/* * Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com) * Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "platform/graphics/BitmapImage.h" #include "platform/Timer.h" #include "platform/geometry/FloatRect.h" #include "platform/graphics/GraphicsContextStateSaver.h" #include "platform/graphics/ImageObserver.h" #include "platform/graphics/skia/NativeImageSkia.h" #include "platform/graphics/skia/SkiaUtils.h" #include "wtf/CurrentTime.h" #include "wtf/PassRefPtr.h" #include "wtf/Vector.h" #include "wtf/text/WTFString.h" namespace WebCore { BitmapImage::BitmapImage(ImageObserver* observer) : Image(observer) , m_currentFrame(0) , m_frames(0) , m_frameTimer(0) , m_repetitionCount(cAnimationNone) , m_repetitionCountStatus(Unknown) , m_repetitionsComplete(0) , m_desiredFrameStartTime(0) , m_frameCount(0) , m_isSolidColor(false) , m_checkedForSolidColor(false) , m_animationFinished(false) , m_allDataReceived(false) , m_haveSize(false) , m_sizeAvailable(false) , m_hasUniformFrameSize(true) , m_haveFrameCount(false) { } BitmapImage::BitmapImage(PassRefPtr nativeImage, ImageObserver* observer) : Image(observer) , m_size(nativeImage->bitmap().width(), nativeImage->bitmap().height()) , m_currentFrame(0) , m_frames(0) , m_frameTimer(0) , m_repetitionCount(cAnimationNone) , m_repetitionCountStatus(Unknown) , m_repetitionsComplete(0) , m_frameCount(1) , m_isSolidColor(false) , m_checkedForSolidColor(false) , m_animationFinished(true) , m_allDataReceived(true) , m_haveSize(true) , m_sizeAvailable(true) , m_haveFrameCount(true) { // Since we don't have a decoder, we can't figure out the image orientation. // Set m_sizeRespectingOrientation to be the same as m_size so it's not 0x0. m_sizeRespectingOrientation = m_size; m_frames.grow(1); m_frames[0].m_hasAlpha = !nativeImage->bitmap().isOpaque(); m_frames[0].m_frame = nativeImage; m_frames[0].m_haveMetadata = true; checkForSolidColor(); } BitmapImage::~BitmapImage() { stopAnimation(); } bool BitmapImage::isBitmapImage() const { return true; } void BitmapImage::destroyDecodedData(bool destroyAll) { for (size_t i = 0; i < m_frames.size(); ++i) { // The underlying frame isn't actually changing (we're just trying to // save the memory for the framebuffer data), so we don't need to clear // the metadata. m_frames[i].clear(false); } destroyMetadataAndNotify(m_source.clearCacheExceptFrame(destroyAll ? kNotFound : m_currentFrame)); } void BitmapImage::destroyDecodedDataIfNecessary() { // Animated images >5MB are considered large enough that we'll only hang on // to one frame at a time. static const size_t cLargeAnimationCutoff = 5242880; size_t allFrameBytes = 0; for (size_t i = 0; i < m_frames.size(); ++i) allFrameBytes += m_frames[i].m_frameBytes; if (allFrameBytes > cLargeAnimationCutoff) destroyDecodedData(false); } void BitmapImage::destroyMetadataAndNotify(size_t frameBytesCleared) { m_isSolidColor = false; m_checkedForSolidColor = false; if (frameBytesCleared && imageObserver()) imageObserver()->decodedSizeChanged(this, -safeCast(frameBytesCleared)); } void BitmapImage::cacheFrame(size_t index) { size_t numFrames = frameCount(); if (m_frames.size() < numFrames) m_frames.grow(numFrames); m_frames[index].m_frame = m_source.createFrameAtIndex(index); if (numFrames == 1 && m_frames[index].m_frame) checkForSolidColor(); m_frames[index].m_orientation = m_source.orientationAtIndex(index); m_frames[index].m_haveMetadata = true; m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index); if (repetitionCount(false) != cAnimationNone) m_frames[index].m_duration = m_source.frameDurationAtIndex(index); m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index); m_frames[index].m_frameBytes = m_source.frameBytesAtIndex(index); const IntSize frameSize(index ? m_source.frameSizeAtIndex(index) : m_size); if (frameSize != m_size) m_hasUniformFrameSize = false; if (m_frames[index].m_frame) { int deltaBytes = safeCast(m_frames[index].m_frameBytes); // The fully-decoded frame will subsume the partially decoded data used // to determine image properties. if (imageObserver()) imageObserver()->decodedSizeChanged(this, deltaBytes); } } void BitmapImage::updateSize() const { if (!m_sizeAvailable || m_haveSize) return; m_size = m_source.size(); m_sizeRespectingOrientation = m_source.size(RespectImageOrientation); m_haveSize = true; } IntSize BitmapImage::size() const { updateSize(); return m_size; } IntSize BitmapImage::sizeRespectingOrientation() const { updateSize(); return m_sizeRespectingOrientation; } IntSize BitmapImage::currentFrameSize() const { if (!m_currentFrame || m_hasUniformFrameSize) return size(); IntSize frameSize = m_source.frameSizeAtIndex(m_currentFrame); return frameSize; } bool BitmapImage::getHotSpot(IntPoint& hotSpot) const { bool result = m_source.getHotSpot(hotSpot); return result; } bool BitmapImage::dataChanged(bool allDataReceived) { TRACE_EVENT0("webkit", "BitmapImage::dataChanged"); // Clear all partially-decoded frames. For most image formats, there is only // one frame, but at least GIF and ICO can have more. With GIFs, the frames // come in order and we ask to decode them in order, waiting to request a // subsequent frame until the prior one is complete. Given that we clear // incomplete frames here, this means there is at most one incomplete frame // (even if we use destroyDecodedData() -- since it doesn't reset the // metadata), and it is after all the complete frames. // // With ICOs, on the other hand, we may ask for arbitrary frames at // different times (e.g. because we're displaying a higher-resolution image // in the content area and using a lower-resolution one for the favicon), // and the frames aren't even guaranteed to appear in the file in the same // order as in the directory, so an arbitrary number of the frames might be // incomplete (if we ask for frames for which we've not yet reached the // start of the frame data), and any or none of them might be the particular // frame affected by appending new data here. Thus we have to clear all the // incomplete frames to be safe. unsigned frameBytesCleared = 0; for (size_t i = 0; i < m_frames.size(); ++i) { // NOTE: Don't call frameIsCompleteAtIndex() here, that will try to // decode any uncached (i.e. never-decoded or // cleared-on-a-previous-pass) frames! unsigned frameBytes = m_frames[i].m_frameBytes; if (m_frames[i].m_haveMetadata && !m_frames[i].m_isComplete) frameBytesCleared += (m_frames[i].clear(true) ? frameBytes : 0); } destroyMetadataAndNotify(frameBytesCleared); // Feed all the data we've seen so far to the image decoder. m_allDataReceived = allDataReceived; m_source.setData(data(), allDataReceived); m_haveFrameCount = false; m_hasUniformFrameSize = true; return isSizeAvailable(); } String BitmapImage::filenameExtension() const { return m_source.filenameExtension(); } void BitmapImage::draw(GraphicsContext* ctxt, const FloatRect& dstRect, const FloatRect& srcRect, CompositeOperator compositeOp, blink::WebBlendMode blendMode) { draw(ctxt, dstRect, srcRect, compositeOp, blendMode, DoNotRespectImageOrientation); } void BitmapImage::draw(GraphicsContext* ctxt, const FloatRect& dstRect, const FloatRect& srcRect, CompositeOperator compositeOp, blink::WebBlendMode blendMode, RespectImageOrientationEnum shouldRespectImageOrientation) { // Spin the animation to the correct frame before we try to draw it, so we // don't draw an old frame and then immediately need to draw a newer one, // causing flicker and wasting CPU. startAnimation(); RefPtr bm = nativeImageForCurrentFrame(); if (!bm) return; // It's too early and we don't have an image yet. FloatRect normDstRect = adjustForNegativeSize(dstRect); FloatRect normSrcRect = adjustForNegativeSize(srcRect); normSrcRect.intersect(FloatRect(0, 0, bm->bitmap().width(), bm->bitmap().height())); if (normSrcRect.isEmpty() || normDstRect.isEmpty()) return; // Nothing to draw. ImageOrientation orientation = DefaultImageOrientation; if (shouldRespectImageOrientation == RespectImageOrientation) orientation = frameOrientationAtIndex(m_currentFrame); GraphicsContextStateSaver saveContext(*ctxt, false); if (orientation != DefaultImageOrientation) { saveContext.save(); // ImageOrientation expects the origin to be at (0, 0) ctxt->translate(normDstRect.x(), normDstRect.y()); normDstRect.setLocation(FloatPoint()); ctxt->concatCTM(orientation.transformFromDefault(normDstRect.size())); if (orientation.usesWidthAsHeight()) { // The destination rect will have it's width and height already reversed for the orientation of // the image, as it was needed for page layout, so we need to reverse it back here. normDstRect = FloatRect(normDstRect.x(), normDstRect.y(), normDstRect.height(), normDstRect.width()); } } bm->draw(ctxt, normSrcRect, normDstRect, WebCoreCompositeToSkiaComposite(compositeOp, blendMode)); if (ImageObserver* observer = imageObserver()) observer->didDraw(this); } size_t BitmapImage::frameCount() { if (!m_haveFrameCount) { m_frameCount = m_source.frameCount(); // If decoder is not initialized yet, m_source.frameCount() returns 0. if (m_frameCount) { m_haveFrameCount = true; } } return m_frameCount; } bool BitmapImage::isSizeAvailable() { if (m_sizeAvailable) return true; m_sizeAvailable = m_source.isSizeAvailable(); return m_sizeAvailable; } bool BitmapImage::ensureFrameIsCached(size_t index) { if (index >= frameCount()) return false; if (index >= m_frames.size() || !m_frames[index].m_frame) cacheFrame(index); return true; } PassRefPtr BitmapImage::frameAtIndex(size_t index) { if (!ensureFrameIsCached(index)) return 0; return m_frames[index].m_frame; } bool BitmapImage::frameIsCompleteAtIndex(size_t index) { if (index < m_frames.size() && m_frames[index].m_haveMetadata && m_frames[index].m_isComplete) return true; return m_source.frameIsCompleteAtIndex(index); } float BitmapImage::frameDurationAtIndex(size_t index) { if (index < m_frames.size() && m_frames[index].m_haveMetadata) return m_frames[index].m_duration; return m_source.frameDurationAtIndex(index); } PassRefPtr BitmapImage::nativeImageForCurrentFrame() { return frameAtIndex(currentFrame()); } bool BitmapImage::frameHasAlphaAtIndex(size_t index) { if (m_frames.size() <= index) return true; if (m_frames[index].m_haveMetadata) return m_frames[index].m_hasAlpha; return m_source.frameHasAlphaAtIndex(index); } bool BitmapImage::currentFrameKnownToBeOpaque() { return !frameHasAlphaAtIndex(currentFrame()); } ImageOrientation BitmapImage::currentFrameOrientation() { return frameOrientationAtIndex(currentFrame()); } ImageOrientation BitmapImage::frameOrientationAtIndex(size_t index) { if (m_frames.size() <= index) return DefaultImageOrientation; if (m_frames[index].m_haveMetadata) return m_frames[index].m_orientation; return m_source.orientationAtIndex(index); } #if !ASSERT_DISABLED bool BitmapImage::notSolidColor() { return size().width() != 1 || size().height() != 1 || frameCount() > 1; } #endif int BitmapImage::repetitionCount(bool imageKnownToBeComplete) { if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) { // Snag the repetition count. If |imageKnownToBeComplete| is false, the // repetition count may not be accurate yet for GIFs; in this case the // decoder will default to cAnimationLoopOnce, and we'll try and read // the count again once the whole image is decoded. m_repetitionCount = m_source.repetitionCount(); m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain; } return m_repetitionCount; } bool BitmapImage::shouldAnimate() { return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver()); } void BitmapImage::startAnimation(bool catchUpIfNecessary) { if (m_frameTimer || !shouldAnimate() || frameCount() <= 1) return; // If we aren't already animating, set now as the animation start time. const double time = monotonicallyIncreasingTime(); if (!m_desiredFrameStartTime) m_desiredFrameStartTime = time; // Don't advance the animation to an incomplete frame. size_t nextFrame = (m_currentFrame + 1) % frameCount(); if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame)) return; // Don't advance past the last frame if we haven't decoded the whole image // yet and our repetition count is potentially unset. The repetition count // in a GIF can potentially come after all the rest of the image data, so // wait on it. if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1)) return; // Determine time for next frame to start. By ignoring paint and timer lag // in this calculation, we make the animation appear to run at its desired // rate regardless of how fast it's being repainted. const double currentDuration = frameDurationAtIndex(m_currentFrame); m_desiredFrameStartTime += currentDuration; // When an animated image is more than five minutes out of date, the // user probably doesn't care about resyncing and we could burn a lot of // time looping through frames below. Just reset the timings. const double cAnimationResyncCutoff = 5 * 60; if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff) m_desiredFrameStartTime = time + currentDuration; // The image may load more slowly than it's supposed to animate, so that by // the time we reach the end of the first repetition, we're well behind. // Clamp the desired frame start time in this case, so that we don't skip // frames (or whole iterations) trying to "catch up". This is a tradeoff: // It guarantees users see the whole animation the second time through and // don't miss any repetitions, and is closer to what other browsers do; on // the other hand, it makes animations "less accurate" for pages that try to // sync an image and some other resource (e.g. audio), especially if users // switch tabs (and thus stop drawing the animation, which will pause it) // during that initial loop, then switch back later. if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time) m_desiredFrameStartTime = time; if (!catchUpIfNecessary || time < m_desiredFrameStartTime) { // Haven't yet reached time for next frame to start; delay until then. m_frameTimer = new Timer(this, &BitmapImage::advanceAnimation); m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.)); } else { // We've already reached or passed the time for the next frame to start. // See if we've also passed the time for frames after that to start, in // case we need to skip some frames entirely. Remember not to advance // to an incomplete frame. for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) { // Should we skip the next frame? double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame); if (time < frameAfterNextStartTime) break; // Yes; skip over it without notifying our observers. if (!internalAdvanceAnimation(true)) return; m_desiredFrameStartTime = frameAfterNextStartTime; nextFrame = frameAfterNext; } // Draw the next frame immediately. Note that m_desiredFrameStartTime // may be in the past, meaning the next time through this function we'll // kick off the next advancement sooner than this frame's duration would // suggest. if (internalAdvanceAnimation(false)) { // The image region has been marked dirty, but once we return to our // caller, draw() will clear it, and nothing will cause the // animation to advance again. We need to start the timer for the // next frame running, or the animation can hang. (Compare this // with when advanceAnimation() is called, and the region is dirtied // while draw() is not in the callstack, meaning draw() gets called // to update the region and thus startAnimation() is reached again.) // NOTE: For large images with slow or heavily-loaded systems, // throwing away data as we go (see destroyDecodedData()) means we // can spend so much time re-decoding data above that by the time we // reach here we're behind again. If we let startAnimation() run // the catch-up code again, we can get long delays without painting // as we race the timer, or even infinite recursion. In this // situation the best we can do is to simply change frames as fast // as possible, so force startAnimation() to set a zero-delay timer // and bail out if we're not caught up. startAnimation(false); } } } void BitmapImage::stopAnimation() { // This timer is used to animate all occurrences of this image. Don't invalidate // the timer unless all renderers have stopped drawing. delete m_frameTimer; m_frameTimer = 0; } void BitmapImage::resetAnimation() { stopAnimation(); m_currentFrame = 0; m_repetitionsComplete = 0; m_desiredFrameStartTime = 0; m_animationFinished = false; // For extremely large animations, when the animation is reset, we just throw everything away. destroyDecodedDataIfNecessary(); } void BitmapImage::advanceAnimation(Timer*) { internalAdvanceAnimation(false); // At this point the image region has been marked dirty, and if it's // onscreen, we'll soon make a call to draw(), which will call // startAnimation() again to keep the animation moving. } bool BitmapImage::internalAdvanceAnimation(bool skippingFrames) { // Stop the animation. stopAnimation(); // See if anyone is still paying attention to this animation. If not, we don't // advance and will remain suspended at the current frame until the animation is resumed. if (!skippingFrames && imageObserver()->shouldPauseAnimation(this)) return false; ++m_currentFrame; bool advancedAnimation = true; if (m_currentFrame >= frameCount()) { ++m_repetitionsComplete; // Get the repetition count again. If we weren't able to get a // repetition count before, we should have decoded the whole image by // now, so it should now be available. // Note that we don't need to special-case cAnimationLoopOnce here // because it is 0 (see comments on its declaration in ImageSource.h). if (repetitionCount(true) != cAnimationLoopInfinite && m_repetitionsComplete > m_repetitionCount) { m_animationFinished = true; m_desiredFrameStartTime = 0; --m_currentFrame; advancedAnimation = false; } else m_currentFrame = 0; } destroyDecodedDataIfNecessary(); // We need to draw this frame if we advanced to it while not skipping, or if // while trying to skip frames we hit the last frame and thus had to stop. if (skippingFrames != advancedAnimation) imageObserver()->animationAdvanced(this); return advancedAnimation; } void BitmapImage::checkForSolidColor() { m_isSolidColor = false; m_checkedForSolidColor = true; if (frameCount() > 1) return; RefPtr frame = frameAtIndex(0); if (frame && size().width() == 1 && size().height() == 1) { SkAutoLockPixels lock(frame->bitmap()); if (!frame->bitmap().getPixels()) return; m_isSolidColor = true; m_solidColor = Color(frame->bitmap().getColor(0, 0)); } } bool BitmapImage::mayFillWithSolidColor() { if (!m_checkedForSolidColor && frameCount() > 0) { checkForSolidColor(); ASSERT(m_checkedForSolidColor); } return m_isSolidColor && !m_currentFrame; } Color BitmapImage::solidColor() const { return m_solidColor; } }