(* from Isabelle2021-1 src/HOL/Power.thy; BSD license *) (* Title: HOL/Power.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1997 University of Cambridge *) section ‹Exponentiation› theory Power imports Num begin subsection ‹Powers for Arbitrary Monoids› class power = one + times begin primrec power :: "'a ⇒ nat ⇒ 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" notation (latex output) power ("(_⇗_⇖)" [1000] 1000) text ‹Special syntax for squares.› abbreviation power2 :: "'a ⇒ 'a" ("(_⇧2)" [1000] 999) where "x⇧2 ≡ x ^ 2" end context includes lifting_syntax begin lemma power_transfer [transfer_rule]: ‹(R ===> (=) ===> R) (^) (^)› if [transfer_rule]: ‹R 1 1› ‹(R ===> R ===> R) (*) (*)› for R :: ‹'a::power ⇒ 'b::power ⇒ bool› by (simp only: power_def [abs_def]) transfer_prover end context monoid_mult begin subclass power . lemma power_one [simp]: "1 ^ n = 1" by (induct n) simp_all lemma power_one_right [simp]: "a ^ 1 = a" by simp lemma power_Suc0_right [simp]: "a ^ Suc 0 = a" by simp lemma power_commutes: "a ^ n * a = a * a ^ n" by (induct n) (simp_all add: mult.assoc) lemma power_Suc2: "a ^ Suc n = a ^ n * a" by (simp add: power_commutes) lemma power_add: "a ^ (m + n) = a ^ m * a ^ n" by (induct m) (simp_all add: algebra_simps) lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n" by (induct n) (simp_all add: power_add) lemma power_even_eq: "a ^ (2 * n) = (a ^ n)⇧2" by (subst mult.commute) (simp add: power_mult) lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)⇧2" by (simp add: power_even_eq) lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" by (simp only: numeral_Bit0 power_add Let_def) lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" by (simp only: numeral_Bit1 One_nat_def add_Suc_right add_0_right power_Suc power_add Let_def mult.assoc) lemma power2_eq_square: "a⇧2 = a * a" by (simp add: numeral_2_eq_2) lemma power3_eq_cube: "a ^ 3 = a * a * a" by (simp add: numeral_3_eq_3 mult.assoc) lemma power4_eq_xxxx: "x^4 = x * x * x * x" by (simp add: mult.assoc power_numeral_even) lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)" proof (induct "f x" arbitrary: f) case 0 then show ?case by (simp add: fun_eq_iff) next case (Suc n) define g where "g x = f x - 1" for x with Suc have "n = g x" by simp with Suc have "times x ^^ g x = times (x ^ g x)" by simp moreover from Suc g_def have "f x = g x + 1" by simp ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult.assoc) qed lemma power_commuting_commutes: assumes "x * y = y * x" shows "x ^ n * y = y * x ^n" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "x ^ Suc n * y = x ^ n * y * x" by (subst power_Suc2) (simp add: assms ac_simps) also have "… = y * x ^ Suc n" by (simp only: Suc power_Suc2) (simp add: ac_simps) finally show ?case . qed lemma power_minus_mult: "0 < n ⟹ a ^ (n - 1) * a = a ^ n" by (simp add: power_commutes split: nat_diff_split) lemma left_right_inverse_power: assumes "x * y = 1" shows "x ^ n * y ^ n = 1" proof (induct n) case (Suc n) moreover have "x ^ Suc n * y ^ Suc n = x^n * (x * y) * y^n" by (simp add: power_Suc2[symmetric] mult.assoc[symmetric]) ultimately show ?case by (simp add: assms) qed simp end context comm_monoid_mult begin lemma power_mult_distrib [algebra_simps, algebra_split_simps, field_simps, field_split_simps, divide_simps]: "(a * b) ^ n = (a ^ n) * (b ^ n)" by (induction n) (simp_all add: ac_simps) end text ‹Extract constant factors from powers.› declare power_mult_distrib [where a = "numeral w" for w, simp] declare power_mult_distrib [where b = "numeral w" for w, simp] lemma power_add_numeral [simp]: "a^numeral m * a^numeral n = a^numeral (m + n)" for a :: "'a::monoid_mult" by (simp add: power_add [symmetric]) lemma power_add_numeral2 [simp]: "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b" for a :: "'a::monoid_mult" by (simp add: mult.assoc [symmetric]) lemma power_mult_numeral [simp]: "(a^numeral m)^numeral n = a^numeral (m * n)" for a :: "'a::monoid_mult" by (simp only: numeral_mult power_mult) context semiring_numeral begin lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" by (simp only: sqr_conv_mult numeral_mult) lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" by (induct l) (simp_all only: numeral_class.numeral.simps pow.simps numeral_sqr numeral_mult power_add power_one_right) lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" by (rule numeral_pow [symmetric]) end context semiring_1 begin lemma of_nat_power [simp]: "of_nat (m ^ n) = of_nat m ^ n" by (induct n) simp_all lemma zero_power: "0 < n ⟹ 0 ^ n = 0" by (cases n) simp_all lemma power_zero_numeral [simp]: "0 ^ numeral k = 0" by (simp add: numeral_eq_Suc) lemma zero_power2: "0⇧2 = 0" (* delete? *) by (rule power_zero_numeral) lemma one_power2: "1⇧2 = 1" (* delete? *) by (rule power_one) lemma power_0_Suc [simp]: "0 ^ Suc n = 0" by simp text ‹It looks plausible as a simprule, but its effect can be strange.› lemma power_0_left: "0 ^ n = (if n = 0 then 1 else 0)" by (cases n) simp_all end context semiring_char_0 begin lemma numeral_power_eq_of_nat_cancel_iff [simp]: "numeral x ^ n = of_nat y ⟷ numeral x ^ n = y" using of_nat_eq_iff by fastforce lemma real_of_nat_eq_numeral_power_cancel_iff [simp]: "of_nat y = numeral x ^ n ⟷ y = numeral x ^ n" using numeral_power_eq_of_nat_cancel_iff [of x n y] by (metis (mono_tags)) lemma of_nat_eq_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w = of_nat x ⟷ b ^ w = x" by (metis of_nat_power of_nat_eq_iff) lemma of_nat_power_eq_of_nat_cancel_iff[simp]: "of_nat x = (of_nat b) ^ w ⟷ x = b ^ w" by (metis of_nat_eq_of_nat_power_cancel_iff) end context comm_semiring_1 begin text ‹The divides relation.› lemma le_imp_power_dvd: assumes "m ≤ n" shows "a ^ m dvd a ^ n" proof from assms have "a ^ n = a ^ (m + (n - m))" by simp also have "… = a ^ m * a ^ (n - m)" by (rule power_add) finally show "a ^ n = a ^ m * a ^ (n - m)" . qed lemma power_le_dvd: "a ^ n dvd b ⟹ m ≤ n ⟹ a ^ m dvd b" by (rule dvd_trans [OF le_imp_power_dvd]) lemma dvd_power_same: "x dvd y ⟹ x ^ n dvd y ^ n" by (induct n) (auto simp add: mult_dvd_mono) lemma dvd_power_le: "x dvd y ⟹ m ≥ n ⟹ x ^ n dvd y ^ m" by (rule power_le_dvd [OF dvd_power_same]) lemma dvd_power [simp]: fixes n :: nat assumes "n > 0 ∨ x = 1" shows "x dvd (x ^ n)" using assms proof assume "0 < n" then have "x ^ n = x ^ Suc (n - 1)" by simp then show "x dvd (x ^ n)" by simp next assume "x = 1" then show "x dvd (x ^ n)" by simp qed end context semiring_1_no_zero_divisors begin subclass power . lemma power_eq_0_iff [simp]: "a ^ n = 0 ⟷ a = 0 ∧ n > 0" by (induct n) auto lemma power_not_zero: "a ≠ 0 ⟹ a ^ n ≠ 0" by (induct n) auto lemma zero_eq_power2 [simp]: "a⇧2 = 0 ⟷ a = 0" unfolding power2_eq_square by simp end context ring_1 begin lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp del: power_Suc add: power_Suc2 mult.assoc) qed lemma power_minus': "NO_MATCH 1 x ⟹ (-x) ^ n = (-1)^n * x ^ n" by (rule power_minus) lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" by (induct k, simp_all only: numeral_class.numeral.simps power_add power_one_right mult_minus_left mult_minus_right minus_minus) lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) lemma power2_minus [simp]: "(- a)⇧2 = a⇧2" by (fact power_minus_Bit0) lemma power_minus1_even [simp]: "(- 1) ^ (2*n) = 1" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp add: power_add power2_eq_square) qed lemma power_minus1_odd: "(- 1) ^ Suc (2*n) = -1" by simp lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)" by (simp add: power_minus [of a]) end context ring_1_no_zero_divisors begin lemma power2_eq_1_iff: "a⇧2 = 1 ⟷ a = 1 ∨ a = - 1" using square_eq_1_iff [of a] by (simp add: power2_eq_square) end context idom begin lemma power2_eq_iff: "x⇧2 = y⇧2 ⟷ x = y ∨ x = - y" unfolding power2_eq_square by (rule square_eq_iff) end context semidom_divide begin lemma power_diff: "a ^ (m - n) = (a ^ m) div (a ^ n)" if "a ≠ 0" and "n ≤ m" proof - define q where "q = m - n" with ‹n ≤ m› have "m = q + n" by simp with ‹a ≠ 0› q_def show ?thesis by (simp add: power_add) qed end context algebraic_semidom begin lemma div_power: "b dvd a ⟹ (a div b) ^ n = a ^ n div b ^ n" by (induct n) (simp_all add: div_mult_div_if_dvd dvd_power_same) lemma is_unit_power_iff: "is_unit (a ^ n) ⟷ is_unit a ∨ n = 0" by (induct n) (auto simp add: is_unit_mult_iff) lemma dvd_power_iff: assumes "x ≠ 0" shows "x ^ m dvd x ^ n ⟷ is_unit x ∨ m ≤ n" proof assume *: "x ^ m dvd x ^ n" { assume "m > n" note * also have "x ^ n = x ^ n * 1" by simp also from ‹m > n› have "m = n + (m - n)" by simp also have "x ^ … = x ^ n * x ^ (m - n)" by (rule power_add) finally have "x ^ (m - n) dvd 1" by (subst (asm) dvd_times_left_cancel_iff) (insert assms, simp_all) with ‹m > n› have "is_unit x" by (simp add: is_unit_power_iff) } thus "is_unit x ∨ m ≤ n" by force qed (auto intro: unit_imp_dvd simp: is_unit_power_iff le_imp_power_dvd) end context normalization_semidom_multiplicative begin lemma normalize_power: "normalize (a ^ n) = normalize a ^ n" by (induct n) (simp_all add: normalize_mult) lemma unit_factor_power: "unit_factor (a ^ n) = unit_factor a ^ n" by (induct n) (simp_all add: unit_factor_mult) end context division_ring begin text ‹Perhaps these should be simprules.› lemma power_inverse [field_simps, field_split_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)" proof (cases "a = 0") case True then show ?thesis by (simp add: power_0_left) next case False then have "inverse (a ^ n) = inverse a ^ n" by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes) then show ?thesis by simp qed lemma power_one_over [field_simps, field_split_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n" using power_inverse [of a] by (simp add: divide_inverse) end context field begin lemma power_divide [field_simps, field_split_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n" by (induct n) simp_all end subsection ‹Exponentiation on ordered types› context linordered_semidom begin lemma zero_less_power [simp]: "0 < a ⟹ 0 < a ^ n" by (induct n) simp_all lemma zero_le_power [simp]: "0 ≤ a ⟹ 0 ≤ a ^ n" by (induct n) simp_all lemma power_mono: "a ≤ b ⟹ 0 ≤ a ⟹ a ^ n ≤ b ^ n" by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) lemma one_le_power [simp]: "1 ≤ a ⟹ 1 ≤ a ^ n" using power_mono [of 1 a n] by simp lemma power_le_one: "0 ≤ a ⟹ a ≤ 1 ⟹ a ^ n ≤ 1" using power_mono [of a 1 n] by simp lemma power_gt1_lemma: assumes gt1: "1 < a" shows "1 < a * a ^ n" proof - from gt1 have "0 ≤ a" by (fact order_trans [OF zero_le_one less_imp_le]) from gt1 have "1 * 1 < a * 1" by simp also from gt1 have "… ≤ a * a ^ n" by (simp only: mult_mono ‹0 ≤ a› one_le_power order_less_imp_le zero_le_one order_refl) finally show ?thesis by simp qed lemma power_gt1: "1 < a ⟹ 1 < a ^ Suc n" by (simp add: power_gt1_lemma) lemma one_less_power [simp]: "1 < a ⟹ 0 < n ⟹ 1 < a ^ n" by (cases n) (simp_all add: power_gt1_lemma) lemma power_le_imp_le_exp: assumes gt1: "1 < a" shows "a ^ m ≤ a ^ n ⟹ m ≤ n" proof (induct m arbitrary: n) case 0 show ?case by simp next case (Suc m) show ?case proof (cases n) case 0 with Suc have "a * a ^ m ≤ 1" by simp with gt1 show ?thesis by (force simp only: power_gt1_lemma not_less [symmetric]) next case (Suc n) with Suc.prems Suc.hyps show ?thesis by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1]) qed qed lemma of_nat_zero_less_power_iff [simp]: "of_nat x ^ n > 0 ⟷ x > 0 ∨ n = 0" by (induct n) auto text ‹Surely we can strengthen this? It holds for ‹0‹00⟧ ⟹ a ^ n ≤ b ^ n ⟷ a ≤ b" using power_mono [of a b] power_strict_mono [of b a] not_le by auto text‹Lemma for ‹power_strict_decreasing›› lemma power_Suc_less: "0 < a ⟹ a < 1 ⟹ a * a ^ n < a ^ n" by (induct n) (auto simp: mult_strict_left_mono) lemma power_strict_decreasing [rule_format]: "n < N ⟹ 0 < a ⟹ a < 1 ⟶ a ^ N < a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_Suc_less less_Suc_eq) apply (subgoal_tac "a * a^N < 1 * a^n") apply simp apply (rule mult_strict_mono) apply auto done qed text ‹Proof resembles that of ‹power_strict_decreasing›.› lemma power_decreasing: "n ≤ N ⟹ 0 ≤ a ⟹ a ≤ 1 ⟹ a ^ N ≤ a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "a * a^N ≤ 1 * a^n") apply simp apply (rule mult_mono) apply auto done qed lemma power_decreasing_iff [simp]: "⟦0 < b; b < 1⟧ ⟹ b ^ m ≤ b ^ n ⟷ n ≤ m" using power_strict_decreasing [of m n b] by (auto intro: power_decreasing ccontr) lemma power_strict_decreasing_iff [simp]: "⟦0 < b; b < 1⟧ ⟹ b ^ m < b ^ n ⟷ n < m" using power_decreasing_iff [of b m n] unfolding le_less by (auto dest: power_strict_decreasing le_neq_implies_less) lemma power_Suc_less_one: "0 < a ⟹ a < 1 ⟹ a ^ Suc n < 1" using power_strict_decreasing [of 0 "Suc n" a] by simp text ‹Proof again resembles that of ‹power_strict_decreasing›.› lemma power_increasing: "n ≤ N ⟹ 1 ≤ a ⟹ a ^ n ≤ a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "1 * a^n ≤ a * a^N") apply simp apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) done qed text ‹Lemma for ‹power_strict_increasing›.› lemma power_less_power_Suc: "1 < a ⟹ a ^ n < a * a ^ n" by (induct n) (auto simp: mult_strict_left_mono less_trans [OF zero_less_one]) lemma power_strict_increasing: "n < N ⟹ 1 < a ⟹ a ^ n < a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_less_power_Suc less_Suc_eq) apply (subgoal_tac "1 * a^n < a * a^N") apply simp apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) done qed lemma power_increasing_iff [simp]: "1 < b ⟹ b ^ x ≤ b ^ y ⟷ x ≤ y" by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) lemma power_strict_increasing_iff [simp]: "1 < b ⟹ b ^ x < b ^ y ⟷ x < y" by (blast intro: power_less_imp_less_exp power_strict_increasing) lemma power_le_imp_le_base: assumes le: "a ^ Suc n ≤ b ^ Suc n" and "0 ≤ b" shows "a ≤ b" proof (rule ccontr) assume "¬ ?thesis" then have "b < a" by (simp only: linorder_not_le) then have "b ^ Suc n < a ^ Suc n" by (simp only: assms(2) power_strict_mono) with le show False by (simp add: linorder_not_less [symmetric]) qed lemma power_less_imp_less_base: assumes less: "a ^ n < b ^ n" assumes nonneg: "0 ≤ b" shows "a < b" proof (rule contrapos_pp [OF less]) assume "¬ ?thesis" then have "b ≤ a" by (simp only: linorder_not_less) from this nonneg have "b ^ n ≤ a ^ n" by (rule power_mono) then show "¬ a ^ n < b ^ n" by (simp only: linorder_not_less) qed lemma power_inject_base: "a ^ Suc n = b ^ Suc n ⟹ 0 ≤ a ⟹ 0 ≤ b ⟹ a = b" by (blast intro: power_le_imp_le_base order.antisym eq_refl sym) lemma power_eq_imp_eq_base: "a ^ n = b ^ n ⟹ 0 ≤ a ⟹ 0 ≤ b ⟹ 0 < n ⟹ a = b" by (cases n) (simp_all del: power_Suc, rule power_inject_base) lemma power_eq_iff_eq_base: "0 < n ⟹ 0 ≤ a ⟹ 0 ≤ b ⟹ a ^ n = b ^ n ⟷ a = b" using power_eq_imp_eq_base [of a n b] by auto lemma power2_le_imp_le: "x⇧2 ≤ y⇧2 ⟹ 0 ≤ y ⟹ x ≤ y" unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) lemma power2_less_imp_less: "x⇧2 < y⇧2 ⟹ 0 ≤ y ⟹ x < y" by (rule power_less_imp_less_base) lemma power2_eq_imp_eq: "x⇧2 = y⇧2 ⟹ 0 ≤ x ⟹ 0 ≤ y ⟹ x = y" unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp lemma power_Suc_le_self: "0 ≤ a ⟹ a ≤ 1 ⟹ a ^ Suc n ≤ a" using power_decreasing [of 1 "Suc n" a] by simp lemma power2_eq_iff_nonneg [simp]: assumes "0 ≤ x" "0 ≤ y" shows "(x ^ 2 = y ^ 2) ⟷ x = y" using assms power2_eq_imp_eq by blast lemma of_nat_less_numeral_power_cancel_iff[simp]: "of_nat x < numeral i ^ n ⟷ x < numeral i ^ n" using of_nat_less_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] . lemma of_nat_le_numeral_power_cancel_iff[simp]: "of_nat x ≤ numeral i ^ n ⟷ x ≤ numeral i ^ n" using of_nat_le_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] . lemma numeral_power_less_of_nat_cancel_iff[simp]: "numeral i ^ n < of_nat x ⟷ numeral i ^ n < x" using of_nat_less_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] . lemma numeral_power_le_of_nat_cancel_iff[simp]: "numeral i ^ n ≤ of_nat x ⟷ numeral i ^ n ≤ x" using of_nat_le_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] . lemma of_nat_le_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w ≤ of_nat x ⟷ b ^ w ≤ x" by (metis of_nat_le_iff of_nat_power) lemma of_nat_power_le_of_nat_cancel_iff[simp]: "of_nat x ≤ (of_nat b) ^ w ⟷ x ≤ b ^ w" by (metis of_nat_le_iff of_nat_power) lemma of_nat_less_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w < of_nat x ⟷ b ^ w < x" by (metis of_nat_less_iff of_nat_power) lemma of_nat_power_less_of_nat_cancel_iff[simp]: "of_nat x < (of_nat b) ^ w ⟷ x < b ^ w" by (metis of_nat_less_iff of_nat_power) end text ‹Some @{typ nat}-specific lemmas:› lemma mono_ge2_power_minus_self: assumes "k ≥ 2" shows "mono (λm. k ^ m - m)" unfolding mono_iff_le_Suc proof fix n have "k ^ n < k ^ Suc n" using power_strict_increasing_iff[of k "n" "Suc n"] assms by linarith thus "k ^ n - n ≤ k ^ Suc n - Suc n" by linarith qed lemma self_le_ge2_pow[simp]: assumes "k ≥ 2" shows "m ≤ k ^ m" proof (induction m) case 0 show ?case by simp next case (Suc m) hence "Suc m ≤ Suc (k ^ m)" by simp also have "... ≤ k^m + k^m" using one_le_power[of k m] assms by linarith also have "... ≤ k * k^m" by (metis mult_2 mult_le_mono1[OF assms]) finally show ?case by simp qed lemma diff_le_diff_pow[simp]: assumes "k ≥ 2" shows "m - n ≤ k ^ m - k ^ n" proof (cases "n ≤ m") case True thus ?thesis using monoD[OF mono_ge2_power_minus_self[OF assms] True] self_le_ge2_pow[OF assms, of m] by (simp add: le_diff_conv le_diff_conv2) qed auto context linordered_ring_strict begin lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 ⟷ x = 0 ∧ y = 0" by (simp add: add_nonneg_eq_0_iff) lemma sum_squares_le_zero_iff: "x * x + y * y ≤ 0 ⟷ x = 0 ∧ y = 0" by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) lemma sum_squares_gt_zero_iff: "0 < x * x + y * y ⟷ x ≠ 0 ∨ y ≠ 0" by (simp add: not_le [symmetric] sum_squares_le_zero_iff) end context linordered_idom begin lemma zero_le_power2 [simp]: "0 ≤ a⇧2" by (simp add: power2_eq_square) lemma zero_less_power2 [simp]: "0 < a⇧2 ⟷ a ≠ 0" by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) lemma power2_less_0 [simp]: "¬ a⇧2 < 0" by (force simp add: power2_eq_square mult_less_0_iff) lemma power_abs: "¦a ^ n¦ = ¦a¦ ^ n" ― ‹FIXME simp?› by (induct n) (simp_all add: abs_mult) lemma power_sgn [simp]: "sgn (a ^ n) = sgn a ^ n" by (induct n) (simp_all add: sgn_mult) lemma abs_power_minus [simp]: "¦(- a) ^ n¦ = ¦a ^ n¦" by (simp add: power_abs) lemma zero_less_power_abs_iff [simp]: "0 < ¦a¦ ^ n ⟷ a ≠ 0 ∨ n = 0" proof (induct n) case 0 show ?case by simp next case Suc then show ?case by (auto simp: zero_less_mult_iff) qed lemma zero_le_power_abs [simp]: "0 ≤ ¦a¦ ^ n" by (rule zero_le_power [OF abs_ge_zero]) lemma power2_less_eq_zero_iff [simp]: "a⇧2 ≤ 0 ⟷ a = 0" by (simp add: le_less) lemma abs_power2 [simp]: "¦a⇧2¦ = a⇧2" by (simp add: power2_eq_square) lemma power2_abs [simp]: "¦a¦⇧2 = a⇧2" by (simp add: power2_eq_square) lemma odd_power_less_zero: "a < 0 ⟹ a ^ Suc (2 * n) < 0" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" by (simp add: ac_simps power_add power2_eq_square) then show ?case by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) qed lemma odd_0_le_power_imp_0_le: "0 ≤ a ^ Suc (2 * n) ⟹ 0 ≤ a" using odd_power_less_zero [of a n] by (force simp add: linorder_not_less [symmetric]) lemma zero_le_even_power'[simp]: "0 ≤ a ^ (2 * n)" proof (induct n) case 0 show ?case by simp next case (Suc n) have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" by (simp add: ac_simps power_add power2_eq_square) then show ?case by (simp add: Suc zero_le_mult_iff) qed lemma sum_power2_ge_zero: "0 ≤ x⇧2 + y⇧2" by (intro add_nonneg_nonneg zero_le_power2) lemma not_sum_power2_lt_zero: "¬ x⇧2 + y⇧2 < 0" unfolding not_less by (rule sum_power2_ge_zero) lemma sum_power2_eq_zero_iff: "x⇧2 + y⇧2 = 0 ⟷ x = 0 ∧ y = 0" unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) lemma sum_power2_le_zero_iff: "x⇧2 + y⇧2 ≤ 0 ⟷ x = 0 ∧ y = 0" by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) lemma sum_power2_gt_zero_iff: "0 < x⇧2 + y⇧2 ⟷ x ≠ 0 ∨ y ≠ 0" unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) lemma abs_le_square_iff: "¦x¦ ≤ ¦y¦ ⟷ x⇧2 ≤ y⇧2" (is "?lhs ⟷ ?rhs") proof assume ?lhs then have "¦x¦⇧2 ≤ ¦y¦⇧2" by (rule power_mono) simp then show ?rhs by simp next assume ?rhs then show ?lhs by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero]) qed lemma power2_le_iff_abs_le: "y ≥ 0 ⟹ x⇧2 ≤ y⇧2 ⟷ ¦x¦ ≤ y" by (metis abs_le_square_iff abs_of_nonneg) lemma abs_square_le_1:"x⇧2 ≤ 1 ⟷ ¦x¦ ≤ 1" using abs_le_square_iff [of x 1] by simp lemma abs_square_eq_1: "x⇧2 = 1 ⟷ ¦x¦ = 1" by (auto simp add: abs_if power2_eq_1_iff) lemma abs_square_less_1: "x⇧2 < 1 ⟷ ¦x¦ < 1" using abs_square_eq_1 [of x] abs_square_le_1 [of x] by (auto simp add: le_less) lemma square_le_1: assumes "- 1 ≤ x" "x ≤ 1" shows "x⇧2 ≤ 1" using assms by (metis add.inverse_inverse linear mult_le_one neg_equal_0_iff_equal neg_le_iff_le power2_eq_square power_minus_Bit0) end subsection ‹Miscellaneous rules› lemma (in linordered_semidom) self_le_power: "1 ≤ a ⟹ 0 < n ⟹ a ≤ a ^ n" using power_increasing [of 1 n a] power_one_right [of a] by auto lemma (in power) power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" unfolding One_nat_def by (cases m) simp_all lemma (in comm_semiring_1) power2_sum: "(x + y)⇧2 = x⇧2 + y⇧2 + 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) context comm_ring_1 begin lemma power2_diff: "(x - y)⇧2 = x⇧2 + y⇧2 - 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) lemma power2_commute: "(x - y)⇧2 = (y - x)⇧2" by (simp add: algebra_simps power2_eq_square) lemma minus_power_mult_self: "(- a) ^ n * (- a) ^ n = a ^ (2 * n)" by (simp add: power_mult_distrib [symmetric]) (simp add: power2_eq_square [symmetric] power_mult [symmetric]) lemma minus_one_mult_self [simp]: "(- 1) ^ n * (- 1) ^ n = 1" using minus_power_mult_self [of 1 n] by simp lemma left_minus_one_mult_self [simp]: "(- 1) ^ n * ((- 1) ^ n * a) = a" by (simp add: mult.assoc [symmetric]) end text ‹Simprules for comparisons where common factors can be cancelled.› lemmas zero_compare_simps = add_strict_increasing add_strict_increasing2 add_increasing zero_le_mult_iff zero_le_divide_iff zero_less_mult_iff zero_less_divide_iff mult_le_0_iff divide_le_0_iff mult_less_0_iff divide_less_0_iff zero_le_power2 power2_less_0 subsection ‹Exponentiation for the Natural Numbers› lemma nat_one_le_power [simp]: "Suc 0 ≤ i ⟹ Suc 0 ≤ i ^ n" by (rule one_le_power [of i n, unfolded One_nat_def]) lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 ⟷ x > 0 ∨ n = 0" for x :: nat by (induct n) auto lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 ⟷ m = 0 ∨ x = Suc 0" by (induct m) auto lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0" by simp text ‹ Valid for the naturals, but what if ‹0 < i < 1›? Premises cannot be weakened: consider the case where ‹i = 0›, ‹m = 1› and ‹n = 0›. › lemma nat_power_less_imp_less: fixes i :: nat assumes nonneg: "0 < i" assumes less: "i ^ m < i ^ n" shows "m < n" proof (cases "i = 1") case True with less power_one [where 'a = nat] show ?thesis by simp next case False with nonneg have "1 < i" by auto from power_strict_increasing_iff [OF this] less show ?thesis .. qed lemma power_gt_expt: "n > Suc 0 ⟹ n^k > k" by (induction k) (auto simp: less_trans_Suc n_less_m_mult_n) lemma less_exp [simp]: ‹n < 2 ^ n› by (simp add: power_gt_expt) lemma power_dvd_imp_le: fixes i :: nat assumes "i ^ m dvd i ^ n" "1 < i" shows "m ≤ n" using assms by (auto intro: power_le_imp_le_exp [OF ‹1 < i› dvd_imp_le]) lemma dvd_power_iff_le: fixes k::nat shows "2 ≤ k ⟹ ((k ^ m) dvd (k ^ n) ⟷ m ≤ n)" using le_imp_power_dvd power_dvd_imp_le by force lemma power2_nat_le_eq_le: "m⇧2 ≤ n⇧2 ⟷ m ≤ n" for m n :: nat by (auto intro: power2_le_imp_le power_mono) lemma power2_nat_le_imp_le: fixes m n :: nat assumes "m⇧2 ≤ n" shows "m ≤ n" proof (cases m) case 0 then show ?thesis by simp next case (Suc k) show ?thesis proof (rule ccontr) assume "¬ ?thesis" then have "n < m" by simp with assms Suc show False by (simp add: power2_eq_square) qed qed lemma ex_power_ivl1: fixes b k :: nat assumes "b ≥ 2" shows "k ≥ 1 ⟹ ∃n. b^n ≤ k ∧ k < b^(n+1)" (is "_ ⟹ ∃n. ?P k n") proof(induction k) case 0 thus ?case by simp next case (Suc k) show ?case proof cases assume "k=0" hence "?P (Suc k) 0" using assms by simp thus ?case .. next assume "k≠0" with Suc obtain n where IH: "?P k n" by auto show ?case proof (cases "k = b^(n+1) - 1") case True hence "?P (Suc k) (n+1)" using assms by (simp add: power_less_power_Suc) thus ?thesis .. next case False hence "?P (Suc k) n" using IH by auto thus ?thesis .. qed qed qed lemma ex_power_ivl2: fixes b k :: nat assumes "b ≥ 2" "k ≥ 2" shows "∃n. b^n < k ∧ k ≤ b^(n+1)" proof - have "1 ≤ k - 1" using assms(2) by arith from ex_power_ivl1[OF assms(1) this] obtain n where "b ^ n ≤ k - 1 ∧ k - 1 < b ^ (n + 1)" .. hence "b^n < k ∧ k ≤ b^(n+1)" using assms by auto thus ?thesis .. qed subsubsection ‹Cardinality of the Powerset› lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2" unfolding UNIV_bool by simp lemma card_Pow: "finite A ⟹ card (Pow A) = 2 ^ card A" proof (induct rule: finite_induct) case empty show ?case by simp next case (insert x A) from ‹x ∉ A› have disjoint: "Pow A ∩ insert x ` Pow A = {}" by blast from ‹x ∉ A› have inj_on: "inj_on (insert x) (Pow A)" unfolding inj_on_def by auto have "card (Pow (insert x A)) = card (Pow A ∪ insert x ` Pow A)" by (simp only: Pow_insert) also have "… = card (Pow A) + card (insert x ` Pow A)" by (rule card_Un_disjoint) (use ‹finite A› disjoint in simp_all) also from inj_on have "card (insert x ` Pow A) = card (Pow A)" by (rule card_image) also have "… + … = 2 * …" by (simp add: mult_2) also from insert(3) have "… = 2 ^ Suc (card A)" by simp also from insert(1,2) have "Suc (card A) = card (insert x A)" by (rule card_insert_disjoint [symmetric]) finally show ?case . qed subsection ‹Code generator tweak› code_identifier code_module Power ⇀ (SML) Arith and (OCaml) Arith and (Haskell) Arith end