" +  by (induct l, simp_all only: numeral_class.numeral.simps pow.simps +    numeral_sqr numeral_mult power_add power_one_right) + +lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" +  by (rule numeral_pow [symmetric]) + +end + +context semiring_1 +begin + +lemma of_nat_power: +  "of_nat (m ^ n) = of_nat m ^ n" +  by (induct n) (simp_all add: of_nat_mult) + +lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0" +  by (simp add: numeral_eq_Suc) + +lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) +  by (rule power_zero_numeral) + +lemma one_power2: "1\<^sup>2 = 1" (* delete? *) +  by (rule power_one) + +end + +context comm_semiring_1 +begin + +text {* The divides relation *} + +lemma le_imp_power_dvd: +  assumes "m \<le> n" shows "a ^ m dvd a ^ n" +proof +  have "a ^ n = a ^ (m + (n - m))" +    using `m \<le> n` by simp +  also have "\<dots> = a ^ m * a ^ (n - m)" +    by (rule power_add) +  finally show "a ^ n = a ^ m * a ^ (n - m)" . +qed + +lemma power_le_dvd: +  "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" +  by (rule dvd_trans [OF le_imp_power_dvd]) + +lemma dvd_power_same: +  "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" +  by (induct n) (auto simp add: mult_dvd_mono) + +lemma dvd_power_le: +  "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" +  by (rule power_le_dvd [OF dvd_power_same]) + +lemma dvd_power [simp]: +  assumes "n > (0::nat) \<or> x = 1" +  shows "x dvd (x ^ n)" +using assms proof +  assume "0 < n" +  then have "x ^ n = x ^ Suc (n - 1)" by simp +  then show "x dvd (x ^ n)" by simp +next +  assume "x = 1" +  then show "x dvd (x ^ n)" by simp +qed + +end + +context ring_1 +begin + +lemma power_minus: +  "(- a) ^ n = (- 1) ^ n * a ^ n" +proof (induct n) +  case 0 show ?case by simp +next +  case (Suc n) then show ?case +    by (simp del: power_Suc add: power_Suc2 mult_assoc) +qed + +lemma power_minus_Bit0: +  "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" +  by (induct k, simp_all only: numeral_class.numeral.simps power_add +    power_one_right mult_minus_left mult_minus_right minus_minus) + +lemma power_minus_Bit1: +  "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" +  by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) + +lemma power_neg_numeral_Bit0 [simp]: +  "neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))" +  by (simp only: neg_numeral_def power_minus_Bit0 power_numeral) + +lemma power_neg_numeral_Bit1 [simp]: +  "neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))" +  by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps) + +lemma power2_minus [simp]: +  "(- a)\<^sup>2 = a\<^sup>2" +  by (rule power_minus_Bit0) + +lemma power_minus1_even [simp]: +  "-1 ^ (2*n) = 1" +proof (induct n) +  case 0 show ?case by simp +next +  case (Suc n) then show ?case by (simp add: power_add power2_eq_square) +qed + +lemma power_minus1_odd: +  "-1 ^ Suc (2*n) = -1" +  by simp + +lemma power_minus_even [simp]: +  "(-a) ^ (2*n) = a ^ (2*n)" +  by (simp add: power_minus [of a]) + +end + +context ring_1_no_zero_divisors +begin + +lemma field_power_not_zero: +  "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" +  by (induct n) auto + +lemma zero_eq_power2 [simp]: +  "a\<^sup>2 = 0 \<longleftrightarrow> a = 0" +  unfolding power2_eq_square by simp + +lemma power2_eq_1_iff: +  "a\<^sup>2 = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" +  unfolding power2_eq_square by (rule square_eq_1_iff) + +end + +context idom +begin + +lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \<longleftrightarrow> x = y \<or> x = - y" +  unfolding power2_eq_square by (rule square_eq_iff) + +end + +context division_ring +begin + +text {* FIXME reorient or rename to @{text nonzero_inverse_power} *} +lemma nonzero_power_inverse: +  "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" +  by (induct n) +    (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) + +end + +context field +begin + +lemma nonzero_power_divide: +  "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" +  by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) + +end + + +subsection {* Exponentiation on ordered types *} + +context linordered_ring (* TODO: move *) +begin + +lemma sum_squares_ge_zero: +  "0 \<le> x * x + y * y" +  by (intro add_nonneg_nonneg zero_le_square) + +lemma not_sum_squares_lt_zero: +  "\<not> x * x + y * y < 0" +  by (simp add: not_less sum_squares_ge_zero) + +end + +context linordered_semidom +begin + +lemma zero_less_power [simp]: +  "0 < a \<Longrightarrow> 0 < a ^ n" +  by (induct n) (simp_all add: mult_pos_pos) + +lemma zero_le_power [simp]: +  "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" +  by (induct n) (simp_all add: mult_nonneg_nonneg) + +lemma power_mono: +  "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" +  by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) + +lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" +  using power_mono [of 1 a n] by simp + +lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" +  using power_mono [of a 1 n] by simp + +lemma power_gt1_lemma: +  assumes gt1: "1 < a" +  shows "1 < a * a ^ n" +proof - +  from gt1 have "0 \<le> a" +    by (fact order_trans [OF zero_le_one less_imp_le]) +  have "1 * 1 < a * 1" using gt1 by simp +  also have "\<dots> \<le> a * a ^ n" using gt1 +    by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le +        zero_le_one order_refl) +  finally show ?thesis by simp +qed + +lemma power_gt1: +  "1 < a \<Longrightarrow> 1 < a ^ Suc n" +  by (simp add: power_gt1_lemma) + +lemma one_less_power [simp]: +  "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" +  by (cases n) (simp_all add: power_gt1_lemma) + +lemma power_le_imp_le_exp: +  assumes gt1: "1 < a" +  shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" +proof (induct m arbitrary: n) +  case 0 +  show ?case by simp +next +  case (Suc m) +  show ?case +  proof (cases n) +    case 0 +    with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp +    with gt1 show ?thesis +      by (force simp only: power_gt1_lemma +          not_less [symmetric]) +  next +    case (Suc n) +    with Suc.prems Suc.hyps show ?thesis +      by (force dest: mult_left_le_imp_le +          simp add: less_trans [OF zero_less_one gt1]) +  qed +qed + +text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*} +lemma power_inject_exp [simp]: +  "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" +  by (force simp add: order_antisym power_le_imp_le_exp) + +text{*Can relax the first premise to @{term "0<a"} in the case of the +natural numbers.*} +lemma power_less_imp_less_exp: +  "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" +  by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] +    power_le_imp_le_exp) + +lemma power_strict_mono [rule_format]: +  "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" +  by (induct n) +   (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) + +text{*Lemma for @{text power_strict_decreasing}*} +lemma power_Suc_less: +  "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" +  by (induct n) +    (auto simp add: mult_strict_left_mono) + +lemma power_strict_decreasing [rule_format]: +  "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" +proof (induct N) +  case 0 then show ?case by simp +next +  case (Suc N) then show ?case  +  apply (auto simp add: power_Suc_less less_Suc_eq) +  apply (subgoal_tac "a * a^N < 1 * a^n") +  apply simp +  apply (rule mult_strict_mono) apply auto +  done +qed + +text{*Proof resembles that of @{text power_strict_decreasing}*} +lemma power_decreasing [rule_format]: +  "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" +proof (induct N) +  case 0 then show ?case by simp +next +  case (Suc N) then show ?case  +  apply (auto simp add: le_Suc_eq) +  apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) +  apply (rule mult_mono) apply auto +  done +qed + +lemma power_Suc_less_one: +  "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" +  using power_strict_decreasing [of 0 "Suc n" a] by simp + +text{*Proof again resembles that of @{text power_strict_decreasing}*} +lemma power_increasing [rule_format]: +  "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" +proof (induct N) +  case 0 then show ?case by simp +next +  case (Suc N) then show ?case  +  apply (auto simp add: le_Suc_eq) +  apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) +  apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) +  done +qed + +text{*Lemma for @{text power_strict_increasing}*} +lemma power_less_power_Suc: +  "1 < a \<Longrightarrow> a ^ n < a * a ^ n" +  by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) + +lemma power_strict_increasing [rule_format]: +  "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" +proof (induct N) +  case 0 then show ?case by simp +next +  case (Suc N) then show ?case  +  apply (auto simp add: power_less_power_Suc less_Suc_eq) +  apply (subgoal_tac "1 * a^n < a * a^N", simp) +  apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) +  done +qed + +lemma power_increasing_iff [simp]: +  "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" +  by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) + +lemma power_strict_increasing_iff [simp]: +  "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" +by (blast intro: power_less_imp_less_exp power_strict_increasing)  + +lemma power_le_imp_le_base: +  assumes le: "a ^ Suc n \<le> b ^ Suc n" +    and ynonneg: "0 \<le> b" +  shows "a \<le> b" +proof (rule ccontr) +  assume "~ a \<le> b" +  then have "b < a" by (simp only: linorder_not_le) +  then have "b ^ Suc n < a ^ Suc n" +    by (simp only: assms power_strict_mono) +  from le and this show False +    by (simp add: linorder_not_less [symmetric]) +qed + +lemma power_less_imp_less_base: +  assumes less: "a ^ n < b ^ n" +  assumes nonneg: "0 \<le> b" +  shows "a < b" +proof (rule contrapos_pp [OF less]) +  assume "~ a < b" +  hence "b \<le> a" by (simp only: linorder_not_less) +  hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) +  thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) +qed + +lemma power_inject_base: +  "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" +by (blast intro: power_le_imp_le_base antisym eq_refl sym) + +lemma power_eq_imp_eq_base: +  "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" +  by (cases n) (simp_all del: power_Suc, rule power_inject_base) + +lemma power2_le_imp_le: +  "x\<^sup>2 \<le> y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" +  unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) + +lemma power2_less_imp_less: +  "x\<^sup>2 < y\<^sup>2 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" +  by (rule power_less_imp_less_base) + +lemma power2_eq_imp_eq: +  "x\<^sup>2 = y\<^sup>2 \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" +  unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp + +end + +context linordered_ring_strict +begin + +lemma sum_squares_eq_zero_iff: +  "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" +  by (simp add: add_nonneg_eq_0_iff) + +lemma sum_squares_le_zero_iff: +  "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" +  by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) + +lemma sum_squares_gt_zero_iff: +  "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" +  by (simp add: not_le [symmetric] sum_squares_le_zero_iff) + +end + +context linordered_idom +begin + +lemma power_abs: +  "abs (a ^ n) = abs a ^ n" +  by (induct n) (auto simp add: abs_mult) + +lemma abs_power_minus [simp]: +  "abs ((-a) ^ n) = abs (a ^ n)" +  by (simp add: power_abs) + +lemma zero_less_power_abs_iff [simp, no_atp]: +  "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" +proof (induct n) +  case 0 show ?case by simp +next +  case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) +qed + +lemma zero_le_power_abs [simp]: +  "0 \<le> abs a ^ n" +  by (rule zero_le_power [OF abs_ge_zero]) + +lemma zero_le_power2 [simp]: +  "0 \<le> a\<^sup>2" +  by (simp add: power2_eq_square) + +lemma zero_less_power2 [simp]: +  "0 < a\<^sup>2 \<longleftrightarrow> a \<noteq> 0" +  by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) + +lemma power2_less_0 [simp]: +  "\<not> a\<^sup>2 < 0" +  by (force simp add: power2_eq_square mult_less_0_iff) + +lemma abs_power2 [simp]: +  "abs (a\<^sup>2) = a\<^sup>2" +  by (simp add: power2_eq_square abs_mult abs_mult_self) + +lemma power2_abs [simp]: +  "(abs a)\<^sup>2 = a\<^sup>2" +  by (simp add: power2_eq_square abs_mult_self) + +lemma odd_power_less_zero: +  "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" +proof (induct n) +  case 0 +  then show ?case by simp +next +  case (Suc n) +  have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" +    by (simp add: mult_ac power_add power2_eq_square) +  thus ?case +    by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) +qed + +lemma odd_0_le_power_imp_0_le: +  "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" +  using odd_power_less_zero [of a n] +    by (force simp add: linorder_not_less [symmetric])  + +lemma zero_le_even_power'[simp]: +  "0 \<le> a ^ (2*n)" +proof (induct n) +  case 0 +    show ?case by simp +next +  case (Suc n) +    have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"  +      by (simp add: mult_ac power_add power2_eq_square) +    thus ?case +      by (simp add: Suc zero_le_mult_iff) +qed + +lemma sum_power2_ge_zero: +  "0 \<le> x\<^sup>2 + y\<^sup>2" +  by (intro add_nonneg_nonneg zero_le_power2) + +lemma not_sum_power2_lt_zero: +  "\<not> x\<^sup>2 + y\<^sup>2 < 0" +  unfolding not_less by (rule sum_power2_ge_zero) + +lemma sum_power2_eq_zero_iff: +  "x\<^sup>2 + y\<^sup>2 = 0 \<longleftrightarrow> x = 0 \<and> y = 0" +  unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) + +lemma sum_power2_le_zero_iff: +  "x\<^sup>2 + y\<^sup>2 \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" +  by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) + +lemma sum_power2_gt_zero_iff: +  "0 < x\<^sup>2 + y\<^sup>2 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" +  unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) + +end + + +subsection {* Miscellaneous rules *} + +lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" +  unfolding One_nat_def by (cases m) simp_all + +lemma power2_sum: +  fixes x y :: "'a::comm_semiring_1" +  shows "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" +  by (simp add: algebra_simps power2_eq_square mult_2_right) + +lemma power2_diff: +  fixes x y :: "'a::comm_ring_1" +  shows "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" +  by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute) + +lemma power_0_Suc [simp]: +  "(0::'a::{power, semiring_0}) ^ Suc n = 0" +  by simp + +text{*It looks plausible as a simprule, but its effect can be strange.*} +lemma power_0_left: +  "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))" +  by (induct n) simp_all + +lemma power_eq_0_iff [simp]: +  "a ^ n = 0 \<longleftrightarrow> +     a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0" +  by (induct n) +    (auto simp add: no_zero_divisors elim: contrapos_pp) + +lemma (in field) power_diff: +  assumes nz: "a \<noteq> 0" +  shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" +  by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) + +text{*Perhaps these should be simprules.*} +lemma power_inverse: +  fixes a :: "'a::division_ring_inverse_zero" +  shows "inverse (a ^ n) = inverse a ^ n" +apply (cases "a = 0") +apply (simp add: power_0_left) +apply (simp add: nonzero_power_inverse) +done (* TODO: reorient or rename to inverse_power *) + +lemma power_one_over: +  "1 / (a::'a::{field_inverse_zero, power}) ^ n =  (1 / a) ^ n" +  by (simp add: divide_inverse) (rule power_inverse) + +lemma power_divide: +  "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" +apply (cases "b = 0") +apply (simp add: power_0_left) +apply (rule nonzero_power_divide) +apply assumption +done + +text {* Simprules for comparisons where common factors can be cancelled. *} + +lemmas zero_compare_simps = +    add_strict_increasing add_strict_increasing2 add_increasing +    zero_le_mult_iff zero_le_divide_iff  +    zero_less_mult_iff zero_less_divide_iff  +    mult_le_0_iff divide_le_0_iff  +    mult_less_0_iff divide_less_0_iff  +    zero_le_power2 power2_less_0 + + +subsection {* Exponentiation for the Natural Numbers *} + +lemma nat_one_le_power [simp]: +  "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" +  by (rule one_le_power [of i n, unfolded One_nat_def]) + +lemma nat_zero_less_power_iff [simp]: +  "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" +  by (induct n) auto + +lemma nat_power_eq_Suc_0_iff [simp]:  +  "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" +  by (induct m) auto + +lemma power_Suc_0 [simp]: +  "Suc 0 ^ n = Suc 0" +  by simp + +text{*Valid for the naturals, but what if @{text"0<i<1"}? +Premises cannot be weakened: consider the case where @{term "i=0"}, +@{term "m=1"} and @{term "n=0"}.*} +lemma nat_power_less_imp_less: +  assumes nonneg: "0 < (i\<Colon>nat)" +  assumes less: "i ^ m < i ^ n" +  shows "m < n" +proof (cases "i = 1") +  case True with less power_one [where 'a = nat] show ?thesis by simp +next +  case False with nonneg have "1 < i" by auto +  from power_strict_increasing_iff [OF this] less show ?thesis .. +qed + +lemma power_dvd_imp_le: +  "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" +  apply (rule power_le_imp_le_exp, assumption) +  apply (erule dvd_imp_le, simp) +  done + +lemma power2_nat_le_eq_le: +  fixes m n :: nat +  shows "m\<^sup>2 \<le> n\<^sup>2 \<longleftrightarrow> m \<le> n" +  by (auto intro: power2_le_imp_le power_mono) + +lemma power2_nat_le_imp_le: +  fixes m n :: nat +  assumes "m\<^sup>2 \<le> n" +  shows "m \<le> n" +  using assms by (cases m) (simp_all add: power2_eq_square) + + + +subsection {* Code generator tweak *} + +lemma power_power_power [code]: +  "power = power.power (1::'a::{power}) (op *)" +  unfolding power_def power.power_def .. + +declare power.power.simps [code] + +code_identifier +  code_module Power \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith + +end +  | 
