summaryrefslogtreecommitdiff
path: root/tests/examplefiles/example.bug
diff options
context:
space:
mode:
Diffstat (limited to 'tests/examplefiles/example.bug')
-rw-r--r--tests/examplefiles/example.bug47
1 files changed, 23 insertions, 24 deletions
diff --git a/tests/examplefiles/example.bug b/tests/examplefiles/example.bug
index b5b2fe7f..9ccd531d 100644
--- a/tests/examplefiles/example.bug
+++ b/tests/examplefiles/example.bug
@@ -1,55 +1,54 @@
# Alligators: multinomial - logistic regression
# http://www.openbugs.info/Examples/Aligators.html
model {
-
- # PRIORS
+ # PRIORS
alpha[1] <- 0; # zero contrast for baseline food
for (k in 2 : K) {
- alpha[k] ~ dnorm(0, 0.00001) # vague priors
+ alpha[k] ~ dnorm(0, 0.00001) # vague priors
}
# Loop around lakes:
for (k in 1 : K){
- beta[1, k] <- 0
+ beta[1, k] <- 0
} # corner-point contrast with first lake
for (i in 2 : I) {
- beta[i, 1] <- 0 ; # zero contrast for baseline food
- for (k in 2 : K){
- beta[i, k] ~ dnorm(0, 0.00001) # vague priors
- }
+ beta[i, 1] <- 0 ; # zero contrast for baseline food
+ for (k in 2 : K){
+ beta[i, k] ~ dnorm(0, 0.00001) # vague priors
+ }
}
# Loop around sizes:
for (k in 1 : K){
- gamma[1, k] <- 0 # corner-point contrast with first size
+ gamma[1, k] <- 0 # corner-point contrast with first size
}
for (j in 2 : J) {
- gamma[j, 1] <- 0 ; # zero contrast for baseline food
- for ( k in 2 : K){
- gamma[j, k] ~ dnorm(0, 0.00001) # vague priors
- }
+ gamma[j, 1] <- 0 ; # zero contrast for baseline food
+ for ( k in 2 : K){
+ gamma[j, k] ~ dnorm(0, 0.00001) # vague priors
+ }
}
# LIKELIHOOD
for (i in 1 : I) { # loop around lakes
- for (j in 1 : J) { # loop around sizes
+ for (j in 1 : J) { # loop around sizes
- # Fit standard Poisson regressions relative to baseline
- lambda[i, j] ~ dflat() # vague priors
- for (k in 1 : K) { # loop around foods
- X[i, j, k] ~ dpois(mu[i, j, k])
- log(mu[i, j, k]) <- lambda[i, j] + alpha[k] + beta[i, k] + gamma[j, k]
- culmative.X[i, j, k] <- culmative(X[i, j, k], X[i, j, k])
- }
- }
+ # Fit standard Poisson regressions relative to baseline
+ lambda[i, j] ~ dflat() # vague priors
+ for (k in 1 : K) { # loop around foods
+ X[i, j, k] ~ dpois(mu[i, j, k])
+ log(mu[i, j, k]) <- lambda[i, j] + alpha[k] + beta[i, k] + gamma[j, k]
+ culmative.X[i, j, k] <- culmative(X[i, j, k], X[i, j, k])
+ }
+ }
}
# TRANSFORM OUTPUT TO ENABLE COMPARISON
# WITH AGRESTI'S RESULTS
for (k in 1 : K) { # loop around foods
for (i in 1 : I) { # loop around lakes
- b[i, k] <- beta[i, k] - mean(beta[, k]); # sum to zero constraint
+ b[i, k] <- beta[i, k] - mean(beta[, k]); # sum to zero constraint
}
for (j in 1 : J) { # loop around sizes
- g[j, k] <- gamma[j, k] - mean(gamma[, k]); # sum to zero constraint
+ g[j, k] <- gamma[j, k] - mean(gamma[, k]); # sum to zero constraint
}
}
}