"""
This is a simple primer using some of the
example stuff in the Primer on N3:
http://www.w3.org/2000/10/swap/Primer
"""
from rdflib import ConjunctiveGraph, Literal, Namespace
from rdflib.namespace import DC, OWL
if __name__ == "__main__":
# Firstly, it doesn't have to be so complex.
# Here we create a "Graph" of our work.
# Think of it as a blank piece of graph paper!
primer = ConjunctiveGraph()
myNS = Namespace("https://example.com/")
primer.add((myNS.pat, myNS.knows, myNS.jo))
# or:
primer.add((myNS["pat"], myNS["age"], Literal(24)))
# Now, with just that, lets see how the system
# recorded *way* too many details about what
# you just asserted as fact.
from pprint import pprint
print("All the things in the Graph:")
pprint(list(primer))
# just think .whatever((s, p, o))
# here we report on what we know
print("==================")
print("Subjects:")
pprint(list(primer.subjects()))
print("Predicates:")
pprint(list(primer.predicates()))
print("Objects:")
pprint(list(primer.objects()))
print("==================")
# and other things that make sense
print("What we know about pat:")
pprint(list(primer.predicate_objects(myNS.pat)))
print("Who is what age?")
pprint(list(primer.subject_objects(myNS.age)))
print("==================")
print("==================")
# Okay, so lets now work with a bigger
# dataset from the example, and start
# with a fresh new graph.
del primer
primer = ConjunctiveGraph()
# Lets start with a verbatim string straight from the primer text:
mySource = """
@prefix : .
@prefix rdf: .
@prefix rdfs: .
@prefix owl: .
@prefix dc: .
@prefix foo: .
@prefix swap: .
<> dc:title
"Primer - Getting into the Semantic Web and RDF using N3".
:pat :knows :jo .
:pat :age 24 .
:al :is_child_of :pat .
:pat :child :al, :chaz, :mo ;
:age 24 ;
:eyecolor "blue" .
:Person a rdfs:Class .
:Pat a :Person .
:Woman a rdfs:Class; rdfs:subClassOf :Person .
:sister a rdf:Property .
:sister rdfs:domain :Person ;
rdfs:range :Woman .
:Woman = foo:FemaleAdult .
:Title a rdf:Property; = dc:title .
""" # --- End of primer code
# To make this go easier to spit back out...
# technically, we already created a namespace
# with the object init (and it added some namespaces as well)
# By default, your main namespace is the URI of your
# current working directory, so lets make that simpler:
primer.bind("owl", OWL)
primer.bind("dc", DC)
primer.bind("swap", "http://www.w3.org/2000/10/swap/")
# Lets load it up!
primer.parse(data=mySource, format="n3")
# Now you can query, either directly straight into a list:
print()
print("Printing bigger example's triples:")
for i in [(x, y, z) for x, y, z in primer]:
print(i)
# or spit it back out (mostly) the way we created it:
print()
print("Printing bigger example as N3:")
print(primer.serialize(format="n3"))
# for more insight into things already done, lets see the namespaces
print()
print("Printing bigger example's namespaces:")
for n in list(primer.namespaces()):
print(n)
# lets ask something about the data, using a SPARQL query
print()
print("Who are pat's children?")
q = "SELECT ?child WHERE { :pat :child ?child }"
for r in primer.query(q):
print(r)