/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGGraph.h" #include "CodeBlock.h" #include "CodeBlockWithJITType.h" #include "DFGVariableAccessDataDump.h" #include "FunctionExecutableDump.h" #include "Operations.h" #include #if ENABLE(DFG_JIT) namespace JSC { namespace DFG { // Creates an array of stringized names. static const char* dfgOpNames[] = { #define STRINGIZE_DFG_OP_ENUM(opcode, flags) #opcode , FOR_EACH_DFG_OP(STRINGIZE_DFG_OP_ENUM) #undef STRINGIZE_DFG_OP_ENUM }; Graph::Graph(VM& vm, CodeBlock* codeBlock, unsigned osrEntryBytecodeIndex, const Operands& mustHandleValues) : m_vm(vm) , m_codeBlock(codeBlock) , m_compilation(vm.m_perBytecodeProfiler ? vm.m_perBytecodeProfiler->newCompilation(codeBlock, Profiler::DFG) : 0) , m_profiledBlock(codeBlock->alternative()) , m_allocator(vm.m_dfgState->m_allocator) , m_hasArguments(false) , m_osrEntryBytecodeIndex(osrEntryBytecodeIndex) , m_mustHandleValues(mustHandleValues) , m_fixpointState(BeforeFixpoint) , m_form(LoadStore) , m_unificationState(LocallyUnified) , m_refCountState(EverythingIsLive) { ASSERT(m_profiledBlock); } Graph::~Graph() { m_allocator.freeAll(); } const char *Graph::opName(NodeType op) { return dfgOpNames[op]; } static void printWhiteSpace(PrintStream& out, unsigned amount) { while (amount-- > 0) out.print(" "); } bool Graph::dumpCodeOrigin(PrintStream& out, const char* prefix, Node* previousNode, Node* currentNode) { if (!previousNode) return false; if (previousNode->codeOrigin.inlineCallFrame == currentNode->codeOrigin.inlineCallFrame) return false; Vector previousInlineStack = previousNode->codeOrigin.inlineStack(); Vector currentInlineStack = currentNode->codeOrigin.inlineStack(); unsigned commonSize = std::min(previousInlineStack.size(), currentInlineStack.size()); unsigned indexOfDivergence = commonSize; for (unsigned i = 0; i < commonSize; ++i) { if (previousInlineStack[i].inlineCallFrame != currentInlineStack[i].inlineCallFrame) { indexOfDivergence = i; break; } } bool hasPrinted = false; // Print the pops. for (unsigned i = previousInlineStack.size(); i-- > indexOfDivergence;) { out.print(prefix); printWhiteSpace(out, i * 2); out.print("<-- ", *previousInlineStack[i].inlineCallFrame, "\n"); hasPrinted = true; } // Print the pushes. for (unsigned i = indexOfDivergence; i < currentInlineStack.size(); ++i) { out.print(prefix); printWhiteSpace(out, i * 2); out.print("--> ", *currentInlineStack[i].inlineCallFrame, "\n"); hasPrinted = true; } return hasPrinted; } int Graph::amountOfNodeWhiteSpace(Node* node) { return (node->codeOrigin.inlineDepth() - 1) * 2; } void Graph::printNodeWhiteSpace(PrintStream& out, Node* node) { printWhiteSpace(out, amountOfNodeWhiteSpace(node)); } void Graph::dump(PrintStream& out, const char* prefix, Node* node) { NodeType op = node->op(); unsigned refCount = node->refCount(); bool skipped = !refCount; bool mustGenerate = node->mustGenerate(); if (mustGenerate) --refCount; out.print(prefix); printNodeWhiteSpace(out, node); // Example/explanation of dataflow dump output // // 14: GetByVal(@3, @13) // ^1 ^2 ^3 ^4 ^5 // // (1) The nodeIndex of this operation. // (2) The reference count. The number printed is the 'real' count, // not including the 'mustGenerate' ref. If the node is // 'mustGenerate' then the count it prefixed with '!'. // (3) The virtual register slot assigned to this node. // (4) The name of the operation. // (5) The arguments to the operation. The may be of the form: // @# - a NodeIndex referencing a prior node in the graph. // arg# - an argument number. // $# - the index in the CodeBlock of a constant { for numeric constants the value is displayed | for integers, in both decimal and hex }. // id# - the index in the CodeBlock of an identifier { if codeBlock is passed to dump(), the string representation is displayed }. // var# - the index of a var on the global object, used by GetGlobalVar/PutGlobalVar operations. out.printf("% 4d:%s<%c%u:", (int)node->index(), skipped ? " skipped " : " ", mustGenerate ? '!' : ' ', refCount); if (node->hasResult() && !skipped && node->hasVirtualRegister()) out.print(node->virtualRegister()); else out.print("-"); out.print(">\t", opName(op), "("); CommaPrinter comma; if (node->flags() & NodeHasVarArgs) { for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++) { if (!m_varArgChildren[childIdx]) continue; out.print(comma, m_varArgChildren[childIdx]); } } else { if (!!node->child1() || !!node->child2() || !!node->child3()) out.print(comma, node->child1()); if (!!node->child2() || !!node->child3()) out.print(comma, node->child2()); if (!!node->child3()) out.print(comma, node->child3()); } if (toCString(NodeFlagsDump(node->flags())) != "") out.print(comma, NodeFlagsDump(node->flags())); if (node->hasArrayMode()) out.print(comma, node->arrayMode()); if (node->hasVarNumber()) out.print(comma, node->varNumber()); if (node->hasRegisterPointer()) out.print(comma, "global", globalObjectFor(node->codeOrigin)->findRegisterIndex(node->registerPointer()), "(", RawPointer(node->registerPointer()), ")"); if (node->hasIdentifier()) out.print(comma, "id", node->identifierNumber(), "{", m_codeBlock->identifier(node->identifierNumber()).string(), "}"); if (node->hasStructureSet()) { for (size_t i = 0; i < node->structureSet().size(); ++i) out.print(comma, "struct(", RawPointer(node->structureSet()[i]), ": ", IndexingTypeDump(node->structureSet()[i]->indexingType()), ")"); } if (node->hasStructure()) out.print(comma, "struct(", RawPointer(node->structure()), ": ", IndexingTypeDump(node->structure()->indexingType()), ")"); if (node->hasStructureTransitionData()) out.print(comma, "struct(", RawPointer(node->structureTransitionData().previousStructure), " -> ", RawPointer(node->structureTransitionData().newStructure), ")"); if (node->hasFunction()) { out.print(comma, "function(", RawPointer(node->function()), ", "); if (node->function()->inherits(&JSFunction::s_info)) { JSFunction* function = jsCast(node->function()); if (function->isHostFunction()) out.print(""); else out.print(FunctionExecutableDump(function->jsExecutable())); } else out.print(""); out.print(")"); } if (node->hasExecutable()) { if (node->executable()->inherits(&FunctionExecutable::s_info)) out.print(comma, "executable(", FunctionExecutableDump(jsCast(node->executable())), ")"); else out.print(comma, "executable(not function: ", RawPointer(node->executable()), ")"); } if (node->hasFunctionDeclIndex()) { FunctionExecutable* executable = m_codeBlock->functionDecl(node->functionDeclIndex()); out.print(comma, executable->inferredName().string(), "#", executable->hashFor(CodeForCall)); } if (node->hasFunctionExprIndex()) { FunctionExecutable* executable = m_codeBlock->functionExpr(node->functionExprIndex()); out.print(comma, executable->inferredName().string(), "#", executable->hashFor(CodeForCall)); } if (node->hasStorageAccessData()) { StorageAccessData& storageAccessData = m_storageAccessData[node->storageAccessDataIndex()]; out.print(comma, "id", storageAccessData.identifierNumber, "{", m_codeBlock->identifier(storageAccessData.identifierNumber).string(), "}"); out.print(", ", static_cast(storageAccessData.offset)); } ASSERT(node->hasVariableAccessData() == node->hasLocal()); if (node->hasVariableAccessData()) { VariableAccessData* variableAccessData = node->variableAccessData(); int operand = variableAccessData->operand(); if (operandIsArgument(operand)) out.print(comma, "arg", operandToArgument(operand), "(", VariableAccessDataDump(*this, variableAccessData), ")"); else out.print(comma, "r", operand, "(", VariableAccessDataDump(*this, variableAccessData), ")"); } if (node->hasConstantBuffer()) { out.print(comma); out.print(node->startConstant(), ":["); CommaPrinter anotherComma; for (unsigned i = 0; i < node->numConstants(); ++i) out.print(anotherComma, m_codeBlock->constantBuffer(node->startConstant())[i]); out.print("]"); } if (node->hasIndexingType()) out.print(comma, IndexingTypeDump(node->indexingType())); if (node->hasExecutionCounter()) out.print(comma, RawPointer(node->executionCounter())); if (op == JSConstant) { out.print(comma, "$", node->constantNumber()); JSValue value = valueOfJSConstant(node); out.print(" = ", value); } if (op == WeakJSConstant) out.print(comma, RawPointer(node->weakConstant())); if (node->isBranch() || node->isJump()) out.print(comma, "T:#", node->takenBlockIndex()); if (node->isBranch()) out.print(comma, "F:#", node->notTakenBlockIndex()); out.print(comma, "bc#", node->codeOrigin.bytecodeIndex); out.print(")"); if (!skipped) { if (node->hasVariableAccessData()) out.print(" predicting ", SpeculationDump(node->variableAccessData()->prediction()), node->variableAccessData()->shouldUseDoubleFormat() ? ", forcing double" : ""); else if (node->hasHeapPrediction()) out.print(" predicting ", SpeculationDump(node->getHeapPrediction())); } out.print("\n"); } void Graph::dumpBlockHeader(PrintStream& out, const char* prefix, BlockIndex blockIndex, PhiNodeDumpMode phiNodeDumpMode) { BasicBlock* block = m_blocks[blockIndex].get(); out.print(prefix, "Block #", blockIndex, " (", block->at(0)->codeOrigin, "): ", block->isReachable ? "" : "(skipped)", block->isOSRTarget ? " (OSR target)" : "", "\n"); out.print(prefix, " Predecessors:"); for (size_t i = 0; i < block->m_predecessors.size(); ++i) out.print(" #", block->m_predecessors[i]); out.print("\n"); if (m_dominators.isValid()) { out.print(prefix, " Dominated by:"); for (size_t i = 0; i < m_blocks.size(); ++i) { if (!m_dominators.dominates(i, blockIndex)) continue; out.print(" #", i); } out.print("\n"); out.print(prefix, " Dominates:"); for (size_t i = 0; i < m_blocks.size(); ++i) { if (!m_dominators.dominates(blockIndex, i)) continue; out.print(" #", i); } out.print("\n"); } out.print(prefix, " Phi Nodes:"); for (size_t i = 0; i < block->phis.size(); ++i) { Node* phiNode = block->phis[i]; if (!phiNode->shouldGenerate() && phiNodeDumpMode == DumpLivePhisOnly) continue; out.print(" @", phiNode->index(), "<", phiNode->refCount(), ">->("); if (phiNode->child1()) { out.print("@", phiNode->child1()->index()); if (phiNode->child2()) { out.print(", @", phiNode->child2()->index()); if (phiNode->child3()) out.print(", @", phiNode->child3()->index()); } } out.print(")", i + 1 < block->phis.size() ? "," : ""); } out.print("\n"); } void Graph::dump(PrintStream& out) { dataLog("DFG for ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT), ":\n"); dataLog(" Fixpoint state: ", m_fixpointState, "; Form: ", m_form, "; Unification state: ", m_unificationState, "; Ref count state: ", m_refCountState, "\n"); out.print(" ArgumentPosition size: ", m_argumentPositions.size(), "\n"); for (size_t i = 0; i < m_argumentPositions.size(); ++i) { out.print(" #", i, ": "); ArgumentPosition& arguments = m_argumentPositions[i]; arguments.dump(out, this); } Node* lastNode = 0; for (size_t b = 0; b < m_blocks.size(); ++b) { BasicBlock* block = m_blocks[b].get(); if (!block) continue; dumpBlockHeader(out, "", b, DumpAllPhis); out.print(" vars before: "); if (block->cfaHasVisited) dumpOperands(block->valuesAtHead, out); else out.print(""); out.print("\n"); out.print(" var links: "); dumpOperands(block->variablesAtHead, out); out.print("\n"); for (size_t i = 0; i < block->size(); ++i) { dumpCodeOrigin(out, "", lastNode, block->at(i)); dump(out, "", block->at(i)); lastNode = block->at(i); } out.print(" vars after: "); if (block->cfaHasVisited) dumpOperands(block->valuesAtTail, out); else out.print(""); out.print("\n"); out.print(" var links: "); dumpOperands(block->variablesAtTail, out); out.print("\n"); } } void Graph::dethread() { if (m_form == LoadStore) return; if (logCompilationChanges()) dataLog("Dethreading DFG graph.\n"); SamplingRegion samplingRegion("DFG Dethreading"); for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned phiIndex = block->phis.size(); phiIndex--;) { Node* phi = block->phis[phiIndex]; phi->children.reset(); } } m_form = LoadStore; } void Graph::handleSuccessor(Vector& worklist, BlockIndex blockIndex, BlockIndex successorIndex) { BasicBlock* successor = m_blocks[successorIndex].get(); if (!successor->isReachable) { successor->isReachable = true; worklist.append(successorIndex); } successor->m_predecessors.append(blockIndex); } void Graph::determineReachability() { Vector worklist; worklist.append(0); m_blocks[0]->isReachable = true; while (!worklist.isEmpty()) { BlockIndex index = worklist.last(); worklist.removeLast(); BasicBlock* block = m_blocks[index].get(); ASSERT(block->isLinked); Node* node = block->last(); ASSERT(node->isTerminal()); if (node->isJump()) handleSuccessor(worklist, index, node->takenBlockIndex()); else if (node->isBranch()) { handleSuccessor(worklist, index, node->takenBlockIndex()); handleSuccessor(worklist, index, node->notTakenBlockIndex()); } } } void Graph::resetReachability() { for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; block->isReachable = false; block->m_predecessors.clear(); } determineReachability(); } void Graph::resetExitStates() { for (BlockIndex blockIndex = 0; blockIndex < m_blocks.size(); ++blockIndex) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned indexInBlock = block->size(); indexInBlock--;) block->at(indexInBlock)->setCanExit(true); } } } } // namespace JSC::DFG #endif