// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/quic/test_tools/crypto_test_utils.h" #include #include #include #include #include #include #include "crypto/openssl_util.h" #include "crypto/secure_hash.h" #include "net/quic/crypto/channel_id.h" using base::StringPiece; using std::string; namespace { void EvpMdCtxCleanUp(EVP_MD_CTX* ctx) { (void)EVP_MD_CTX_cleanup(ctx); } } // namespace anonymous namespace net { namespace test { class TestChannelIDSigner : public ChannelIDSigner { public: virtual ~TestChannelIDSigner() { } // ChannelIDSigner implementation. virtual bool Sign(const string& hostname, StringPiece signed_data, string* out_key, string* out_signature) OVERRIDE { crypto::ScopedOpenSSL ecdsa_key( HostnameToKey(hostname)); *out_key = SerializeKey(ecdsa_key.get()); if (out_key->empty()) { return false; } EVP_MD_CTX md_ctx; EVP_MD_CTX_init(&md_ctx); crypto::ScopedOpenSSL md_ctx_cleanup(&md_ctx); if (EVP_DigestSignInit(&md_ctx, NULL, EVP_sha256(), NULL, ecdsa_key.get()) != 1) { return false; } EVP_DigestUpdate(&md_ctx, ChannelIDVerifier::kContextStr, strlen(ChannelIDVerifier::kContextStr) + 1); EVP_DigestUpdate(&md_ctx, ChannelIDVerifier::kClientToServerStr, strlen(ChannelIDVerifier::kClientToServerStr) + 1); EVP_DigestUpdate(&md_ctx, signed_data.data(), signed_data.size()); size_t sig_len; if (!EVP_DigestSignFinal(&md_ctx, NULL, &sig_len)) { return false; } scoped_ptr der_sig(new uint8[sig_len]); if (!EVP_DigestSignFinal(&md_ctx, der_sig.get(), &sig_len)) { return false; } uint8* derp = der_sig.get(); crypto::ScopedOpenSSL sig( d2i_ECDSA_SIG(NULL, const_cast(&derp), sig_len)); if (sig.get() == NULL) { return false; } // The signature consists of a pair of 32-byte numbers. static const size_t kSignatureLength = 32 * 2; scoped_ptr signature(new uint8[kSignatureLength]); memset(signature.get(), 0, kSignatureLength); BN_bn2bin(sig.get()->r, signature.get() + 32 - BN_num_bytes(sig.get()->r)); BN_bn2bin(sig.get()->s, signature.get() + 64 - BN_num_bytes(sig.get()->s)); *out_signature = string(reinterpret_cast(signature.get()), kSignatureLength); return true; } virtual string GetKeyForHostname(const string& hostname) OVERRIDE { crypto::ScopedOpenSSL ecdsa_key( HostnameToKey(hostname)); return SerializeKey(ecdsa_key.get()); } private: static EVP_PKEY* HostnameToKey(const string& hostname) { // In order to generate a deterministic key for a given hostname the // hostname is hashed with SHA-256 and the resulting digest is treated as a // big-endian number. The most-significant bit is cleared to ensure that // the resulting value is less than the order of the group and then it's // taken as a private key. Given the private key, the public key is // calculated with a group multiplication. SHA256_CTX sha256; SHA256_Init(&sha256); SHA256_Update(&sha256, hostname.data(), hostname.size()); unsigned char digest[SHA256_DIGEST_LENGTH]; SHA256_Final(digest, &sha256); // Ensure that the digest is less than the order of the P-256 group by // clearing the most-significant bit. digest[0] &= 0x7f; crypto::ScopedOpenSSL k(BN_new()); CHECK(BN_bin2bn(digest, sizeof(digest), k.get()) != NULL); crypto::ScopedOpenSSL p256( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); CHECK(p256.get()); crypto::ScopedOpenSSL ecdsa_key(EC_KEY_new()); CHECK(ecdsa_key.get() != NULL && EC_KEY_set_group(ecdsa_key.get(), p256.get())); crypto::ScopedOpenSSL point( EC_POINT_new(p256.get())); CHECK(EC_POINT_mul(p256.get(), point.get(), k.get(), NULL, NULL, NULL)); EC_KEY_set_private_key(ecdsa_key.get(), k.get()); EC_KEY_set_public_key(ecdsa_key.get(), point.get()); crypto::ScopedOpenSSL pkey(EVP_PKEY_new()); // EVP_PKEY_set1_EC_KEY takes a reference so no |release| here. EVP_PKEY_set1_EC_KEY(pkey.get(), ecdsa_key.get()); return pkey.release(); } static string SerializeKey(EVP_PKEY* key) { // i2d_PublicKey will produce an ANSI X9.62 public key which, for a P-256 // key, is 0x04 (meaning uncompressed) followed by the x and y field // elements as 32-byte, big-endian numbers. static const int kExpectedKeyLength = 65; int len = i2d_PublicKey(key, NULL); if (len != kExpectedKeyLength) { return ""; } uint8 buf[kExpectedKeyLength]; uint8* derp = buf; i2d_PublicKey(key, &derp); return string(reinterpret_cast(buf + 1), kExpectedKeyLength - 1); } }; // static ChannelIDSigner* CryptoTestUtils::ChannelIDSignerForTesting() { return new TestChannelIDSigner(); } } // namespace test } // namespace net