101 Aa:Ab:(a+Sb)=S(a+b) axiom 3 102 Ab:(0+Sb)=S(0+b) specification 103 (0+Sb)=S(0+b) specification 104 [ push 105 (0+b)=b premise 106 S(0+b)=Sb add S 107 (0+Sb)=S(0+b) carry over line 103 108 (0+Sb)=Sb transitivity 109 ] pop 110 <(0+b)=b](0+Sb)=Sb> fantasy rule 111 Ab:<(0+b)=b](0+Sb)=Sb> generalization 112 Aa:(a+0)=a axiom 2 113 (0+0)=0 specification 114 Ab:(0+b)=b induction (lines 111, 113) 115 (0+a)=a specification 116 Aa:(0+a)=a generalization 01 Aa:Ab:(a+Sb)=S(a+b) axiom 3 02 Ab:(d+Sb)=S(d+b) specification 03 (d+SSc)=S(d+Sc) specification 04 Ab:(Sd+Sb)=S(Sd+b) specification (line 01) 05 (Sd+Sc)=S(Sd+c) specification 06 S(Sd+c)=(Sd+Sc) symmetry 07 [ push 08 Ad:(d+Sc)=(Sd+c) premise 09 (d+Sc)=(Sd+c) specification 10 S(d+Sc)=S(Sd+c) add S 11 (d+SSc)=S(d+Sc) carry over 03 12 (d+SSc)=S(Sd+c) transitivity 13 S(Sd+c)=(Sd+Sc) carry over 06 14 (d+SSc)=(Sd+Sc) transitivity 15 Ad:(d+SSc)=(Sd+Sc) generalization 16 ] pop 17 fantasy rule 18 Ac: generalization 19 (d+S0)=S(d+0) specification (line 02) 20 Aa:(a+0)=a axiom 1 21 (d+0)=d specification 22 S(d+0)=Sd add S 23 (d+S0)=Sd transitivity (lines 19,22) 24 (Sd+0)=Sd specification (line 20) 25 Sd=(Sd+0) symmetry 26 (d+S0)=(Sd+0) transitivity (lines 23,25) 27 Ad:(d+S0)=(Sd+0) generalization 28 Ac:Ad:(d+Sc)=(Sd+c) induction (lines 18,27) [S can be slipped back and forth in an addition.] 29 Ab:(c+Sb)=S(c+b) specification (line 01) 30 (c+Sd)=S(c+d) specification 31 Ab:(d+Sb)=S(d+b) specification (line 01) 32 (d+Sc)=S(d+c) specification 33 S(d+c)=(d+Sc) symmetry 34 Ad:(d+Sc)=(Sd+c) specification (line 28) 35 (d+Sc)=(Sd+c) specification 36 [ push 37 Ac:(c+d)=(d+c) premise 38 (c+d)=(d+c) specification 39 S(c+d)=S(d+c) add S 40 (c+Sd)=S(c+d) carry over 30 41 (c+Sd)=S(d+c) transitivity 42 S(d+c)=(d+Sc) carry over 33 43 (c+Sd)=(d+Sc) transitivity 44 (d+Sc)=(Sd+c) carry over 35 45 (c+Sd)=(Sd+c) transitivity 46 Ac:(c+Sd)=(Sd+c) generalization 47 ] pop 48 fantasy rule 49 Ad: generalization [If d commutes with every c, then Sd does too.] 50 (c+0)=c specification (line 20) 51 Aa:(0+a)=a carry over 116 52 (0+c)=c specification 53 c=(0+c) symmetry 54 (c+0)=(0+c) transitivity (lines 50,53) 55 Ac:(c+0)=(0+c) generalization [0 commutes with every c.] 56 Ad:Ac:(c+d)=(d+c) induction (lines 49,55) [Therefore, every d commmutes with every c.]