/* * Copyright (C) 2010, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(WEB_AUDIO) #include "modules/webaudio/ScriptProcessorNode.h" #include "core/dom/Document.h" #include "modules/webaudio/AudioBuffer.h" #include "modules/webaudio/AudioContext.h" #include "modules/webaudio/AudioNodeInput.h" #include "modules/webaudio/AudioNodeOutput.h" #include "modules/webaudio/AudioProcessingEvent.h" #include "public/platform/Platform.h" #include "wtf/Float32Array.h" #include "wtf/MainThread.h" namespace WebCore { static size_t chooseBufferSize() { // Choose a buffer size based on the audio hardware buffer size. Arbitarily make it a power of // two that is 4 times greater than the hardware buffer size. // FIXME: What is the best way to choose this? size_t hardwareBufferSize = blink::Platform::current()->audioHardwareBufferSize(); size_t bufferSize = 1 << static_cast(log2(4 * hardwareBufferSize) + 0.5); if (bufferSize < 256) return 256; if (bufferSize > 16384) return 16384; return bufferSize; } PassRefPtr ScriptProcessorNode::create(AudioContext* context, float sampleRate, size_t bufferSize, unsigned numberOfInputChannels, unsigned numberOfOutputChannels) { // Check for valid buffer size. switch (bufferSize) { case 0: bufferSize = chooseBufferSize(); break; case 256: case 512: case 1024: case 2048: case 4096: case 8192: case 16384: break; default: return 0; } if (!numberOfInputChannels && !numberOfOutputChannels) return 0; if (numberOfInputChannels > AudioContext::maxNumberOfChannels()) return 0; if (numberOfOutputChannels > AudioContext::maxNumberOfChannels()) return 0; return adoptRef(new ScriptProcessorNode(context, sampleRate, bufferSize, numberOfInputChannels, numberOfOutputChannels)); } ScriptProcessorNode::ScriptProcessorNode(AudioContext* context, float sampleRate, size_t bufferSize, unsigned numberOfInputChannels, unsigned numberOfOutputChannels) : AudioNode(context, sampleRate) , m_doubleBufferIndex(0) , m_doubleBufferIndexForEvent(0) , m_bufferSize(bufferSize) , m_bufferReadWriteIndex(0) , m_isRequestOutstanding(false) , m_numberOfInputChannels(numberOfInputChannels) , m_numberOfOutputChannels(numberOfOutputChannels) , m_internalInputBus(AudioBus::create(numberOfInputChannels, AudioNode::ProcessingSizeInFrames, false)) { ScriptWrappable::init(this); // Regardless of the allowed buffer sizes, we still need to process at the granularity of the AudioNode. if (m_bufferSize < AudioNode::ProcessingSizeInFrames) m_bufferSize = AudioNode::ProcessingSizeInFrames; ASSERT(numberOfInputChannels <= AudioContext::maxNumberOfChannels()); addInput(adoptPtr(new AudioNodeInput(this))); addOutput(adoptPtr(new AudioNodeOutput(this, numberOfOutputChannels))); setNodeType(NodeTypeJavaScript); initialize(); } ScriptProcessorNode::~ScriptProcessorNode() { uninitialize(); } void ScriptProcessorNode::initialize() { if (isInitialized()) return; float sampleRate = context()->sampleRate(); // Create double buffers on both the input and output sides. // These AudioBuffers will be directly accessed in the main thread by JavaScript. for (unsigned i = 0; i < 2; ++i) { RefPtr inputBuffer = m_numberOfInputChannels ? AudioBuffer::create(m_numberOfInputChannels, bufferSize(), sampleRate) : 0; RefPtr outputBuffer = m_numberOfOutputChannels ? AudioBuffer::create(m_numberOfOutputChannels, bufferSize(), sampleRate) : 0; m_inputBuffers.append(inputBuffer); m_outputBuffers.append(outputBuffer); } AudioNode::initialize(); } void ScriptProcessorNode::uninitialize() { if (!isInitialized()) return; m_inputBuffers.clear(); m_outputBuffers.clear(); AudioNode::uninitialize(); } void ScriptProcessorNode::process(size_t framesToProcess) { // Discussion about inputs and outputs: // As in other AudioNodes, ScriptProcessorNode uses an AudioBus for its input and output (see inputBus and outputBus below). // Additionally, there is a double-buffering for input and output which is exposed directly to JavaScript (see inputBuffer and outputBuffer below). // This node is the producer for inputBuffer and the consumer for outputBuffer. // The JavaScript code is the consumer of inputBuffer and the producer for outputBuffer. // Get input and output busses. AudioBus* inputBus = this->input(0)->bus(); AudioBus* outputBus = this->output(0)->bus(); // Get input and output buffers. We double-buffer both the input and output sides. unsigned doubleBufferIndex = this->doubleBufferIndex(); bool isDoubleBufferIndexGood = doubleBufferIndex < 2 && doubleBufferIndex < m_inputBuffers.size() && doubleBufferIndex < m_outputBuffers.size(); ASSERT(isDoubleBufferIndexGood); if (!isDoubleBufferIndexGood) return; AudioBuffer* inputBuffer = m_inputBuffers[doubleBufferIndex].get(); AudioBuffer* outputBuffer = m_outputBuffers[doubleBufferIndex].get(); // Check the consistency of input and output buffers. unsigned numberOfInputChannels = m_internalInputBus->numberOfChannels(); bool buffersAreGood = outputBuffer && bufferSize() == outputBuffer->length() && m_bufferReadWriteIndex + framesToProcess <= bufferSize(); // If the number of input channels is zero, it's ok to have inputBuffer = 0. if (m_internalInputBus->numberOfChannels()) buffersAreGood = buffersAreGood && inputBuffer && bufferSize() == inputBuffer->length(); ASSERT(buffersAreGood); if (!buffersAreGood) return; // We assume that bufferSize() is evenly divisible by framesToProcess - should always be true, but we should still check. bool isFramesToProcessGood = framesToProcess && bufferSize() >= framesToProcess && !(bufferSize() % framesToProcess); ASSERT(isFramesToProcessGood); if (!isFramesToProcessGood) return; unsigned numberOfOutputChannels = outputBus->numberOfChannels(); bool channelsAreGood = (numberOfInputChannels == m_numberOfInputChannels) && (numberOfOutputChannels == m_numberOfOutputChannels); ASSERT(channelsAreGood); if (!channelsAreGood) return; for (unsigned i = 0; i < numberOfInputChannels; i++) m_internalInputBus->setChannelMemory(i, inputBuffer->getChannelData(i)->data() + m_bufferReadWriteIndex, framesToProcess); if (numberOfInputChannels) m_internalInputBus->copyFrom(*inputBus); // Copy from the output buffer to the output. for (unsigned i = 0; i < numberOfOutputChannels; ++i) memcpy(outputBus->channel(i)->mutableData(), outputBuffer->getChannelData(i)->data() + m_bufferReadWriteIndex, sizeof(float) * framesToProcess); // Update the buffering index. m_bufferReadWriteIndex = (m_bufferReadWriteIndex + framesToProcess) % bufferSize(); // m_bufferReadWriteIndex will wrap back around to 0 when the current input and output buffers are full. // When this happens, fire an event and swap buffers. if (!m_bufferReadWriteIndex) { // Avoid building up requests on the main thread to fire process events when they're not being handled. // This could be a problem if the main thread is very busy doing other things and is being held up handling previous requests. if (m_isRequestOutstanding) { // We're late in handling the previous request. The main thread must be very busy. // The best we can do is clear out the buffer ourself here. outputBuffer->zero(); } else { // Reference ourself so we don't accidentally get deleted before fireProcessEvent() gets called. ref(); // Fire the event on the main thread, not this one (which is the realtime audio thread). m_doubleBufferIndexForEvent = m_doubleBufferIndex; m_isRequestOutstanding = true; callOnMainThread(fireProcessEventDispatch, this); } swapBuffers(); } } void ScriptProcessorNode::fireProcessEventDispatch(void* userData) { ScriptProcessorNode* jsAudioNode = static_cast(userData); ASSERT(jsAudioNode); if (!jsAudioNode) return; jsAudioNode->fireProcessEvent(); // De-reference to match the ref() call in process(). jsAudioNode->deref(); } void ScriptProcessorNode::fireProcessEvent() { ASSERT(isMainThread() && m_isRequestOutstanding); bool isIndexGood = m_doubleBufferIndexForEvent < 2; ASSERT(isIndexGood); if (!isIndexGood) return; AudioBuffer* inputBuffer = m_inputBuffers[m_doubleBufferIndexForEvent].get(); AudioBuffer* outputBuffer = m_outputBuffers[m_doubleBufferIndexForEvent].get(); ASSERT(outputBuffer); if (!outputBuffer) return; // Avoid firing the event if the document has already gone away. if (context()->executionContext()) { // Let the audio thread know we've gotten to the point where it's OK for it to make another request. m_isRequestOutstanding = false; // Call the JavaScript event handler which will do the audio processing. dispatchEvent(AudioProcessingEvent::create(inputBuffer, outputBuffer)); } } void ScriptProcessorNode::reset() { m_bufferReadWriteIndex = 0; m_doubleBufferIndex = 0; for (unsigned i = 0; i < 2; ++i) { m_inputBuffers[i]->zero(); m_outputBuffers[i]->zero(); } } double ScriptProcessorNode::tailTime() const { return std::numeric_limits::infinity(); } double ScriptProcessorNode::latencyTime() const { return std::numeric_limits::infinity(); } } // namespace WebCore #endif // ENABLE(WEB_AUDIO)