/* * Copyright (C) 2008, 2009, 2010, 2012, 2013 Apple Inc. All rights reserved. * Copyright (C) 2008 Cameron Zwarich * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CodeBlock.h" #include "BytecodeGenerator.h" #include "CallLinkStatus.h" #include "DFGCapabilities.h" #include "DFGCommon.h" #include "DFGNode.h" #include "DFGRepatch.h" #include "Debugger.h" #include "Interpreter.h" #include "JIT.h" #include "JITStubs.h" #include "JSActivation.h" #include "JSCJSValue.h" #include "JSFunction.h" #include "JSNameScope.h" #include "LowLevelInterpreter.h" #include "Operations.h" #include "ReduceWhitespace.h" #include "RepatchBuffer.h" #include "SlotVisitorInlines.h" #include #include #include #include #if ENABLE(DFG_JIT) #include "DFGOperations.h" #endif #define DUMP_CODE_BLOCK_STATISTICS 0 namespace JSC { #if ENABLE(DFG_JIT) using namespace DFG; #endif String CodeBlock::inferredName() const { switch (codeType()) { case GlobalCode: return ""; case EvalCode: return ""; case FunctionCode: return jsCast(ownerExecutable())->inferredName().string(); default: CRASH(); return String(); } } CodeBlockHash CodeBlock::hash() const { return CodeBlockHash(ownerExecutable()->source(), specializationKind()); } String CodeBlock::sourceCodeForTools() const { if (codeType() != FunctionCode) return ownerExecutable()->source().toString(); SourceProvider* provider = source(); FunctionExecutable* executable = jsCast(ownerExecutable()); UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); unsigned unlinkedStartOffset = unlinked->startOffset(); unsigned linkedStartOffset = executable->source().startOffset(); int delta = linkedStartOffset - unlinkedStartOffset; StringBuilder builder; builder.append("function "); builder.append(provider->getRange( delta + unlinked->functionStartOffset(), delta + unlinked->startOffset() + unlinked->sourceLength())); return builder.toString(); } String CodeBlock::sourceCodeOnOneLine() const { return reduceWhitespace(sourceCodeForTools()); } void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const { out.print(inferredName(), "#", hash(), ":[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType()); if (codeType() == FunctionCode) out.print(specializationKind()); if (ownerExecutable()->neverInline()) out.print(" (NeverInline)"); out.print("]"); } void CodeBlock::dump(PrintStream& out) const { dumpAssumingJITType(out, getJITType()); } static String escapeQuotes(const String& str) { String result = str; size_t pos = 0; while ((pos = result.find('\"', pos)) != notFound) { result = makeString(result.substringSharingImpl(0, pos), "\"\\\"\"", result.substringSharingImpl(pos + 1)); pos += 4; } return result; } static String valueToSourceString(ExecState* exec, JSValue val) { if (!val) return ASCIILiteral("0"); if (val.isString()) return makeString("\"", escapeQuotes(val.toString(exec)->value(exec)), "\""); return toString(val); } static CString constantName(ExecState* exec, int k, JSValue value) { return makeString(valueToSourceString(exec, value), "(@k", String::number(k - FirstConstantRegisterIndex), ")").utf8(); } static CString idName(int id0, const Identifier& ident) { return makeString(ident.string(), "(@id", String::number(id0), ")").utf8(); } CString CodeBlock::registerName(ExecState* exec, int r) const { if (r == missingThisObjectMarker()) return ""; if (isConstantRegisterIndex(r)) return constantName(exec, r, getConstant(r)); return makeString("r", String::number(r)).utf8(); } static String regexpToSourceString(RegExp* regExp) { char postfix[5] = { '/', 0, 0, 0, 0 }; int index = 1; if (regExp->global()) postfix[index++] = 'g'; if (regExp->ignoreCase()) postfix[index++] = 'i'; if (regExp->multiline()) postfix[index] = 'm'; return makeString("/", regExp->pattern(), postfix); } static CString regexpName(int re, RegExp* regexp) { return makeString(regexpToSourceString(regexp), "(@re", String::number(re), ")").utf8(); } static String pointerToSourceString(void* p) { char buffer[2 + 2 * sizeof(void*) + 1]; // 0x [two characters per byte] \0 snprintf(buffer, sizeof(buffer), "%p", p); return buffer; } NEVER_INLINE static const char* debugHookName(int debugHookID) { switch (static_cast(debugHookID)) { case DidEnterCallFrame: return "didEnterCallFrame"; case WillLeaveCallFrame: return "willLeaveCallFrame"; case WillExecuteStatement: return "willExecuteStatement"; case WillExecuteProgram: return "willExecuteProgram"; case DidExecuteProgram: return "didExecuteProgram"; case DidReachBreakpoint: return "didReachBreakpoint"; } RELEASE_ASSERT_NOT_REACHED(); return ""; } void CodeBlock::printUnaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] %s\t\t %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data()); } void CodeBlock::printBinaryOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] %s\t\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); } void CodeBlock::printConditionalJump(PrintStream& out, ExecState* exec, const Instruction*, const Instruction*& it, int location, const char* op) { int r0 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] %s\t\t %s, %d(->%d)", location, op, registerName(exec, r0).data(), offset, location + offset); } void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it) { const char* op; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_get_by_id: op = "get_by_id"; break; case op_get_by_id_out_of_line: op = "get_by_id_out_of_line"; break; case op_get_by_id_self: op = "get_by_id_self"; break; case op_get_by_id_proto: op = "get_by_id_proto"; break; case op_get_by_id_chain: op = "get_by_id_chain"; break; case op_get_by_id_getter_self: op = "get_by_id_getter_self"; break; case op_get_by_id_getter_proto: op = "get_by_id_getter_proto"; break; case op_get_by_id_getter_chain: op = "get_by_id_getter_chain"; break; case op_get_by_id_custom_self: op = "get_by_id_custom_self"; break; case op_get_by_id_custom_proto: op = "get_by_id_custom_proto"; break; case op_get_by_id_custom_chain: op = "get_by_id_custom_chain"; break; case op_get_by_id_generic: op = "get_by_id_generic"; break; case op_get_array_length: op = "array_length"; break; case op_get_string_length: op = "string_length"; break; default: RELEASE_ASSERT_NOT_REACHED(); op = 0; } int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); it += 4; // Increment up to the value profiler. } #if ENABLE(JIT) || ENABLE(LLINT) // unused in some configurations static void dumpStructure(PrintStream& out, const char* name, ExecState* exec, Structure* structure, Identifier& ident) { if (!structure) return; out.printf("%s = %p", name, structure); PropertyOffset offset = structure->get(exec->vm(), ident); if (offset != invalidOffset) out.printf(" (offset = %d)", offset); } #endif #if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings static void dumpChain(PrintStream& out, ExecState* exec, StructureChain* chain, Identifier& ident) { out.printf("chain = %p: [", chain); bool first = true; for (WriteBarrier* currentStructure = chain->head(); *currentStructure; ++currentStructure) { if (first) first = false; else out.printf(", "); dumpStructure(out, "struct", exec, currentStructure->get(), ident); } out.printf("]"); } #endif void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location) { Instruction* instruction = instructions().begin() + location; Identifier& ident = identifier(instruction[3].u.operand); UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. #if ENABLE(LLINT) if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length) out.printf(" llint(array_length)"); else if (Structure* structure = instruction[4].u.structure.get()) { out.printf(" llint("); dumpStructure(out, "struct", exec, structure, ident); out.printf(")"); } #endif #if ENABLE(JIT) if (numberOfStructureStubInfos()) { StructureStubInfo& stubInfo = getStubInfo(location); if (stubInfo.seen) { out.printf(" jit("); Structure* baseStructure = 0; Structure* prototypeStructure = 0; StructureChain* chain = 0; PolymorphicAccessStructureList* structureList = 0; int listSize = 0; switch (stubInfo.accessType) { case access_get_by_id_self: out.printf("self"); baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get(); break; case access_get_by_id_proto: out.printf("proto"); baseStructure = stubInfo.u.getByIdProto.baseObjectStructure.get(); prototypeStructure = stubInfo.u.getByIdProto.prototypeStructure.get(); break; case access_get_by_id_chain: out.printf("chain"); baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get(); chain = stubInfo.u.getByIdChain.chain.get(); break; case access_get_by_id_self_list: out.printf("self_list"); structureList = stubInfo.u.getByIdSelfList.structureList; listSize = stubInfo.u.getByIdSelfList.listSize; break; case access_get_by_id_proto_list: out.printf("proto_list"); structureList = stubInfo.u.getByIdProtoList.structureList; listSize = stubInfo.u.getByIdProtoList.listSize; break; case access_unset: out.printf("unset"); break; case access_get_by_id_generic: out.printf("generic"); break; case access_get_array_length: out.printf("array_length"); break; case access_get_string_length: out.printf("string_length"); break; default: RELEASE_ASSERT_NOT_REACHED(); break; } if (baseStructure) { out.printf(", "); dumpStructure(out, "struct", exec, baseStructure, ident); } if (prototypeStructure) { out.printf(", "); dumpStructure(out, "prototypeStruct", exec, baseStructure, ident); } if (chain) { out.printf(", "); dumpChain(out, exec, chain, ident); } if (structureList) { out.printf(", list = %p: [", structureList); for (int i = 0; i < listSize; ++i) { if (i) out.printf(", "); out.printf("("); dumpStructure(out, "base", exec, structureList->list[i].base.get(), ident); if (structureList->list[i].isChain) { if (structureList->list[i].u.chain.get()) { out.printf(", "); dumpChain(out, exec, structureList->list[i].u.chain.get(), ident); } } else { if (structureList->list[i].u.proto.get()) { out.printf(", "); dumpStructure(out, "proto", exec, structureList->list[i].u.proto.get(), ident); } } out.printf(")"); } out.printf("]"); } out.printf(")"); } } #endif } void CodeBlock::printCallOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode) { int func = (++it)->u.operand; int argCount = (++it)->u.operand; int registerOffset = (++it)->u.operand; out.printf("[%4d] %s\t %s, %d, %d", location, op, registerName(exec, func).data(), argCount, registerOffset); if (cacheDumpMode == DumpCaches) { #if ENABLE(LLINT) LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; if (callLinkInfo->lastSeenCallee) { out.printf( " llint(%p, exec %p)", callLinkInfo->lastSeenCallee.get(), callLinkInfo->lastSeenCallee->executable()); } #endif #if ENABLE(JIT) if (numberOfCallLinkInfos()) { JSFunction* target = getCallLinkInfo(location).lastSeenCallee.get(); if (target) out.printf(" jit(%p, exec %p)", target, target->executable()); } #endif out.print(" status(", CallLinkStatus::computeFor(this, location), ")"); } it += 2; } void CodeBlock::printPutByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it, const char* op) { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data()); it += 5; } void CodeBlock::printStructure(PrintStream& out, const char* name, const Instruction* vPC, int operand) { unsigned instructionOffset = vPC - instructions().begin(); out.printf(" [%4d] %s: %s\n", instructionOffset, name, pointerToSourceString(vPC[operand].u.structure).utf8().data()); } void CodeBlock::printStructures(PrintStream& out, const Instruction* vPC) { Interpreter* interpreter = m_vm->interpreter; unsigned instructionOffset = vPC - instructions().begin(); if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id)) { printStructure(out, "get_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self)) { printStructure(out, "get_by_id_self", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto)) { out.printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_proto", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { out.printf(" [%4d] %s: %s, %s, %s\n", instructionOffset, "put_by_id_transition", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structure).utf8().data(), pointerToSourceString(vPC[6].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain)) { out.printf(" [%4d] %s: %s, %s\n", instructionOffset, "get_by_id_chain", pointerToSourceString(vPC[4].u.structure).utf8().data(), pointerToSourceString(vPC[5].u.structureChain).utf8().data()); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id)) { printStructure(out, "put_by_id", vPC, 4); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { printStructure(out, "put_by_id_replace", vPC, 4); return; } // These m_instructions doesn't ref Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_call) || vPC[0].u.opcode == interpreter->getOpcode(op_call_eval) || vPC[0].u.opcode == interpreter->getOpcode(op_construct)); } void CodeBlock::dumpBytecode(PrintStream& out) { // We only use the ExecState* for things that don't actually lead to JS execution, // like converting a JSString to a String. Hence the globalExec is appropriate. ExecState* exec = m_globalObject->globalExec(); size_t instructionCount = 0; for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) ++instructionCount; out.print(*this); out.printf( ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)", static_cast(instructions().size()), static_cast(instructions().size() * sizeof(Instruction)), m_numParameters, m_numCalleeRegisters, m_numVars); if (symbolTable() && symbolTable()->captureCount()) { out.printf( "; %d captured var(s) (from r%d to r%d, inclusive)", symbolTable()->captureCount(), symbolTable()->captureStart(), symbolTable()->captureEnd() - 1); } if (usesArguments()) { out.printf( "; uses arguments, in r%d, r%d", argumentsRegister(), unmodifiedArgumentsRegister(argumentsRegister())); } if (needsFullScopeChain() && codeType() == FunctionCode) out.printf("; activation in r%d", activationRegister()); out.print("\n\nSource: ", sourceCodeOnOneLine(), "\n\n"); const Instruction* begin = instructions().begin(); const Instruction* end = instructions().end(); for (const Instruction* it = begin; it != end; ++it) dumpBytecode(out, exec, begin, it); if (!m_identifiers.isEmpty()) { out.printf("\nIdentifiers:\n"); size_t i = 0; do { out.printf(" id%u = %s\n", static_cast(i), m_identifiers[i].string().utf8().data()); ++i; } while (i != m_identifiers.size()); } if (!m_constantRegisters.isEmpty()) { out.printf("\nConstants:\n"); size_t i = 0; do { out.printf(" k%u = %s\n", static_cast(i), valueToSourceString(exec, m_constantRegisters[i].get()).utf8().data()); ++i; } while (i < m_constantRegisters.size()); } if (size_t count = m_unlinkedCode->numberOfRegExps()) { out.printf("\nm_regexps:\n"); size_t i = 0; do { out.printf(" re%u = %s\n", static_cast(i), regexpToSourceString(m_unlinkedCode->regexp(i)).utf8().data()); ++i; } while (i < count); } #if ENABLE(JIT) if (!m_structureStubInfos.isEmpty()) out.printf("\nStructures:\n"); #endif if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { out.printf("\nException Handlers:\n"); unsigned i = 0; do { out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target, m_rareData->m_exceptionHandlers[i].scopeDepth); ++i; } while (i < m_rareData->m_exceptionHandlers.size()); } if (m_rareData && !m_rareData->m_immediateSwitchJumpTables.isEmpty()) { out.printf("Immediate Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_immediateSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_immediateSwitchJumpTables[i].min, *iter); } out.printf(" }\n"); ++i; } while (i < m_rareData->m_immediateSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_characterSwitchJumpTables.isEmpty()) { out.printf("\nCharacter Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); int entry = 0; Vector::const_iterator end = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.end(); for (Vector::const_iterator iter = m_rareData->m_characterSwitchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { if (!*iter) continue; ASSERT(!((i + m_rareData->m_characterSwitchJumpTables[i].min) & ~0xFFFF)); UChar ch = static_cast(entry + m_rareData->m_characterSwitchJumpTables[i].min); out.printf("\t\t\"%s\" => %04d\n", String(&ch, 1).utf8().data(), *iter); } out.printf(" }\n"); ++i; } while (i < m_rareData->m_characterSwitchJumpTables.size()); } if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { out.printf("\nString Switch Jump Tables:\n"); unsigned i = 0; do { out.printf(" %1d = {\n", i); StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) out.printf("\t\t\"%s\" => %04d\n", String(iter->key).utf8().data(), iter->value.branchOffset); out.printf(" }\n"); ++i; } while (i < m_rareData->m_stringSwitchJumpTables.size()); } out.printf("\n"); } void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling) { if (hasPrintedProfiling) { out.print("; "); return; } out.print(" "); hasPrintedProfiling = true; } void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) { ++it; #if ENABLE(VALUE_PROFILER) CString description = it->u.profile->briefDescription(); if (!description.length()) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(description); #else UNUSED_PARAM(out); UNUSED_PARAM(hasPrintedProfiling); #endif } void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) { ++it; #if ENABLE(VALUE_PROFILER) CString description = it->u.arrayProfile->briefDescription(this); if (!description.length()) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(description); #else UNUSED_PARAM(out); UNUSED_PARAM(hasPrintedProfiling); #endif } #if ENABLE(VALUE_PROFILER) void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling) { if (!profile || !profile->m_counter) return; beginDumpProfiling(out, hasPrintedProfiling); out.print(name, profile->m_counter); } #endif void CodeBlock::dumpBytecode(PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it) { int location = it - begin; bool hasPrintedProfiling = false; switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { case op_enter: { out.printf("[%4d] enter", location); break; } case op_create_activation: { int r0 = (++it)->u.operand; out.printf("[%4d] create_activation %s", location, registerName(exec, r0).data()); break; } case op_create_arguments: { int r0 = (++it)->u.operand; out.printf("[%4d] create_arguments\t %s", location, registerName(exec, r0).data()); break; } case op_init_lazy_reg: { int r0 = (++it)->u.operand; out.printf("[%4d] init_lazy_reg\t %s", location, registerName(exec, r0).data()); break; } case op_get_callee: { int r0 = (++it)->u.operand; out.printf("[%4d] op_get_callee %s\n", location, registerName(exec, r0).data()); ++it; break; } case op_create_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; unsigned inferredInlineCapacity = (++it)->u.operand; out.printf("[%4d] create_this %s, %s, %u", location, registerName(exec, r0).data(), registerName(exec, r1).data(), inferredInlineCapacity); break; } case op_convert_this: { int r0 = (++it)->u.operand; out.printf("[%4d] convert_this\t %s", location, registerName(exec, r0).data()); ++it; // Skip value profile. break; } case op_new_object: { int r0 = (++it)->u.operand; unsigned inferredInlineCapacity = (++it)->u.operand; out.printf("[%4d] new_object\t %s, %u", location, registerName(exec, r0).data(), inferredInlineCapacity); ++it; // Skip object allocation profile. break; } case op_new_array: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; out.printf("[%4d] new_array\t %s, %s, %d", location, registerName(exec, dst).data(), registerName(exec, argv).data(), argc); ++it; // Skip array allocation profile. break; } case op_new_array_with_size: { int dst = (++it)->u.operand; int length = (++it)->u.operand; out.printf("[%4d] new_array_with_size\t %s, %s", location, registerName(exec, dst).data(), registerName(exec, length).data()); ++it; // Skip array allocation profile. break; } case op_new_array_buffer: { int dst = (++it)->u.operand; int argv = (++it)->u.operand; int argc = (++it)->u.operand; out.printf("[%4d] new_array_buffer\t %s, %d, %d", location, registerName(exec, dst).data(), argv, argc); ++it; // Skip array allocation profile. break; } case op_new_regexp: { int r0 = (++it)->u.operand; int re0 = (++it)->u.operand; out.printf("[%4d] new_regexp\t %s, ", location, registerName(exec, r0).data()); if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps()) out.printf("%s", regexpName(re0, regexp(re0)).data()); else out.printf("bad_regexp(%d)", re0); break; } case op_mov: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] mov\t\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_not: { printUnaryOp(out, exec, location, it, "not"); break; } case op_eq: { printBinaryOp(out, exec, location, it, "eq"); break; } case op_eq_null: { printUnaryOp(out, exec, location, it, "eq_null"); break; } case op_neq: { printBinaryOp(out, exec, location, it, "neq"); break; } case op_neq_null: { printUnaryOp(out, exec, location, it, "neq_null"); break; } case op_stricteq: { printBinaryOp(out, exec, location, it, "stricteq"); break; } case op_nstricteq: { printBinaryOp(out, exec, location, it, "nstricteq"); break; } case op_less: { printBinaryOp(out, exec, location, it, "less"); break; } case op_lesseq: { printBinaryOp(out, exec, location, it, "lesseq"); break; } case op_greater: { printBinaryOp(out, exec, location, it, "greater"); break; } case op_greatereq: { printBinaryOp(out, exec, location, it, "greatereq"); break; } case op_inc: { int r0 = (++it)->u.operand; out.printf("[%4d] pre_inc\t\t %s", location, registerName(exec, r0).data()); break; } case op_dec: { int r0 = (++it)->u.operand; out.printf("[%4d] pre_dec\t\t %s", location, registerName(exec, r0).data()); break; } case op_to_number: { printUnaryOp(out, exec, location, it, "to_number"); break; } case op_negate: { printUnaryOp(out, exec, location, it, "negate"); break; } case op_add: { printBinaryOp(out, exec, location, it, "add"); ++it; break; } case op_mul: { printBinaryOp(out, exec, location, it, "mul"); ++it; break; } case op_div: { printBinaryOp(out, exec, location, it, "div"); ++it; break; } case op_mod: { printBinaryOp(out, exec, location, it, "mod"); break; } case op_sub: { printBinaryOp(out, exec, location, it, "sub"); ++it; break; } case op_lshift: { printBinaryOp(out, exec, location, it, "lshift"); break; } case op_rshift: { printBinaryOp(out, exec, location, it, "rshift"); break; } case op_urshift: { printBinaryOp(out, exec, location, it, "urshift"); break; } case op_bitand: { printBinaryOp(out, exec, location, it, "bitand"); ++it; break; } case op_bitxor: { printBinaryOp(out, exec, location, it, "bitxor"); ++it; break; } case op_bitor: { printBinaryOp(out, exec, location, it, "bitor"); ++it; break; } case op_check_has_instance: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] check_has_instance\t\t %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), offset, location + offset); break; } case op_instanceof: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] instanceof\t\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_typeof: { printUnaryOp(out, exec, location, it, "typeof"); break; } case op_is_undefined: { printUnaryOp(out, exec, location, it, "is_undefined"); break; } case op_is_boolean: { printUnaryOp(out, exec, location, it, "is_boolean"); break; } case op_is_number: { printUnaryOp(out, exec, location, it, "is_number"); break; } case op_is_string: { printUnaryOp(out, exec, location, it, "is_string"); break; } case op_is_object: { printUnaryOp(out, exec, location, it, "is_object"); break; } case op_is_function: { printUnaryOp(out, exec, location, it, "is_function"); break; } case op_in: { printBinaryOp(out, exec, location, it, "in"); break; } case op_put_to_base_variable: case op_put_to_base: { int base = (++it)->u.operand; int id0 = (++it)->u.operand; int value = (++it)->u.operand; int resolveInfo = (++it)->u.operand; out.printf("[%4d] put_to_base\t %s, %s, %s, %d", location, registerName(exec, base).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, value).data(), resolveInfo); break; } case op_resolve: case op_resolve_global_property: case op_resolve_global_var: case op_resolve_scoped_var: case op_resolve_scoped_var_on_top_scope: case op_resolve_scoped_var_with_top_scope_check: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int resolveInfo = (++it)->u.operand; out.printf("[%4d] resolve\t\t %s, %s, %d", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_scoped_var: { int r0 = (++it)->u.operand; int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; out.printf("[%4d] get_scoped_var\t %s, %d, %d", location, registerName(exec, r0).data(), index, skipLevels); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_put_scoped_var: { int index = (++it)->u.operand; int skipLevels = (++it)->u.operand; int r0 = (++it)->u.operand; out.printf("[%4d] put_scoped_var\t %d, %d, %s", location, index, skipLevels, registerName(exec, r0).data()); break; } case op_init_global_const_nop: { out.printf("[%4d] init_global_const_nop\t", location); it++; it++; it++; it++; break; } case op_init_global_const: { WriteBarrier* registerPointer = (++it)->u.registerPointer; int r0 = (++it)->u.operand; out.printf("[%4d] init_global_const\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data()); it++; it++; break; } case op_init_global_const_check: { WriteBarrier* registerPointer = (++it)->u.registerPointer; int r0 = (++it)->u.operand; out.printf("[%4d] init_global_const_check\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(exec, r0).data()); it++; it++; break; } case op_resolve_base_to_global: case op_resolve_base_to_global_dynamic: case op_resolve_base_to_scope: case op_resolve_base_to_scope_with_top_scope_check: case op_resolve_base: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int isStrict = (++it)->u.operand; int resolveInfo = (++it)->u.operand; int putToBaseInfo = (++it)->u.operand; out.printf("[%4d] resolve_base%s\t %s, %s, %d, %d", location, isStrict ? "_strict" : "", registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo, putToBaseInfo); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_resolve_with_base: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; int resolveInfo = (++it)->u.operand; int putToBaseInfo = (++it)->u.operand; out.printf("[%4d] resolve_with_base %s, %s, %s, %d, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo, putToBaseInfo); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_resolve_with_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; int resolveInfo = (++it)->u.operand; out.printf("[%4d] resolve_with_this %s, %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data(), resolveInfo); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_by_id: case op_get_by_id_out_of_line: case op_get_by_id_self: case op_get_by_id_proto: case op_get_by_id_chain: case op_get_by_id_getter_self: case op_get_by_id_getter_proto: case op_get_by_id_getter_chain: case op_get_by_id_custom_self: case op_get_by_id_custom_proto: case op_get_by_id_custom_chain: case op_get_by_id_generic: case op_get_array_length: case op_get_string_length: { printGetByIdOp(out, exec, location, it); printGetByIdCacheStatus(out, exec, location); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_arguments_length: { printUnaryOp(out, exec, location, it, "get_arguments_length"); it++; break; } case op_put_by_id: { printPutByIdOp(out, exec, location, it, "put_by_id"); break; } case op_put_by_id_out_of_line: { printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line"); break; } case op_put_by_id_replace: { printPutByIdOp(out, exec, location, it, "put_by_id_replace"); break; } case op_put_by_id_transition: { printPutByIdOp(out, exec, location, it, "put_by_id_transition"); break; } case op_put_by_id_transition_direct: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct"); break; } case op_put_by_id_transition_direct_out_of_line: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line"); break; } case op_put_by_id_transition_normal: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal"); break; } case op_put_by_id_transition_normal_out_of_line: { printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line"); break; } case op_put_by_id_generic: { printPutByIdOp(out, exec, location, it, "put_by_id_generic"); break; } case op_put_getter_setter: { int r0 = (++it)->u.operand; int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] put_getter_setter\t %s, %s, %s, %s", location, registerName(exec, r0).data(), idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_del_by_id: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int id0 = (++it)->u.operand; out.printf("[%4d] del_by_id\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), idName(id0, m_identifiers[id0]).data()); break; } case op_get_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] get_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_argument_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] get_argument_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); ++it; dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_get_by_pname: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; int r3 = (++it)->u.operand; int r4 = (++it)->u.operand; int r5 = (++it)->u.operand; out.printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), registerName(exec, r4).data(), registerName(exec, r5).data()); break; } case op_put_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] put_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); dumpArrayProfiling(out, it, hasPrintedProfiling); break; } case op_del_by_val: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int r2 = (++it)->u.operand; out.printf("[%4d] del_by_val\t %s, %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data()); break; } case op_put_by_index: { int r0 = (++it)->u.operand; unsigned n0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] put_by_index\t %s, %u, %s", location, registerName(exec, r0).data(), n0, registerName(exec, r1).data()); break; } case op_jmp: { int offset = (++it)->u.operand; out.printf("[%4d] jmp\t\t %d(->%d)", location, offset, location + offset); break; } case op_jtrue: { printConditionalJump(out, exec, begin, it, location, "jtrue"); break; } case op_jfalse: { printConditionalJump(out, exec, begin, it, location, "jfalse"); break; } case op_jeq_null: { printConditionalJump(out, exec, begin, it, location, "jeq_null"); break; } case op_jneq_null: { printConditionalJump(out, exec, begin, it, location, "jneq_null"); break; } case op_jneq_ptr: { int r0 = (++it)->u.operand; Special::Pointer pointer = (++it)->u.specialPointer; int offset = (++it)->u.operand; out.printf("[%4d] jneq_ptr\t\t %s, %d (%p), %d(->%d)", location, registerName(exec, r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset); break; } case op_jless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jgreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jgreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jgreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jgreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jnless: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jnless\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jnlesseq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jngreater: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jngreater\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_jngreatereq: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int offset = (++it)->u.operand; out.printf("[%4d] jngreatereq\t\t %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), offset, location + offset); break; } case op_loop_hint: { out.printf("[%4d] loop_hint", location); break; } case op_switch_imm: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; out.printf("[%4d] switch_imm\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_switch_char: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; out.printf("[%4d] switch_char\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_switch_string: { int tableIndex = (++it)->u.operand; int defaultTarget = (++it)->u.operand; int scrutineeRegister = (++it)->u.operand; out.printf("[%4d] switch_string\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(exec, scrutineeRegister).data()); break; } case op_new_func: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; int shouldCheck = (++it)->u.operand; out.printf("[%4d] new_func\t\t %s, f%d, %s", location, registerName(exec, r0).data(), f0, shouldCheck ? "" : ""); break; } case op_new_func_exp: { int r0 = (++it)->u.operand; int f0 = (++it)->u.operand; out.printf("[%4d] new_func_exp\t %s, f%d", location, registerName(exec, r0).data(), f0); break; } case op_call: { printCallOp(out, exec, location, it, "call", DumpCaches); break; } case op_call_eval: { printCallOp(out, exec, location, it, "call_eval", DontDumpCaches); break; } case op_call_varargs: { int callee = (++it)->u.operand; int thisValue = (++it)->u.operand; int arguments = (++it)->u.operand; int firstFreeRegister = (++it)->u.operand; out.printf("[%4d] call_varargs\t %s, %s, %s, %d", location, registerName(exec, callee).data(), registerName(exec, thisValue).data(), registerName(exec, arguments).data(), firstFreeRegister); break; } case op_tear_off_activation: { int r0 = (++it)->u.operand; out.printf("[%4d] tear_off_activation\t %s", location, registerName(exec, r0).data()); break; } case op_tear_off_arguments: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] tear_off_arguments %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_ret: { int r0 = (++it)->u.operand; out.printf("[%4d] ret\t\t %s", location, registerName(exec, r0).data()); break; } case op_call_put_result: { int r0 = (++it)->u.operand; out.printf("[%4d] call_put_result\t\t %s", location, registerName(exec, r0).data()); dumpValueProfiling(out, it, hasPrintedProfiling); break; } case op_ret_object_or_this: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] constructor_ret\t\t %s %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_construct: { printCallOp(out, exec, location, it, "construct", DumpCaches); break; } case op_strcat: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; int count = (++it)->u.operand; out.printf("[%4d] strcat\t\t %s, %s, %d", location, registerName(exec, r0).data(), registerName(exec, r1).data(), count); break; } case op_to_primitive: { int r0 = (++it)->u.operand; int r1 = (++it)->u.operand; out.printf("[%4d] to_primitive\t %s, %s", location, registerName(exec, r0).data(), registerName(exec, r1).data()); break; } case op_get_pnames: { int r0 = it[1].u.operand; int r1 = it[2].u.operand; int r2 = it[3].u.operand; int r3 = it[4].u.operand; int offset = it[5].u.operand; out.printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)", location, registerName(exec, r0).data(), registerName(exec, r1).data(), registerName(exec, r2).data(), registerName(exec, r3).data(), offset, location + offset); it += OPCODE_LENGTH(op_get_pnames) - 1; break; } case op_next_pname: { int dest = it[1].u.operand; int base = it[2].u.operand; int i = it[3].u.operand; int size = it[4].u.operand; int iter = it[5].u.operand; int offset = it[6].u.operand; out.printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)", location, registerName(exec, dest).data(), registerName(exec, base).data(), registerName(exec, i).data(), registerName(exec, size).data(), registerName(exec, iter).data(), offset, location + offset); it += OPCODE_LENGTH(op_next_pname) - 1; break; } case op_push_with_scope: { int r0 = (++it)->u.operand; out.printf("[%4d] push_with_scope\t %s", location, registerName(exec, r0).data()); break; } case op_pop_scope: { out.printf("[%4d] pop_scope", location); break; } case op_push_name_scope: { int id0 = (++it)->u.operand; int r1 = (++it)->u.operand; unsigned attributes = (++it)->u.operand; out.printf("[%4d] push_name_scope \t%s, %s, %u", location, idName(id0, m_identifiers[id0]).data(), registerName(exec, r1).data(), attributes); break; } case op_catch: { int r0 = (++it)->u.operand; out.printf("[%4d] catch\t\t %s", location, registerName(exec, r0).data()); break; } case op_throw: { int r0 = (++it)->u.operand; out.printf("[%4d] throw\t\t %s", location, registerName(exec, r0).data()); break; } case op_throw_static_error: { int k0 = (++it)->u.operand; int k1 = (++it)->u.operand; out.printf("[%4d] throw_static_error\t %s, %s", location, constantName(exec, k0, getConstant(k0)).data(), k1 ? "true" : "false"); break; } case op_debug: { int debugHookID = (++it)->u.operand; int firstLine = (++it)->u.operand; int lastLine = (++it)->u.operand; int column = (++it)->u.operand; out.printf("[%4d] debug\t\t %s, %d, %d, %d", location, debugHookName(debugHookID), firstLine, lastLine, column); break; } case op_profile_will_call: { int function = (++it)->u.operand; out.printf("[%4d] profile_will_call %s", location, registerName(exec, function).data()); break; } case op_profile_did_call: { int function = (++it)->u.operand; out.printf("[%4d] profile_did_call\t %s", location, registerName(exec, function).data()); break; } case op_end: { int r0 = (++it)->u.operand; out.printf("[%4d] end\t\t %s", location, registerName(exec, r0).data()); break; } #if ENABLE(LLINT_C_LOOP) default: RELEASE_ASSERT_NOT_REACHED(); #endif } #if ENABLE(VALUE_PROFILER) dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling); dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling); #endif #if ENABLE(DFG_JIT) Vector exitSites = exitProfile().exitSitesFor(location); if (!exitSites.isEmpty()) { out.print(" !! frequent exits: "); CommaPrinter comma; for (unsigned i = 0; i < exitSites.size(); ++i) out.print(comma, exitSites[i].kind()); } #else // ENABLE(DFG_JIT) UNUSED_PARAM(location); #endif // ENABLE(DFG_JIT) out.print("\n"); } void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset) { ExecState* exec = m_globalObject->globalExec(); const Instruction* it = instructions().begin() + bytecodeOffset; dumpBytecode(out, exec, instructions().begin(), it); } #if DUMP_CODE_BLOCK_STATISTICS static HashSet liveCodeBlockSet; #endif #define FOR_EACH_MEMBER_VECTOR(macro) \ macro(instructions) \ macro(globalResolveInfos) \ macro(structureStubInfos) \ macro(callLinkInfos) \ macro(linkedCallerList) \ macro(identifiers) \ macro(functionExpressions) \ macro(constantRegisters) #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ macro(regexps) \ macro(functions) \ macro(exceptionHandlers) \ macro(immediateSwitchJumpTables) \ macro(characterSwitchJumpTables) \ macro(stringSwitchJumpTables) \ macro(evalCodeCache) \ macro(expressionInfo) \ macro(lineInfo) \ macro(callReturnIndexVector) template static size_t sizeInBytes(const Vector& vector) { return vector.capacity() * sizeof(T); } void CodeBlock::dumpStatistics() { #if DUMP_CODE_BLOCK_STATISTICS #define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0; FOR_EACH_MEMBER_VECTOR(DEFINE_VARS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS) #undef DEFINE_VARS // Non-vector data members size_t evalCodeCacheIsNotEmpty = 0; size_t symbolTableIsNotEmpty = 0; size_t symbolTableTotalSize = 0; size_t hasRareData = 0; size_t isFunctionCode = 0; size_t isGlobalCode = 0; size_t isEvalCode = 0; HashSet::const_iterator end = liveCodeBlockSet.end(); for (HashSet::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) { CodeBlock* codeBlock = *it; #define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); } FOR_EACH_MEMBER_VECTOR(GET_STATS) #undef GET_STATS if (codeBlock->symbolTable() && !codeBlock->symbolTable()->isEmpty()) { symbolTableIsNotEmpty++; symbolTableTotalSize += (codeBlock->symbolTable()->capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType))); } if (codeBlock->m_rareData) { hasRareData++; #define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); } FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS) #undef GET_STATS if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty()) evalCodeCacheIsNotEmpty++; } switch (codeBlock->codeType()) { case FunctionCode: ++isFunctionCode; break; case GlobalCode: ++isGlobalCode; break; case EvalCode: ++isEvalCode; break; } } size_t totalSize = 0; #define GET_TOTAL_SIZE(name) totalSize += name##TotalSize; FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE) FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE) #undef GET_TOTAL_SIZE totalSize += symbolTableTotalSize; totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock)); dataLogF("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size()); dataLogF("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock)); dataLogF("Size of all CodeBlocks: %zu\n", totalSize); dataLogF("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size()); dataLogF("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast(isFunctionCode) * 100.0 / liveCodeBlockSet.size()); dataLogF("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast(isGlobalCode) * 100.0 / liveCodeBlockSet.size()); dataLogF("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast(isEvalCode) * 100.0 / liveCodeBlockSet.size()); dataLogF("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast(hasRareData) * 100.0 / liveCodeBlockSet.size()); #define PRINT_STATS(name) dataLogF("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); dataLogF("Size of all " #name ": %zu\n", name##TotalSize); FOR_EACH_MEMBER_VECTOR(PRINT_STATS) FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS) #undef PRINT_STATS dataLogF("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty); dataLogF("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty); dataLogF("Size of all symbolTables: %zu\n", symbolTableTotalSize); #else dataLogF("Dumping CodeBlock statistics is not enabled.\n"); #endif } CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other) : m_globalObject(other.m_globalObject) , m_heap(other.m_heap) , m_numCalleeRegisters(other.m_numCalleeRegisters) , m_numVars(other.m_numVars) , m_isConstructor(other.m_isConstructor) , m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get()) , m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) , m_vm(other.m_vm) , m_instructions(other.m_instructions) , m_thisRegister(other.m_thisRegister) , m_argumentsRegister(other.m_argumentsRegister) , m_activationRegister(other.m_activationRegister) , m_isStrictMode(other.m_isStrictMode) , m_needsActivation(other.m_needsActivation) , m_source(other.m_source) , m_sourceOffset(other.m_sourceOffset) , m_firstLineColumnOffset(other.m_firstLineColumnOffset) , m_codeType(other.m_codeType) , m_identifiers(other.m_identifiers) , m_constantRegisters(other.m_constantRegisters) , m_functionDecls(other.m_functionDecls) , m_functionExprs(other.m_functionExprs) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) , m_resolveOperations(other.m_resolveOperations) , m_putToBaseOperations(other.m_putToBaseOperations) #if ENABLE(JIT) , m_canCompileWithDFGState(DFG::CapabilityLevelNotSet) #endif { setNumParameters(other.numParameters()); optimizeAfterWarmUp(); jitAfterWarmUp(); if (other.m_rareData) { createRareDataIfNecessary(); m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; m_rareData->m_immediateSwitchJumpTables = other.m_rareData->m_immediateSwitchJumpTables; m_rareData->m_characterSwitchJumpTables = other.m_rareData->m_characterSwitchJumpTables; m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; } } CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, unsigned baseScopeDepth, PassRefPtr sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset, PassOwnPtr alternative) : m_globalObject(globalObject->vm(), ownerExecutable, globalObject) , m_heap(&m_globalObject->vm().heap) , m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters) , m_numVars(unlinkedCodeBlock->m_numVars) , m_isConstructor(unlinkedCodeBlock->isConstructor()) , m_unlinkedCode(globalObject->vm(), ownerExecutable, unlinkedCodeBlock) , m_ownerExecutable(globalObject->vm(), ownerExecutable, ownerExecutable) , m_vm(unlinkedCodeBlock->vm()) , m_thisRegister(unlinkedCodeBlock->thisRegister()) , m_argumentsRegister(unlinkedCodeBlock->argumentsRegister()) , m_activationRegister(unlinkedCodeBlock->activationRegister()) , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) , m_needsActivation(unlinkedCodeBlock->needsFullScopeChain()) , m_source(sourceProvider) , m_sourceOffset(sourceOffset) , m_firstLineColumnOffset(firstLineColumnOffset) , m_codeType(unlinkedCodeBlock->codeType()) , m_alternative(alternative) , m_osrExitCounter(0) , m_optimizationDelayCounter(0) , m_reoptimizationRetryCounter(0) { m_vm->startedCompiling(this); ASSERT(m_source); setNumParameters(unlinkedCodeBlock->numParameters()); #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.add(this); #endif setIdentifiers(unlinkedCodeBlock->identifiers()); setConstantRegisters(unlinkedCodeBlock->constantRegisters()); if (unlinkedCodeBlock->usesGlobalObject()) m_constantRegisters[unlinkedCodeBlock->globalObjectRegister()].set(*m_vm, ownerExecutable, globalObject); m_functionDecls.grow(unlinkedCodeBlock->numberOfFunctionDecls()); for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); unsigned lineCount = unlinkedExecutable->lineCount(); unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset(); unsigned startColumn = unlinkedExecutable->functionStartColumn(); startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn()); unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset(); unsigned sourceLength = unlinkedExecutable->sourceLength(); SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn); FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn); m_functionDecls[i].set(*m_vm, ownerExecutable, executable); } m_functionExprs.grow(unlinkedCodeBlock->numberOfFunctionExprs()); for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); unsigned lineCount = unlinkedExecutable->lineCount(); unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset(); unsigned startColumn = unlinkedExecutable->functionStartColumn(); startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn()); unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset(); unsigned sourceLength = unlinkedExecutable->sourceLength(); SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn); FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn); m_functionExprs[i].set(*m_vm, ownerExecutable, executable); } if (unlinkedCodeBlock->hasRareData()) { createRareDataIfNecessary(); if (size_t count = unlinkedCodeBlock->constantBufferCount()) { m_rareData->m_constantBuffers.grow(count); for (size_t i = 0; i < count; i++) { const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i); m_rareData->m_constantBuffers[i] = buffer; } } if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { m_rareData->m_exceptionHandlers.grow(count); for (size_t i = 0; i < count; i++) { const UnlinkedHandlerInfo& handler = unlinkedCodeBlock->exceptionHandler(i); m_rareData->m_exceptionHandlers[i].start = handler.start; m_rareData->m_exceptionHandlers[i].end = handler.end; m_rareData->m_exceptionHandlers[i].target = handler.target; m_rareData->m_exceptionHandlers[i].scopeDepth = handler.scopeDepth + baseScopeDepth; #if ENABLE(JIT) && ENABLE(LLINT) m_rareData->m_exceptionHandlers[i].nativeCode = CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(llint_op_catch))); #endif } } if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { m_rareData->m_stringSwitchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); for (; ptr != end; ++ptr) { OffsetLocation offset; offset.branchOffset = ptr->value; m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); } } } if (size_t count = unlinkedCodeBlock->numberOfImmediateSwitchJumpTables()) { m_rareData->m_immediateSwitchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->immediateSwitchJumpTable(i); SimpleJumpTable& destTable = m_rareData->m_immediateSwitchJumpTables[i]; destTable.branchOffsets = sourceTable.branchOffsets; destTable.min = sourceTable.min; } } if (size_t count = unlinkedCodeBlock->numberOfCharacterSwitchJumpTables()) { m_rareData->m_characterSwitchJumpTables.grow(count); for (size_t i = 0; i < count; i++) { UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->characterSwitchJumpTable(i); SimpleJumpTable& destTable = m_rareData->m_characterSwitchJumpTables[i]; destTable.branchOffsets = sourceTable.branchOffsets; destTable.min = sourceTable.min; } } } // Allocate metadata buffers for the bytecode #if ENABLE(LLINT) if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) m_llintCallLinkInfos.grow(size); #endif #if ENABLE(DFG_JIT) if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) m_arrayProfiles.grow(size); if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) m_arrayAllocationProfiles.grow(size); if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) m_valueProfiles.grow(size); #endif if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) m_objectAllocationProfiles.grow(size); if (size_t size = unlinkedCodeBlock->numberOfResolveOperations()) m_resolveOperations.grow(size); if (size_t putToBaseCount = unlinkedCodeBlock->numberOfPutToBaseOperations()) { m_putToBaseOperations.reserveInitialCapacity(putToBaseCount); for (size_t i = 0; i < putToBaseCount; ++i) m_putToBaseOperations.uncheckedAppend(PutToBaseOperation(isStrictMode())); } // Copy and translate the UnlinkedInstructions size_t instructionCount = unlinkedCodeBlock->instructions().size(); UnlinkedInstruction* pc = unlinkedCodeBlock->instructions().data(); Vector instructions(instructionCount); for (size_t i = 0; i < unlinkedCodeBlock->instructions().size(); ) { unsigned opLength = opcodeLength(pc[i].u.opcode); instructions[i] = vm()->interpreter->getOpcode(pc[i].u.opcode); for (size_t j = 1; j < opLength; ++j) { if (sizeof(int32_t) != sizeof(intptr_t)) instructions[i + j].u.pointer = 0; instructions[i + j].u.operand = pc[i + j].u.operand; } switch (pc[i].u.opcode) { #if ENABLE(DFG_JIT) case op_get_by_val: case op_get_argument_by_val: { int arrayProfileIndex = pc[i + opLength - 2].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; // fallthrough } case op_convert_this: case op_get_by_id: case op_call_put_result: case op_get_callee: { ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; break; } case op_put_by_val: { int arrayProfileIndex = pc[i + opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; break; } case op_new_array: case op_new_array_buffer: case op_new_array_with_size: { int arrayAllocationProfileIndex = pc[i + opLength - 1].u.operand; instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; break; } #endif case op_resolve_base: case op_resolve_base_to_global: case op_resolve_base_to_global_dynamic: case op_resolve_base_to_scope: case op_resolve_base_to_scope_with_top_scope_check: { instructions[i + 4].u.resolveOperations = &m_resolveOperations[pc[i + 4].u.operand]; instructions[i + 5].u.putToBaseOperation = &m_putToBaseOperations[pc[i + 5].u.operand]; #if ENABLE(DFG_JIT) ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; ASSERT((opLength - 1) > 5); instructions[i + opLength - 1] = profile; #endif break; } case op_resolve_global_property: case op_resolve_global_var: case op_resolve_scoped_var: case op_resolve_scoped_var_on_top_scope: case op_resolve_scoped_var_with_top_scope_check: { instructions[i + 3].u.resolveOperations = &m_resolveOperations[pc[i + 3].u.operand]; break; } case op_put_to_base: case op_put_to_base_variable: { instructions[i + 4].u.putToBaseOperation = &m_putToBaseOperations[pc[i + 4].u.operand]; break; } case op_resolve: { #if ENABLE(DFG_JIT) ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; ASSERT((opLength - 1) > 3); instructions[i + opLength - 1] = profile; #endif instructions[i + 3].u.resolveOperations = &m_resolveOperations[pc[i + 3].u.operand]; break; } case op_resolve_with_base: case op_resolve_with_this: { instructions[i + 4].u.resolveOperations = &m_resolveOperations[pc[i + 4].u.operand]; if (pc[i].u.opcode != op_resolve_with_this) instructions[i + 5].u.putToBaseOperation = &m_putToBaseOperations[pc[i + 5].u.operand]; #if ENABLE(DFG_JIT) ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; #endif break; } case op_new_object: { int objectAllocationProfileIndex = pc[i + opLength - 1].u.operand; ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; int inferredInlineCapacity = pc[i + opLength - 2].u.operand; instructions[i + opLength - 1] = objectAllocationProfile; objectAllocationProfile->initialize(*vm(), m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity); break; } case op_get_scoped_var: { #if ENABLE(DFG_JIT) ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; ASSERT(profile->m_bytecodeOffset == -1); profile->m_bytecodeOffset = i; instructions[i + opLength - 1] = profile; #endif break; } case op_call: case op_call_eval: { #if ENABLE(DFG_JIT) int arrayProfileIndex = pc[i + opLength - 1].u.operand; m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; #endif #if ENABLE(LLINT) instructions[i + 4] = &m_llintCallLinkInfos[pc[i + 4].u.operand]; #endif break; } case op_construct: #if ENABLE(LLINT) instructions[i + 4] = &m_llintCallLinkInfos[pc[i + 4].u.operand]; #endif break; case op_get_by_id_out_of_line: case op_get_by_id_self: case op_get_by_id_proto: case op_get_by_id_chain: case op_get_by_id_getter_self: case op_get_by_id_getter_proto: case op_get_by_id_getter_chain: case op_get_by_id_custom_self: case op_get_by_id_custom_proto: case op_get_by_id_custom_chain: case op_get_by_id_generic: case op_get_array_length: case op_get_string_length: CRASH(); case op_init_global_const_nop: { ASSERT(codeType() == GlobalCode); Identifier ident = identifier(pc[i + 4].u.operand); SymbolTableEntry entry = globalObject->symbolTable()->get(ident.impl()); if (entry.isNull()) break; if (entry.couldBeWatched()) { instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const_check); instructions[i + 1] = &globalObject->registerAt(entry.getIndex()); instructions[i + 3] = entry.addressOfIsWatched(); break; } instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const); instructions[i + 1] = &globalObject->registerAt(entry.getIndex()); break; } case op_debug: { instructions[i + 4] = columnNumberForBytecodeOffset(i); break; } default: break; } i += opLength; } m_instructions = WTF::RefCountedArray(instructions); // Set optimization thresholds only after m_instructions is initialized, since these // rely on the instruction count (and are in theory permitted to also inspect the // instruction stream to more accurate assess the cost of tier-up). optimizeAfterWarmUp(); jitAfterWarmUp(); if (Options::dumpGeneratedBytecodes()) dumpBytecode(); m_vm->finishedCompiling(this); } CodeBlock::~CodeBlock() { if (m_vm->m_perBytecodeProfiler) m_vm->m_perBytecodeProfiler->notifyDestruction(this); #if ENABLE(DFG_JIT) // Remove myself from the set of DFG code blocks. Note that I may not be in this set // (because I'm not a DFG code block), in which case this is a no-op anyway. m_vm->heap.m_dfgCodeBlocks.m_set.remove(this); #endif #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif #if ENABLE(LLINT) while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->remove(); #endif // ENABLE(LLINT) #if ENABLE(JIT) // We may be destroyed before any CodeBlocks that refer to us are destroyed. // Consider that two CodeBlocks become unreachable at the same time. There // is no guarantee about the order in which the CodeBlocks are destroyed. // So, if we don't remove incoming calls, and get destroyed before the // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's // destructor will try to remove nodes from our (no longer valid) linked list. while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->remove(); // Note that our outgoing calls will be removed from other CodeBlocks' // m_incomingCalls linked lists through the execution of the ~CallLinkInfo // destructors. for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) m_structureStubInfos[i].deref(); #endif // ENABLE(JIT) #if DUMP_CODE_BLOCK_STATISTICS liveCodeBlockSet.remove(this); #endif } void CodeBlock::setNumParameters(int newValue) { m_numParameters = newValue; #if ENABLE(VALUE_PROFILER) m_argumentValueProfiles.resizeToFit(newValue); #endif } void CodeBlock::visitStructures(SlotVisitor& visitor, Instruction* vPC) { Interpreter* interpreter = m_vm->interpreter; if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) && vPC[4].u.structure) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_self) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_self)) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_proto) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_proto)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_getter_chain) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_custom_chain)) { visitor.append(&vPC[4].u.structure); if (vPC[5].u.structureChain) visitor.append(&vPC[5].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_transition)) { visitor.append(&vPC[4].u.structure); visitor.append(&vPC[5].u.structure); if (vPC[6].u.structureChain) visitor.append(&vPC[6].u.structureChain); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) && vPC[4].u.structure) { visitor.append(&vPC[4].u.structure); return; } if (vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_replace)) { visitor.append(&vPC[4].u.structure); return; } // These instructions don't ref their Structures. ASSERT(vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id) || vPC[0].u.opcode == interpreter->getOpcode(op_get_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_put_by_id_generic) || vPC[0].u.opcode == interpreter->getOpcode(op_get_array_length) || vPC[0].u.opcode == interpreter->getOpcode(op_get_string_length)); } void EvalCodeCache::visitAggregate(SlotVisitor& visitor) { EvalCacheMap::iterator end = m_cacheMap.end(); for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) visitor.append(&ptr->value); } void CodeBlock::visitAggregate(SlotVisitor& visitor) { #if ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT) if (!!m_dfgData) { // I may be asked to scan myself more than once, and it may even happen concurrently. // To this end, use a CAS loop to check if I've been called already. Only one thread // may proceed past this point - whichever one wins the CAS race. unsigned oldValue; do { oldValue = m_dfgData->visitAggregateHasBeenCalled; if (oldValue) { // Looks like someone else won! Return immediately to ensure that we don't // trace the same CodeBlock concurrently. Doing so is hazardous since we will // be mutating the state of ValueProfiles, which contain JSValues, which can // have word-tearing on 32-bit, leading to awesome timing-dependent crashes // that are nearly impossible to track down. // Also note that it must be safe to return early as soon as we see the // value true (well, (unsigned)1), since once a GC thread is in this method // and has won the CAS race (i.e. was responsible for setting the value true) // it will definitely complete the rest of this method before declaring // termination. return; } } while (!WTF::weakCompareAndSwap(&m_dfgData->visitAggregateHasBeenCalled, 0, 1)); } #endif // ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT) if (!!m_alternative) m_alternative->visitAggregate(visitor); visitor.append(&m_unlinkedCode); // There are three things that may use unconditional finalizers: lazy bytecode freeing, // inline cache clearing, and jettisoning. The probability of us wanting to do at // least one of those things is probably quite close to 1. So we add one no matter what // and when it runs, it figures out whether it has any work to do. visitor.addUnconditionalFinalizer(this); if (shouldImmediatelyAssumeLivenessDuringScan()) { // This code block is live, so scan all references strongly and return. stronglyVisitStrongReferences(visitor); stronglyVisitWeakReferences(visitor); return; } #if ENABLE(DFG_JIT) // We get here if we're live in the sense that our owner executable is live, // but we're not yet live for sure in another sense: we may yet decide that this // code block should be jettisoned based on its outgoing weak references being // stale. Set a flag to indicate that we're still assuming that we're dead, and // perform one round of determining if we're live. The GC may determine, based on // either us marking additional objects, or by other objects being marked for // other reasons, that this iteration should run again; it will notify us of this // decision by calling harvestWeakReferences(). m_dfgData->livenessHasBeenProved = false; m_dfgData->allTransitionsHaveBeenMarked = false; performTracingFixpointIteration(visitor); // GC doesn't have enough information yet for us to decide whether to keep our DFG // data, so we need to register a handler to run again at the end of GC, when more // information is available. if (!(m_dfgData->livenessHasBeenProved && m_dfgData->allTransitionsHaveBeenMarked)) visitor.addWeakReferenceHarvester(this); #else // ENABLE(DFG_JIT) RELEASE_ASSERT_NOT_REACHED(); #endif // ENABLE(DFG_JIT) } void CodeBlock::performTracingFixpointIteration(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) // Evaluate our weak reference transitions, if there are still some to evaluate. if (!m_dfgData->allTransitionsHaveBeenMarked) { bool allAreMarkedSoFar = true; for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { if ((!m_dfgData->transitions[i].m_codeOrigin || Heap::isMarked(m_dfgData->transitions[i].m_codeOrigin.get())) && Heap::isMarked(m_dfgData->transitions[i].m_from.get())) { // If the following three things are live, then the target of the // transition is also live: // - This code block. We know it's live already because otherwise // we wouldn't be scanning ourselves. // - The code origin of the transition. Transitions may arise from // code that was inlined. They are not relevant if the user's // object that is required for the inlinee to run is no longer // live. // - The source of the transition. The transition checks if some // heap location holds the source, and if so, stores the target. // Hence the source must be live for the transition to be live. visitor.append(&m_dfgData->transitions[i].m_to); } else allAreMarkedSoFar = false; } if (allAreMarkedSoFar) m_dfgData->allTransitionsHaveBeenMarked = true; } // Check if we have any remaining work to do. if (m_dfgData->livenessHasBeenProved) return; // Now check all of our weak references. If all of them are live, then we // have proved liveness and so we scan our strong references. If at end of // GC we still have not proved liveness, then this code block is toast. bool allAreLiveSoFar = true; for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) { if (!Heap::isMarked(m_dfgData->weakReferences[i].get())) { allAreLiveSoFar = false; break; } } // If some weak references are dead, then this fixpoint iteration was // unsuccessful. if (!allAreLiveSoFar) return; // All weak references are live. Record this information so we don't // come back here again, and scan the strong references. m_dfgData->livenessHasBeenProved = true; stronglyVisitStrongReferences(visitor); #endif // ENABLE(DFG_JIT) } void CodeBlock::visitWeakReferences(SlotVisitor& visitor) { performTracingFixpointIteration(visitor); } #if ENABLE(JIT_VERBOSE_OSR) static const bool verboseUnlinking = true; #else static const bool verboseUnlinking = false; #endif void CodeBlock::finalizeUnconditionally() { #if ENABLE(LLINT) Interpreter* interpreter = m_vm->interpreter; if (!!numberOfInstructions()) { const Vector& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { case op_get_by_id: case op_get_by_id_out_of_line: case op_put_by_id: case op_put_by_id_out_of_line: if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get())) break; if (verboseUnlinking) dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get()); curInstruction[4].u.structure.clear(); curInstruction[5].u.operand = 0; break; case op_put_by_id_transition_direct: case op_put_by_id_transition_normal: case op_put_by_id_transition_direct_out_of_line: case op_put_by_id_transition_normal_out_of_line: if (Heap::isMarked(curInstruction[4].u.structure.get()) && Heap::isMarked(curInstruction[6].u.structure.get()) && Heap::isMarked(curInstruction[7].u.structureChain.get())) break; if (verboseUnlinking) { dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n", curInstruction[4].u.structure.get(), curInstruction[6].u.structure.get(), curInstruction[7].u.structureChain.get()); } curInstruction[4].u.structure.clear(); curInstruction[6].u.structure.clear(); curInstruction[7].u.structureChain.clear(); curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id); break; case op_get_array_length: break; default: RELEASE_ASSERT_NOT_REACHED(); } } for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { if (verboseUnlinking) dataLog("Clearing LLInt call from ", *this, "\n"); m_llintCallLinkInfos[i].unlink(); } if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) m_llintCallLinkInfos[i].lastSeenCallee.clear(); } } #endif // ENABLE(LLINT) #if ENABLE(DFG_JIT) // Check if we're not live. If we are, then jettison. if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_dfgData->livenessHasBeenProved)) { if (verboseUnlinking) dataLog(*this, " has dead weak references, jettisoning during GC.\n"); if (DFG::shouldShowDisassembly()) { dataLog(*this, " will be jettisoned because of the following dead references:\n"); for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { WeakReferenceTransition& transition = m_dfgData->transitions[i]; JSCell* origin = transition.m_codeOrigin.get(); JSCell* from = transition.m_from.get(); JSCell* to = transition.m_to.get(); if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) continue; dataLog(" Transition under ", JSValue(origin), ", ", JSValue(from), " -> ", JSValue(to), ".\n"); } for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) { JSCell* weak = m_dfgData->weakReferences[i].get(); if (Heap::isMarked(weak)) continue; dataLog(" Weak reference ", JSValue(weak), ".\n"); } } jettison(); return; } #endif // ENABLE(DFG_JIT) for (size_t size = m_putToBaseOperations.size(), i = 0; i < size; ++i) { if (m_putToBaseOperations[i].m_structure && !Heap::isMarked(m_putToBaseOperations[i].m_structure.get())) { if (verboseUnlinking) dataLog("Clearing putToBase info in ", *this, "\n"); m_putToBaseOperations[i].m_structure.clear(); } } for (size_t size = m_resolveOperations.size(), i = 0; i < size; ++i) { if (m_resolveOperations[i].isEmpty()) continue; #ifndef NDEBUG for (size_t insnSize = m_resolveOperations[i].size() - 1, k = 0; k < insnSize; ++k) ASSERT(!m_resolveOperations[i][k].m_structure); #endif m_resolveOperations[i].last().m_structure.clear(); if (m_resolveOperations[i].last().m_structure && !Heap::isMarked(m_resolveOperations[i].last().m_structure.get())) { if (verboseUnlinking) dataLog("Clearing resolve info in ", *this, "\n"); m_resolveOperations[i].last().m_structure.clear(); } } #if ENABLE(JIT) // Handle inline caches. if (!!getJITCode()) { RepatchBuffer repatchBuffer(this); for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) { if (callLinkInfo(i).isLinked()) { if (ClosureCallStubRoutine* stub = callLinkInfo(i).stub.get()) { if (!Heap::isMarked(stub->structure()) || !Heap::isMarked(stub->executable())) { if (verboseUnlinking) { dataLog( "Clearing closure call from ", *this, " to ", stub->executable()->hashFor(callLinkInfo(i).specializationKind()), ", stub routine ", RawPointer(stub), ".\n"); } callLinkInfo(i).unlink(*m_vm, repatchBuffer); } } else if (!Heap::isMarked(callLinkInfo(i).callee.get())) { if (verboseUnlinking) { dataLog( "Clearing call from ", *this, " to ", RawPointer(callLinkInfo(i).callee.get()), " (", callLinkInfo(i).callee.get()->executable()->hashFor( callLinkInfo(i).specializationKind()), ").\n"); } callLinkInfo(i).unlink(*m_vm, repatchBuffer); } } if (!!callLinkInfo(i).lastSeenCallee && !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get())) callLinkInfo(i).lastSeenCallee.clear(); } for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) { StructureStubInfo& stubInfo = m_structureStubInfos[i]; if (stubInfo.visitWeakReferences()) continue; resetStubDuringGCInternal(repatchBuffer, stubInfo); } } #endif } #if ENABLE(JIT) void CodeBlock::resetStub(StructureStubInfo& stubInfo) { if (stubInfo.accessType == access_unset) return; RepatchBuffer repatchBuffer(this); resetStubInternal(repatchBuffer, stubInfo); } void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) { AccessType accessType = static_cast(stubInfo.accessType); if (verboseUnlinking) dataLog("Clearing structure cache (kind ", static_cast(stubInfo.accessType), ") in ", *this, ".\n"); if (isGetByIdAccess(accessType)) { if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetGetByID(repatchBuffer, stubInfo); else JIT::resetPatchGetById(repatchBuffer, &stubInfo); } else { ASSERT(isPutByIdAccess(accessType)); if (getJITCode().jitType() == JITCode::DFGJIT) DFG::dfgResetPutByID(repatchBuffer, stubInfo); else JIT::resetPatchPutById(repatchBuffer, &stubInfo); } stubInfo.reset(); } void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) { resetStubInternal(repatchBuffer, stubInfo); stubInfo.resetByGC = true; } #endif void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) { visitor.append(&m_globalObject); visitor.append(&m_ownerExecutable); visitor.append(&m_unlinkedCode); if (m_rareData) m_rareData->m_evalCodeCache.visitAggregate(visitor); visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); for (size_t i = 0; i < m_functionExprs.size(); ++i) visitor.append(&m_functionExprs[i]); for (size_t i = 0; i < m_functionDecls.size(); ++i) visitor.append(&m_functionDecls[i]); for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i) m_objectAllocationProfiles[i].visitAggregate(visitor); updateAllPredictions(Collection); } void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) { UNUSED_PARAM(visitor); #if ENABLE(DFG_JIT) if (!m_dfgData) return; for (unsigned i = 0; i < m_dfgData->transitions.size(); ++i) { if (!!m_dfgData->transitions[i].m_codeOrigin) visitor.append(&m_dfgData->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. visitor.append(&m_dfgData->transitions[i].m_from); visitor.append(&m_dfgData->transitions[i].m_to); } for (unsigned i = 0; i < m_dfgData->weakReferences.size(); ++i) visitor.append(&m_dfgData->weakReferences[i]); #endif } HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) { RELEASE_ASSERT(bytecodeOffset < instructions().size()); if (!m_rareData) return 0; Vector& exceptionHandlers = m_rareData->m_exceptionHandlers; for (size_t i = 0; i < exceptionHandlers.size(); ++i) { // Handlers are ordered innermost first, so the first handler we encounter // that contains the source address is the correct handler to use. if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end > bytecodeOffset) return &exceptionHandlers[i]; } return 0; } unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) { RELEASE_ASSERT(bytecodeOffset < instructions().size()); return m_ownerExecutable->lineNo() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); } unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) { int divot; int startOffset; int endOffset; unsigned line; unsigned column; expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); return column; } void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) { m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); divot += m_sourceOffset; column += line ? 1 : firstLineColumnOffset(); line += m_ownerExecutable->lineNo(); } void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) { #if ENABLE(LLINT) m_llintCallLinkInfos.shrinkToFit(); #endif #if ENABLE(JIT) m_structureStubInfos.shrinkToFit(); m_callLinkInfos.shrinkToFit(); #endif #if ENABLE(VALUE_PROFILER) m_rareCaseProfiles.shrinkToFit(); m_specialFastCaseProfiles.shrinkToFit(); #endif if (shrinkMode == EarlyShrink) { m_identifiers.shrinkToFit(); m_functionDecls.shrinkToFit(); m_functionExprs.shrinkToFit(); m_constantRegisters.shrinkToFit(); } // else don't shrink these, because we would have already pointed pointers into these tables. if (m_rareData) { m_rareData->m_exceptionHandlers.shrinkToFit(); m_rareData->m_immediateSwitchJumpTables.shrinkToFit(); m_rareData->m_characterSwitchJumpTables.shrinkToFit(); m_rareData->m_stringSwitchJumpTables.shrinkToFit(); #if ENABLE(JIT) m_rareData->m_callReturnIndexVector.shrinkToFit(); #endif #if ENABLE(DFG_JIT) m_rareData->m_inlineCallFrames.shrinkToFit(); m_rareData->m_codeOrigins.shrinkToFit(); #endif } #if ENABLE(DFG_JIT) if (m_dfgData) { m_dfgData->osrEntry.shrinkToFit(); m_dfgData->osrExit.shrinkToFit(); m_dfgData->speculationRecovery.shrinkToFit(); m_dfgData->weakReferences.shrinkToFit(); m_dfgData->transitions.shrinkToFit(); m_dfgData->minifiedDFG.prepareAndShrink(); m_dfgData->variableEventStream.shrinkToFit(); } #endif } void CodeBlock::createActivation(CallFrame* callFrame) { ASSERT(codeType() == FunctionCode); ASSERT(needsFullScopeChain()); ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue()); JSActivation* activation = JSActivation::create(callFrame->vm(), callFrame, this); callFrame->uncheckedR(activationRegister()) = JSValue(activation); callFrame->setScope(activation); } unsigned CodeBlock::addOrFindConstant(JSValue v) { unsigned numberOfConstants = numberOfConstantRegisters(); for (unsigned i = 0; i < numberOfConstants; ++i) { if (getConstant(FirstConstantRegisterIndex + i) == v) return i; } return addConstant(v); } #if ENABLE(JIT) void CodeBlock::unlinkCalls() { if (!!m_alternative) m_alternative->unlinkCalls(); #if ENABLE(LLINT) for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) { if (m_llintCallLinkInfos[i].isLinked()) m_llintCallLinkInfos[i].unlink(); } #endif if (!m_callLinkInfos.size()) return; if (!m_vm->canUseJIT()) return; RepatchBuffer repatchBuffer(this); for (size_t i = 0; i < m_callLinkInfos.size(); i++) { if (!m_callLinkInfos[i].isLinked()) continue; m_callLinkInfos[i].unlink(*m_vm, repatchBuffer); } } void CodeBlock::unlinkIncomingCalls() { #if ENABLE(LLINT) while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) m_incomingLLIntCalls.begin()->unlink(); #endif if (m_incomingCalls.isEmpty()) return; RepatchBuffer repatchBuffer(this); while (m_incomingCalls.begin() != m_incomingCalls.end()) m_incomingCalls.begin()->unlink(*m_vm, repatchBuffer); } #endif // ENABLE(JIT) #if ENABLE(LLINT) Instruction* CodeBlock::adjustPCIfAtCallSite(Instruction* potentialReturnPC) { ASSERT(potentialReturnPC); unsigned returnPCOffset = potentialReturnPC - instructions().begin(); Instruction* adjustedPC; unsigned opcodeLength; // If we are at a callsite, the LLInt stores the PC after the call // instruction rather than the PC of the call instruction. This requires // some correcting. If so, we can rely on the fact that the preceding // instruction must be one of the call instructions, so either it's a // call_varargs or it's a call, construct, or eval. // // If we are not at a call site, then we need to guard against the // possibility of peeking past the start of the bytecode range for this // codeBlock. Hence, we do a bounds check before we peek at the // potential "preceding" instruction. // The bounds check is done by comparing the offset of the potential // returnPC with the length of the opcode. If there is room for a call // instruction before the returnPC, then the offset of the returnPC must // be greater than the size of the call opcode we're looking for. // The determination of the call instruction present (if we are at a // callsite) depends on the following assumptions. So, assert that // they are still true: ASSERT(OPCODE_LENGTH(op_call_varargs) <= OPCODE_LENGTH(op_call)); ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct)); ASSERT(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_call_eval)); // Check for the case of a preceeding op_call_varargs: opcodeLength = OPCODE_LENGTH(op_call_varargs); adjustedPC = potentialReturnPC - opcodeLength; if ((returnPCOffset >= opcodeLength) && (adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call_varargs))) { return adjustedPC; } // Check for the case of the other 3 call instructions: opcodeLength = OPCODE_LENGTH(op_call); adjustedPC = potentialReturnPC - opcodeLength; if ((returnPCOffset >= opcodeLength) && (adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call) || adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_construct) || adjustedPC->u.pointer == LLInt::getCodePtr(llint_op_call_eval))) { return adjustedPC; } // Not a call site. No need to adjust PC. Just return the original. return potentialReturnPC; } #endif // ENABLE(LLINT) #if ENABLE(JIT) ClosureCallStubRoutine* CodeBlock::findClosureCallForReturnPC(ReturnAddressPtr returnAddress) { for (unsigned i = m_callLinkInfos.size(); i--;) { CallLinkInfo& info = m_callLinkInfos[i]; if (!info.stub) continue; if (!info.stub->code().executableMemory()->contains(returnAddress.value())) continue; RELEASE_ASSERT(info.stub->codeOrigin().bytecodeIndex < CodeOrigin::maximumBytecodeIndex); return info.stub.get(); } // The stub routine may have been jettisoned. This is rare, but we have to handle it. const JITStubRoutineSet& set = m_vm->heap.jitStubRoutines(); for (unsigned i = set.size(); i--;) { GCAwareJITStubRoutine* genericStub = set.at(i); if (!genericStub->isClosureCall()) continue; ClosureCallStubRoutine* stub = static_cast(genericStub); if (!stub->code().executableMemory()->contains(returnAddress.value())) continue; RELEASE_ASSERT(stub->codeOrigin().bytecodeIndex < CodeOrigin::maximumBytecodeIndex); return stub; } return 0; } #endif unsigned CodeBlock::bytecodeOffset(ExecState* exec, ReturnAddressPtr returnAddress) { UNUSED_PARAM(exec); UNUSED_PARAM(returnAddress); #if ENABLE(LLINT) #if !ENABLE(LLINT_C_LOOP) // When using the JIT, we could have addresses that are not bytecode // addresses. We check if the return address is in the LLint glue and // opcode handlers range here to ensure that we are looking at bytecode // before attempting to convert the return address into a bytecode offset. // // In the case of the C Loop LLInt, the JIT is disabled, and the only // valid return addresses should be bytecode PCs. So, we can and need to // forego this check because when we do not ENABLE(COMPUTED_GOTO_OPCODES), // then the bytecode "PC"s are actually the opcodeIDs and are not bounded // by llint_begin and llint_end. if (returnAddress.value() >= LLInt::getCodePtr(llint_begin) && returnAddress.value() <= LLInt::getCodePtr(llint_end)) #endif { RELEASE_ASSERT(exec->codeBlock()); RELEASE_ASSERT(exec->codeBlock() == this); RELEASE_ASSERT(JITCode::isBaselineCode(getJITType())); Instruction* instruction = exec->currentVPC(); RELEASE_ASSERT(instruction); instruction = adjustPCIfAtCallSite(instruction); return bytecodeOffset(instruction); } #endif // !ENABLE(LLINT) #if ENABLE(JIT) if (!m_rareData) return 1; Vector& callIndices = m_rareData->m_callReturnIndexVector; if (!callIndices.size()) return 1; if (getJITCode().getExecutableMemory()->contains(returnAddress.value())) { unsigned callReturnOffset = getJITCode().offsetOf(returnAddress.value()); CallReturnOffsetToBytecodeOffset* result = binarySearch( callIndices, callIndices.size(), callReturnOffset, getCallReturnOffset); RELEASE_ASSERT(result->callReturnOffset == callReturnOffset); RELEASE_ASSERT(result->bytecodeOffset < instructionCount()); return result->bytecodeOffset; } ClosureCallStubRoutine* closureInfo = findClosureCallForReturnPC(returnAddress); CodeOrigin origin = closureInfo->codeOrigin(); while (InlineCallFrame* inlineCallFrame = origin.inlineCallFrame) { if (inlineCallFrame->baselineCodeBlock() == this) break; origin = inlineCallFrame->caller; RELEASE_ASSERT(origin.bytecodeIndex < CodeOrigin::maximumBytecodeIndex); } RELEASE_ASSERT(origin.bytecodeIndex < CodeOrigin::maximumBytecodeIndex); unsigned bytecodeIndex = origin.bytecodeIndex; RELEASE_ASSERT(bytecodeIndex < instructionCount()); return bytecodeIndex; #endif // ENABLE(JIT) #if !ENABLE(LLINT) && !ENABLE(JIT) return 1; #endif } #if ENABLE(DFG_JIT) bool CodeBlock::codeOriginForReturn(ReturnAddressPtr returnAddress, CodeOrigin& codeOrigin) { if (!hasCodeOrigins()) return false; if (!getJITCode().getExecutableMemory()->contains(returnAddress.value())) { ClosureCallStubRoutine* stub = findClosureCallForReturnPC(returnAddress); ASSERT(stub); if (!stub) return false; codeOrigin = stub->codeOrigin(); return true; } unsigned offset = getJITCode().offsetOf(returnAddress.value()); CodeOriginAtCallReturnOffset* entry = tryBinarySearch( codeOrigins(), codeOrigins().size(), offset, getCallReturnOffsetForCodeOrigin); if (!entry) return false; codeOrigin = entry->codeOrigin; return true; } #endif // ENABLE(DFG_JIT) void CodeBlock::clearEvalCache() { if (!!m_alternative) m_alternative->clearEvalCache(); if (!m_rareData) return; m_rareData->m_evalCodeCache.clear(); } template inline void replaceExistingEntries(Vector& target, Vector& source) { ASSERT(target.size() <= source.size()); for (size_t i = 0; i < target.size(); ++i) target[i] = source[i]; } void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative) { if (!alternative) return; replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters); replaceExistingEntries(m_functionDecls, alternative->m_functionDecls); replaceExistingEntries(m_functionExprs, alternative->m_functionExprs); if (!!m_rareData && !!alternative->m_rareData) replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers); } void CodeBlock::copyPostParseDataFromAlternative() { copyPostParseDataFrom(m_alternative.get()); } #if ENABLE(JIT) void CodeBlock::reoptimize() { ASSERT(replacement() != this); ASSERT(replacement()->alternative() == this); if (DFG::shouldShowDisassembly()) dataLog(*replacement(), " will be jettisoned due to reoptimization of ", *this, ".\n"); replacement()->jettison(); countReoptimization(); } CodeBlock* ProgramCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecode(); } CodeBlock* EvalCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecode(); } CodeBlock* FunctionCodeBlock::replacement() { return &static_cast(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall); } JSObject* ProgramCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimized(exec, scope, bytecodeIndex); return error; } JSObject* EvalCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimized(exec, scope, bytecodeIndex); return error; } JSObject* FunctionCodeBlock::compileOptimized(ExecState* exec, JSScope* scope, unsigned bytecodeIndex) { if (replacement()->getJITType() == JITCode::nextTierJIT(getJITType())) return 0; JSObject* error = static_cast(ownerExecutable())->compileOptimizedFor(exec, scope, bytecodeIndex, m_isConstructor ? CodeForConstruct : CodeForCall); return error; } DFG::CapabilityLevel ProgramCodeBlock::canCompileWithDFGInternal() { return DFG::canCompileProgram(this); } DFG::CapabilityLevel EvalCodeBlock::canCompileWithDFGInternal() { return DFG::canCompileEval(this); } DFG::CapabilityLevel FunctionCodeBlock::canCompileWithDFGInternal() { if (m_isConstructor) return DFG::canCompileFunctionForConstruct(this); return DFG::canCompileFunctionForCall(this); } void CodeBlock::jettison() { ASSERT(JITCode::isOptimizingJIT(getJITType())); ASSERT(this == replacement()); alternative()->optimizeAfterWarmUp(); tallyFrequentExitSites(); if (DFG::shouldShowDisassembly()) dataLog("Jettisoning ", *this, ".\n"); jettisonImpl(); } void ProgramCodeBlock::jettisonImpl() { static_cast(ownerExecutable())->jettisonOptimizedCode(*vm()); } void EvalCodeBlock::jettisonImpl() { static_cast(ownerExecutable())->jettisonOptimizedCode(*vm()); } void FunctionCodeBlock::jettisonImpl() { static_cast(ownerExecutable())->jettisonOptimizedCodeFor(*vm(), m_isConstructor ? CodeForConstruct : CodeForCall); } bool ProgramCodeBlock::jitCompileImpl(ExecState* exec) { ASSERT(getJITType() == JITCode::InterpreterThunk); ASSERT(this == replacement()); return static_cast(ownerExecutable())->jitCompile(exec); } bool EvalCodeBlock::jitCompileImpl(ExecState* exec) { ASSERT(getJITType() == JITCode::InterpreterThunk); ASSERT(this == replacement()); return static_cast(ownerExecutable())->jitCompile(exec); } bool FunctionCodeBlock::jitCompileImpl(ExecState* exec) { ASSERT(getJITType() == JITCode::InterpreterThunk); ASSERT(this == replacement()); return static_cast(ownerExecutable())->jitCompileFor(exec, m_isConstructor ? CodeForConstruct : CodeForCall); } #endif JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) { if (!codeOrigin.inlineCallFrame) return globalObject(); return jsCast(codeOrigin.inlineCallFrame->executable.get())->generatedBytecode().globalObject(); } unsigned CodeBlock::reoptimizationRetryCounter() const { ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); return m_reoptimizationRetryCounter; } void CodeBlock::countReoptimization() { m_reoptimizationRetryCounter++; if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); } unsigned CodeBlock::numberOfDFGCompiles() { #if ENABLE(JIT) ASSERT(JITCode::isBaselineCode(getJITType())); return (JITCode::isOptimizingJIT(replacement()->getJITType()) ? 1 : 0) + m_reoptimizationRetryCounter; #else return 0; #endif } int32_t CodeBlock::codeTypeThresholdMultiplier() const { if (codeType() == EvalCode) return Options::evalThresholdMultiplier(); return 1; } double CodeBlock::optimizationThresholdScalingFactor() { // This expression arises from doing a least-squares fit of // // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d // // against the data points: // // x F[x_] // 10 0.9 (smallest reasonable code block) // 200 1.0 (typical small-ish code block) // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) // 10000 6.0 (similar to above) // // I achieve the minimization using the following Mathematica code: // // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d // // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} // // solution = // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), // {a, b, c, d}][[2]] // // And the code below (to initialize a, b, c, d) is generated by: // // Print["const double " <> ToString[#[[1]]] <> " = " <> // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution // // We've long known the following to be true: // - Small code blocks are cheap to optimize and so we should do it sooner rather // than later. // - Large code blocks are expensive to optimize and so we should postpone doing so, // and sometimes have a large enough threshold that we never optimize them. // - The difference in cost is not totally linear because (a) just invoking the // DFG incurs some base cost and (b) for large code blocks there is enough slop // in the correlation between instruction count and the actual compilation cost // that for those large blocks, the instruction count should not have a strong // influence on our threshold. // // I knew the goals but I didn't know how to achieve them; so I picked an interesting // example where the heuristics were right (code block in 3d-cube with instruction // count 320, which got compiled early as it should have been) and one where they were // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive // to compile and didn't run often enough to warrant compilation in my opinion), and // then threw in additional data points that represented my own guess of what our // heuristics should do for some round-numbered examples. // // The expression to which I decided to fit the data arose because I started with an // affine function, and then did two things: put the linear part in an Abs to ensure // that the fit didn't end up choosing a negative value of c (which would result in // the function turning over and going negative for large x) and I threw in a Sqrt // term because Sqrt represents my intution that the function should be more sensitive // to small changes in small values of x, but less sensitive when x gets large. // Note that the current fit essentially eliminates the linear portion of the // expression (c == 0.0). const double a = 0.061504; const double b = 1.02406; const double c = 0.0; const double d = 0.825914; double instructionCount = this->instructionCount(); ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. double result = d + a * sqrt(instructionCount + b) + c * instructionCount; #if ENABLE(JIT_VERBOSE_OSR) dataLog(*this, ": instruction count is ", instructionCount, ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), "\n"); #endif return result * codeTypeThresholdMultiplier(); } static int32_t clipThreshold(double threshold) { if (threshold < 1.0) return 1; if (threshold > static_cast(std::numeric_limits::max())) return std::numeric_limits::max(); return static_cast(threshold); } int32_t CodeBlock::counterValueForOptimizeAfterWarmUp() { return clipThreshold( Options::thresholdForOptimizeAfterWarmUp() * optimizationThresholdScalingFactor() * (1 << reoptimizationRetryCounter())); } int32_t CodeBlock::counterValueForOptimizeAfterLongWarmUp() { return clipThreshold( Options::thresholdForOptimizeAfterLongWarmUp() * optimizationThresholdScalingFactor() * (1 << reoptimizationRetryCounter())); } int32_t CodeBlock::counterValueForOptimizeSoon() { return clipThreshold( Options::thresholdForOptimizeSoon() * optimizationThresholdScalingFactor() * (1 << reoptimizationRetryCounter())); } bool CodeBlock::checkIfOptimizationThresholdReached() { return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); } void CodeBlock::optimizeNextInvocation() { m_jitExecuteCounter.setNewThreshold(0, this); } void CodeBlock::dontOptimizeAnytimeSoon() { m_jitExecuteCounter.deferIndefinitely(); } void CodeBlock::optimizeAfterWarmUp() { m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this); } void CodeBlock::optimizeAfterLongWarmUp() { m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this); } void CodeBlock::optimizeSoon() { m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeSoon(), this); } #if ENABLE(JIT) uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) { ASSERT(getJITType() == JITCode::DFGJIT); // Compute this the lame way so we don't saturate. This is called infrequently // enough that this loop won't hurt us. unsigned result = desiredThreshold; for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { unsigned newResult = result << 1; if (newResult < result) return std::numeric_limits::max(); result = newResult; } return result; } uint32_t CodeBlock::exitCountThresholdForReoptimization() { return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); } uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() { return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); } bool CodeBlock::shouldReoptimizeNow() { return osrExitCounter() >= exitCountThresholdForReoptimization(); } bool CodeBlock::shouldReoptimizeFromLoopNow() { return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); } #endif #if ENABLE(VALUE_PROFILER) ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) { for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) { if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset) return &m_arrayProfiles[i]; } return 0; } ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) { ArrayProfile* result = getArrayProfile(bytecodeOffset); if (result) return result; return addArrayProfile(bytecodeOffset); } void CodeBlock::updateAllPredictionsAndCountLiveness( OperationInProgress operation, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) { numberOfLiveNonArgumentValueProfiles = 0; numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); unsigned numSamples = profile->totalNumberOfSamples(); if (numSamples > ValueProfile::numberOfBuckets) numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. numberOfSamplesInProfiles += numSamples; if (profile->m_bytecodeOffset < 0) { profile->computeUpdatedPrediction(operation); continue; } if (profile->numberOfSamples() || profile->m_prediction != SpecNone) numberOfLiveNonArgumentValueProfiles++; profile->computeUpdatedPrediction(operation); } #if ENABLE(DFG_JIT) m_lazyOperandValueProfiles.computeUpdatedPredictions(operation); #endif } void CodeBlock::updateAllValueProfilePredictions(OperationInProgress operation) { unsigned ignoredValue1, ignoredValue2; updateAllPredictionsAndCountLiveness(operation, ignoredValue1, ignoredValue2); } void CodeBlock::updateAllArrayPredictions(OperationInProgress operation) { for (unsigned i = m_arrayProfiles.size(); i--;) m_arrayProfiles[i].computeUpdatedPrediction(this, operation); // Don't count these either, for similar reasons. for (unsigned i = m_arrayAllocationProfiles.size(); i--;) m_arrayAllocationProfiles[i].updateIndexingType(); } void CodeBlock::updateAllPredictions(OperationInProgress operation) { updateAllValueProfilePredictions(operation); updateAllArrayPredictions(operation); } bool CodeBlock::shouldOptimizeNow() { #if ENABLE(JIT_VERBOSE_OSR) dataLog("Considering optimizing ", *this, "...\n"); #endif #if ENABLE(VERBOSE_VALUE_PROFILE) dumpValueProfiles(); #endif if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) return true; updateAllArrayPredictions(); unsigned numberOfLiveNonArgumentValueProfiles; unsigned numberOfSamplesInProfiles; updateAllPredictionsAndCountLiveness(NoOperation, numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); #if ENABLE(JIT_VERBOSE_OSR) dataLogF("Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); #endif if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) && static_cast(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) return true; ASSERT(m_optimizationDelayCounter < std::numeric_limits::max()); m_optimizationDelayCounter++; optimizeAfterWarmUp(); return false; } #endif #if ENABLE(DFG_JIT) void CodeBlock::tallyFrequentExitSites() { ASSERT(getJITType() == JITCode::DFGJIT); ASSERT(alternative()->getJITType() == JITCode::BaselineJIT); ASSERT(!!m_dfgData); CodeBlock* profiledBlock = alternative(); for (unsigned i = 0; i < m_dfgData->osrExit.size(); ++i) { DFG::OSRExit& exit = m_dfgData->osrExit[i]; if (!exit.considerAddingAsFrequentExitSite(profiledBlock)) continue; #if DFG_ENABLE(DEBUG_VERBOSE) dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n"); #endif } } #endif // ENABLE(DFG_JIT) #if ENABLE(VERBOSE_VALUE_PROFILE) void CodeBlock::dumpValueProfiles() { dataLog("ValueProfile for ", *this, ":\n"); for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { ValueProfile* profile = getFromAllValueProfiles(i); if (profile->m_bytecodeOffset < 0) { ASSERT(profile->m_bytecodeOffset == -1); dataLogF(" arg = %u: ", i); } else dataLogF(" bc = %d: ", profile->m_bytecodeOffset); if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { dataLogF("\n"); continue; } profile->dump(WTF::dataFile()); dataLogF("\n"); } dataLog("RareCaseProfile for ", *this, ":\n"); for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { RareCaseProfile* profile = rareCaseProfile(i); dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } dataLog("SpecialFastCaseProfile for ", *this, ":\n"); for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { RareCaseProfile* profile = specialFastCaseProfile(i); dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); } } #endif // ENABLE(VERBOSE_VALUE_PROFILE) size_t CodeBlock::predictedMachineCodeSize() { // This will be called from CodeBlock::CodeBlock before either m_vm or the // instructions have been initialized. It's OK to return 0 because what will really // matter is the recomputation of this value when the slow path is triggered. if (!m_vm) return 0; if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT) return 0; // It's as good of a prediction as we'll get. // Be conservative: return a size that will be an overestimation 84% of the time. double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing // here is OK, since this whole method is just a heuristic. if (multiplier < 0 || multiplier > 1000) return 0; double doubleResult = multiplier * m_instructions.size(); // Be even more paranoid: silently reject values that won't fit into a size_t. If // the function is so huge that we can't even fit it into virtual memory then we // should probably have some other guards in place to prevent us from even getting // to this point. if (doubleResult > std::numeric_limits::max()) return 0; return static_cast(doubleResult); } bool CodeBlock::usesOpcode(OpcodeID opcodeID) { Interpreter* interpreter = vm()->interpreter; Instruction* instructionsBegin = instructions().begin(); unsigned instructionCount = instructions().size(); for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { #define DEFINE_OP(curOpcode, length) \ case curOpcode: \ if (curOpcode == opcodeID) \ return true; \ bytecodeOffset += length; \ break; FOR_EACH_OPCODE_ID(DEFINE_OP) #undef DEFINE_OP default: RELEASE_ASSERT_NOT_REACHED(); break; } } return false; } String CodeBlock::nameForRegister(int registerNumber) { SymbolTable::iterator end = symbolTable()->end(); for (SymbolTable::iterator ptr = symbolTable()->begin(); ptr != end; ++ptr) { if (ptr->value.getIndex() == registerNumber) return String(ptr->key); } if (needsActivation() && registerNumber == activationRegister()) return ASCIILiteral("activation"); if (registerNumber == thisRegister()) return ASCIILiteral("this"); if (usesArguments()) { if (registerNumber == argumentsRegister()) return ASCIILiteral("arguments"); if (unmodifiedArgumentsRegister(argumentsRegister()) == registerNumber) return ASCIILiteral("real arguments"); } if (registerNumber < 0) { int argumentPosition = -registerNumber; argumentPosition -= JSStack::CallFrameHeaderSize + 1; return String::format("arguments[%3d]", argumentPosition - 1).impl(); } return ""; } } // namespace JSC