/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef DFGCCallHelpers_h #define DFGCCallHelpers_h #include #if ENABLE(DFG_JIT) #include "DFGAssemblyHelpers.h" #include "DFGGPRInfo.h" namespace JSC { namespace DFG { class CCallHelpers : public AssemblyHelpers { public: CCallHelpers(VM* vm, CodeBlock* codeBlock = 0) : AssemblyHelpers(vm, codeBlock) { } // These methods used to sort arguments into the correct registers. // On X86 we use cdecl calling conventions, which pass all arguments on the // stack. On other architectures we may need to sort values into the // correct registers. #if !NUMBER_OF_ARGUMENT_REGISTERS unsigned m_callArgumentOffset; void resetCallArguments() { m_callArgumentOffset = 0; } // These methods are using internally to implement the callOperation methods. void addCallArgument(GPRReg value) { poke(value, m_callArgumentOffset++); } void addCallArgument(TrustedImm32 imm) { poke(imm, m_callArgumentOffset++); } void addCallArgument(TrustedImmPtr pointer) { poke(pointer, m_callArgumentOffset++); } void addCallArgument(FPRReg value) { storeDouble(value, Address(stackPointerRegister, m_callArgumentOffset * sizeof(void*))); m_callArgumentOffset += sizeof(double) / sizeof(void*); } ALWAYS_INLINE void setupArguments(FPRReg arg1) { resetCallArguments(); addCallArgument(arg1); } ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2) { resetCallArguments(); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArguments(GPRReg arg1) { resetCallArguments(); addCallArgument(arg1); } ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2) { resetCallArguments(); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArguments(TrustedImmPtr arg1) { resetCallArguments(); addCallArgument(arg1); } ALWAYS_INLINE void setupArgumentsExecState() { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, GPRReg arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImmPtr arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, TrustedImmPtr arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImmPtr arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); addCallArgument(arg5); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, GPRReg arg3, GPRReg arg4) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); addCallArgument(arg4); addCallArgument(arg5); } ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3) { resetCallArguments(); addCallArgument(GPRInfo::callFrameRegister); addCallArgument(arg1); addCallArgument(arg2); addCallArgument(arg3); } #endif // !NUMBER_OF_ARGUMENT_REGISTERS // These methods are suitable for any calling convention that provides for // at least 4 argument registers, e.g. X86_64, ARMv7. #if NUMBER_OF_ARGUMENT_REGISTERS >= 4 template void setupTwoStubArgs(GPRReg srcA, GPRReg srcB) { // Assuming that srcA != srcB, there are 7 interesting states the registers may be in: // (1) both are already in arg regs, the right way around. // (2) both are already in arg regs, the wrong way around. // (3) neither are currently in arg registers. // (4) srcA in in its correct reg. // (5) srcA in in the incorrect reg. // (6) srcB in in its correct reg. // (7) srcB in in the incorrect reg. // // The trivial approach is to simply emit two moves, to put srcA in place then srcB in // place (the MacroAssembler will omit redundant moves). This apporach will be safe in // cases 1, 3, 4, 5, 6, and in cases where srcA==srcB. The two problem cases are 2 // (requires a swap) and 7 (must move srcB first, to avoid trampling.) if (srcB != destA) { // Handle the easy cases - two simple moves. move(srcA, destA); move(srcB, destB); } else if (srcA != destB) { // Handle the non-swap case - just put srcB in place first. move(srcB, destB); move(srcA, destA); } else swap(destA, destB); } #if CPU(X86_64) template void setupTwoStubArgs(FPRReg srcA, FPRReg srcB) { // Assuming that srcA != srcB, there are 7 interesting states the registers may be in: // (1) both are already in arg regs, the right way around. // (2) both are already in arg regs, the wrong way around. // (3) neither are currently in arg registers. // (4) srcA in in its correct reg. // (5) srcA in in the incorrect reg. // (6) srcB in in its correct reg. // (7) srcB in in the incorrect reg. // // The trivial approach is to simply emit two moves, to put srcA in place then srcB in // place (the MacroAssembler will omit redundant moves). This apporach will be safe in // cases 1, 3, 4, 5, 6, and in cases where srcA==srcB. The two problem cases are 2 // (requires a swap) and 7 (must move srcB first, to avoid trampling.) if (srcB != destA) { // Handle the easy cases - two simple moves. moveDouble(srcA, destA); moveDouble(srcB, destB); return; } if (srcA != destB) { // Handle the non-swap case - just put srcB in place first. moveDouble(srcB, destB); moveDouble(srcA, destA); return; } ASSERT(srcB == destA && srcA == destB); // Need to swap; pick a temporary register. FPRReg temp; if (destA != FPRInfo::argumentFPR3 && destA != FPRInfo::argumentFPR3) temp = FPRInfo::argumentFPR3; else if (destA != FPRInfo::argumentFPR2 && destA != FPRInfo::argumentFPR2) temp = FPRInfo::argumentFPR2; else { ASSERT(destA != FPRInfo::argumentFPR1 && destA != FPRInfo::argumentFPR1); temp = FPRInfo::argumentFPR1; } moveDouble(destA, temp); moveDouble(destB, destA); moveDouble(temp, destB); } #endif void setupStubArguments(GPRReg arg1, GPRReg arg2) { setupTwoStubArgs(arg1, arg2); } void setupStubArguments(GPRReg arg1, GPRReg arg2, GPRReg arg3) { // If neither of arg2/arg3 are in our way, then we can move arg1 into place. // Then we can use setupTwoStubArgs to fix arg2/arg3. if (arg2 != GPRInfo::argumentGPR1 && arg3 != GPRInfo::argumentGPR1) { move(arg1, GPRInfo::argumentGPR1); setupTwoStubArgs(arg2, arg3); return; } // If neither of arg1/arg3 are in our way, then we can move arg2 into place. // Then we can use setupTwoStubArgs to fix arg1/arg3. if (arg1 != GPRInfo::argumentGPR2 && arg3 != GPRInfo::argumentGPR2) { move(arg2, GPRInfo::argumentGPR2); setupTwoStubArgs(arg1, arg3); return; } // If neither of arg1/arg2 are in our way, then we can move arg3 into place. // Then we can use setupTwoStubArgs to fix arg1/arg2. if (arg1 != GPRInfo::argumentGPR3 && arg2 != GPRInfo::argumentGPR3) { move(arg3, GPRInfo::argumentGPR3); setupTwoStubArgs(arg1, arg2); return; } // If we get here, we haven't been able to move any of arg1/arg2/arg3. // Since all three are blocked, then all three must already be in the argument register. // But are they in the right ones? // First, ensure arg1 is in place. if (arg1 != GPRInfo::argumentGPR1) { swap(arg1, GPRInfo::argumentGPR1); // If arg1 wasn't in argumentGPR1, one of arg2/arg3 must be. ASSERT(arg2 == GPRInfo::argumentGPR1 || arg3 == GPRInfo::argumentGPR1); // If arg2 was in argumentGPR1 it no longer is (due to the swap). // Otherwise arg3 must have been. Mark him as moved. if (arg2 == GPRInfo::argumentGPR1) arg2 = arg1; else arg3 = arg1; } // Either arg2 & arg3 need swapping, or we're all done. ASSERT((arg2 == GPRInfo::argumentGPR2 || arg3 == GPRInfo::argumentGPR3) || (arg2 == GPRInfo::argumentGPR3 || arg3 == GPRInfo::argumentGPR2)); if (arg2 != GPRInfo::argumentGPR2) swap(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3); } #if CPU(MIPS) #define POKE_ARGUMENT_OFFSET 4 #else #define POKE_ARGUMENT_OFFSET 0 #endif #if CPU(X86_64) ALWAYS_INLINE void setupArguments(FPRReg arg1) { moveDouble(arg1, FPRInfo::argumentFPR0); } ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2) { setupTwoStubArgs(arg1, arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2) { moveDouble(arg1, FPRInfo::argumentFPR0); move(arg2, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3) { moveDouble(arg3, FPRInfo::argumentFPR0); setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #elif CPU(ARM) #if CPU(ARM_HARDFP) ALWAYS_INLINE void setupArguments(FPRReg arg1) { moveDouble(arg1, FPRInfo::argumentFPR0); } ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2) { if (arg2 != FPRInfo::argumentFPR0) { moveDouble(arg1, FPRInfo::argumentFPR0); moveDouble(arg2, FPRInfo::argumentFPR1); } else if (arg1 != FPRInfo::argumentFPR1) { moveDouble(arg2, FPRInfo::argumentFPR1); moveDouble(arg1, FPRInfo::argumentFPR0); } else { // Swap arg1, arg2. moveDouble(FPRInfo::argumentFPR0, ARMRegisters::d2); moveDouble(FPRInfo::argumentFPR1, FPRInfo::argumentFPR0); moveDouble(ARMRegisters::d2, FPRInfo::argumentFPR1); } } ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2) { moveDouble(arg1, FPRInfo::argumentFPR0); move(arg2, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3) { moveDouble(arg3, FPRInfo::argumentFPR0); setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32, FPRReg arg2, GPRReg arg3) { moveDouble(arg2, FPRInfo::argumentFPR0); move(arg3, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32, FPRReg arg4) { moveDouble(arg4, FPRInfo::argumentFPR0); setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #else ALWAYS_INLINE void setupArguments(FPRReg arg1) { assembler().vmov(GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, arg1); } ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2) { assembler().vmov(GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, arg1); assembler().vmov(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, arg2); } ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2) { move(arg2, GPRInfo::argumentGPR3); assembler().vmov(GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, arg1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3) { setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); assembler().vmov(GPRInfo::argumentGPR3, GPRInfo::nonArgGPR0, arg3); poke(GPRInfo::nonArgGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, FPRReg arg2, GPRReg arg3) { poke(arg3, POKE_ARGUMENT_OFFSET); move(arg1, GPRInfo::argumentGPR1); assembler().vmov(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, FPRReg arg4) { setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); move(arg3, GPRInfo::argumentGPR3); assembler().vmov(GPRInfo::nonArgGPR0, GPRInfo::nonArgGPR1, arg4); poke(GPRInfo::nonArgGPR0, POKE_ARGUMENT_OFFSET); poke(GPRInfo::nonArgGPR1, POKE_ARGUMENT_OFFSET + 1); } #endif // CPU(ARM_HARDFP) #elif CPU(MIPS) ALWAYS_INLINE void setupArguments(FPRReg arg1) { moveDouble(arg1, FPRInfo::argumentFPR0); } ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2) { if (arg2 != FPRInfo::argumentFPR0) { moveDouble(arg1, FPRInfo::argumentFPR0); moveDouble(arg2, FPRInfo::argumentFPR1); } else if (arg1 != FPRInfo::argumentFPR1) { moveDouble(arg2, FPRInfo::argumentFPR1); moveDouble(arg1, FPRInfo::argumentFPR0); } else { // Swap arg1, arg2. swapDouble(FPRInfo::argumentFPR0, FPRInfo::argumentFPR1); } } ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2) { assembler().vmov(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, arg1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); poke(arg2, 4); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3) { setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); poke(arg3, 4); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, FPRReg arg2, GPRReg arg3) { setupArgumentsWithExecState(arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, FPRReg arg4) { setupArgumentsWithExecState(arg1, arg2, arg4); } #elif CPU(SH4) ALWAYS_INLINE void setupArguments(FPRReg arg1) { moveDouble(arg1, FPRInfo::argumentFPR0); } ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2) { if (arg2 != FPRInfo::argumentFPR0) { moveDouble(arg1, FPRInfo::argumentFPR0); moveDouble(arg2, FPRInfo::argumentFPR1); } else if (arg1 != FPRInfo::argumentFPR1) { moveDouble(arg2, FPRInfo::argumentFPR1); moveDouble(arg1, FPRInfo::argumentFPR0); } else swapDouble(FPRInfo::argumentFPR0, FPRInfo::argumentFPR1); } ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2) { moveDouble(arg1, FPRInfo::argumentFPR0); move(arg2, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3) { moveDouble(arg3, FPRInfo::argumentFPR0); setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #else #error "DFG JIT not supported on this platform." #endif ALWAYS_INLINE void setupArguments(GPRReg arg1) { move(arg1, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2) { setupTwoStubArgs(arg1, arg2); } ALWAYS_INLINE void setupArguments(TrustedImmPtr arg1) { move(arg1, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsExecState() { move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1) { move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1) { move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1) { move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2) { setupStubArguments(arg1, arg2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #if CPU(X86_64) ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm64 arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm64 arg1, GPRReg arg2) { move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample! move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #endif ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, ImmPtr arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2) { move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample! move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2) { move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample! move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(ImmPtr arg1, GPRReg arg2) { move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample! move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3) { setupStubArguments(arg1, arg2, arg3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3) { setupStubArguments(arg1, arg2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, GPRReg arg3) { setupTwoStubArgs(arg1, arg3); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImmPtr arg3) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImmPtr arg3) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3) { setupStubArguments(arg1, arg2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, GPRReg arg3) { move(arg3, GPRInfo::argumentGPR3); move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3) { move(arg3, GPRInfo::argumentGPR3); move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3) { move(arg2, GPRInfo::argumentGPR2); move(arg1, GPRInfo::argumentGPR1); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3) { setupTwoStubArgs(arg2, arg3); move(arg1, GPRInfo::argumentGPR1); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, TrustedImmPtr arg3) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, TrustedImm32 arg3) { move(arg1, GPRInfo::argumentGPR1); move(arg2, GPRInfo::argumentGPR2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #endif // NUMBER_OF_ARGUMENT_REGISTERS >= 4 // These methods are suitable for any calling convention that provides for // exactly 4 argument registers, e.g. ARMv7. #if NUMBER_OF_ARGUMENT_REGISTERS == 4 ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4, TrustedImm32 arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, GPRReg arg3, GPRReg arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4) { poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, TrustedImm32 arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5) { poke(arg5, POKE_ARGUMENT_OFFSET + 1); poke(arg4, POKE_ARGUMENT_OFFSET); setupArgumentsWithExecState(arg1, arg2, arg3); } #endif // NUMBER_OF_ARGUMENT_REGISTERS == 4 #if NUMBER_OF_ARGUMENT_REGISTERS >= 5 ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4) { setupTwoStubArgs(arg1, arg4); move(arg2, GPRInfo::argumentGPR2); move(arg3, GPRInfo::argumentGPR3); move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); } #endif void setupResults(GPRReg destA, GPRReg destB) { GPRReg srcA = GPRInfo::returnValueGPR; GPRReg srcB = GPRInfo::returnValueGPR2; if (srcB != destA) { // Handle the easy cases - two simple moves. move(srcA, destA); move(srcB, destB); } else if (srcA != destB) { // Handle the non-swap case - just put srcB in place first. move(srcB, destB); move(srcA, destA); } else swap(destA, destB); } }; } } // namespace JSC::DFG #endif // ENABLE(DFG_JIT) #endif // DFGCCallHelpers_h