/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGArithNodeFlagsInferencePhase.h" #if ENABLE(DFG_JIT) #include "DFGGraph.h" #include "DFGPhase.h" namespace JSC { namespace DFG { class ArithNodeFlagsInferencePhase : public Phase { public: ArithNodeFlagsInferencePhase(Graph& graph) : Phase(graph, "arithmetic node flags inference") { } void run() { #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) m_count = 0; #endif do { m_changed = false; // Up here we start with a backward pass because we suspect that to be // more profitable. propagateBackward(); if (!m_changed) break; m_changed = false; propagateForward(); } while (m_changed); } private: bool isNotNegZero(NodeIndex nodeIndex) { if (!m_graph.isNumberConstant(nodeIndex)) return false; double value = m_graph.valueOfNumberConstant(nodeIndex); return !value && 1.0 / value < 0.0; } bool isNotZero(NodeIndex nodeIndex) { if (!m_graph.isNumberConstant(nodeIndex)) return false; return !!m_graph.valueOfNumberConstant(nodeIndex); } void propagate(Node& node) { if (!node.shouldGenerate()) return; NodeType op = node.op; ArithNodeFlags flags = 0; if (node.hasArithNodeFlags()) flags = node.rawArithNodeFlags(); #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) dataLog(" %s @%u: %s ", Graph::opName(op), m_compileIndex, arithNodeFlagsAsString(flags)); #endif flags &= NodeUsedAsMask; bool changed = false; switch (op) { case ValueToInt32: case BitAnd: case BitOr: case BitXor: case BitLShift: case BitRShift: case BitURShift: { // These operations are perfectly happy with truncated integers, // so we don't want to propagate anything. break; } case UInt32ToNumber: { changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); break; } case ArithAdd: case ValueAdd: { if (isNotNegZero(node.child1().index()) || isNotNegZero(node.child2().index())) flags &= ~NodeNeedsNegZero; changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); changed |= m_graph[node.child2()].mergeArithNodeFlags(flags); break; } case ArithSub: { if (isNotZero(node.child1().index()) || isNotZero(node.child2().index())) flags &= ~NodeNeedsNegZero; changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); changed |= m_graph[node.child2()].mergeArithNodeFlags(flags); break; } case ArithMul: case ArithDiv: { // As soon as a multiply happens, we can easily end up in the part // of the double domain where the point at which you do truncation // can change the outcome. So, ArithMul always checks for overflow // no matter what, and always forces its inputs to check as well. flags |= NodeUsedAsNumber | NodeNeedsNegZero; changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); changed |= m_graph[node.child2()].mergeArithNodeFlags(flags); break; } case ArithMin: case ArithMax: { flags |= NodeUsedAsNumber; changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); changed |= m_graph[node.child2()].mergeArithNodeFlags(flags); break; } case ArithAbs: { flags &= ~NodeNeedsNegZero; changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); break; } case PutByVal: { changed |= m_graph[node.child1()].mergeArithNodeFlags(flags | NodeUsedAsNumber | NodeNeedsNegZero); changed |= m_graph[node.child2()].mergeArithNodeFlags(flags | NodeUsedAsNumber); changed |= m_graph[node.child3()].mergeArithNodeFlags(flags | NodeUsedAsNumber | NodeNeedsNegZero); break; } case GetByVal: { changed |= m_graph[node.child1()].mergeArithNodeFlags(flags | NodeUsedAsNumber | NodeNeedsNegZero); changed |= m_graph[node.child2()].mergeArithNodeFlags(flags | NodeUsedAsNumber); break; } default: flags |= NodeUsedAsNumber | NodeNeedsNegZero; if (op & NodeHasVarArgs) { for (unsigned childIdx = node.firstChild(); childIdx < node.firstChild() + node.numChildren(); childIdx++) changed |= m_graph[m_graph.m_varArgChildren[childIdx]].mergeArithNodeFlags(flags); } else { if (!node.child1()) break; changed |= m_graph[node.child1()].mergeArithNodeFlags(flags); if (!node.child2()) break; changed |= m_graph[node.child2()].mergeArithNodeFlags(flags); if (!node.child3()) break; changed |= m_graph[node.child3()].mergeArithNodeFlags(flags); } break; } #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) dataLog("%s\n", changed ? "CHANGED" : ""); #endif m_changed |= changed; } void propagateForward() { #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) dataLog("Propagating arithmetic node flags forward [%u]\n", ++m_count); #endif for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) propagate(m_graph[m_compileIndex]); } void propagateBackward() { #if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE) dataLog("Propagating arithmetic node flags backward [%u]\n", ++m_count); #endif for (m_compileIndex = m_graph.size(); m_compileIndex-- > 0;) propagate(m_graph[m_compileIndex]); } NodeIndex m_compileIndex; bool m_changed; }; void performArithNodeFlagsInference(Graph& graph) { runPhase(graph); } } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT)