/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGGraph.h" #include "CodeBlock.h" #include "DFGVariableAccessDataDump.h" #if ENABLE(DFG_JIT) namespace JSC { namespace DFG { // Creates an array of stringized names. static const char* dfgOpNames[] = { #define STRINGIZE_DFG_OP_ENUM(opcode, flags) #opcode , FOR_EACH_DFG_OP(STRINGIZE_DFG_OP_ENUM) #undef STRINGIZE_DFG_OP_ENUM }; Graph::Graph(JSGlobalData& globalData, CodeBlock* codeBlock, unsigned osrEntryBytecodeIndex, const Operands& mustHandleValues) : m_globalData(globalData) , m_codeBlock(codeBlock) , m_profiledBlock(codeBlock->alternative()) , m_hasArguments(false) , m_osrEntryBytecodeIndex(osrEntryBytecodeIndex) , m_mustHandleValues(mustHandleValues) , m_fixpointState(BeforeFixpoint) { ASSERT(m_profiledBlock); } const char *Graph::opName(NodeType op) { return dfgOpNames[op]; } static void printWhiteSpace(PrintStream& out, unsigned amount) { while (amount-- > 0) out.print(" "); } void Graph::dumpCodeOrigin(PrintStream& out, const char* prefix, NodeIndex prevNodeIndex, NodeIndex nodeIndex) { if (prevNodeIndex == NoNode) return; Node& currentNode = at(nodeIndex); Node& previousNode = at(prevNodeIndex); if (previousNode.codeOrigin.inlineCallFrame == currentNode.codeOrigin.inlineCallFrame) return; Vector previousInlineStack = previousNode.codeOrigin.inlineStack(); Vector currentInlineStack = currentNode.codeOrigin.inlineStack(); unsigned commonSize = std::min(previousInlineStack.size(), currentInlineStack.size()); unsigned indexOfDivergence = commonSize; for (unsigned i = 0; i < commonSize; ++i) { if (previousInlineStack[i].inlineCallFrame != currentInlineStack[i].inlineCallFrame) { indexOfDivergence = i; break; } } // Print the pops. for (unsigned i = previousInlineStack.size(); i-- > indexOfDivergence;) { out.print(prefix); printWhiteSpace(out, i * 2); out.print("<-- #", previousInlineStack[i].inlineCallFrame->hash(), "\n"); } // Print the pushes. for (unsigned i = indexOfDivergence; i < currentInlineStack.size(); ++i) { out.print(prefix); printWhiteSpace(out, i * 2); out.print("--> #", currentInlineStack[i].inlineCallFrame->hash(), "\n"); } } int Graph::amountOfNodeWhiteSpace(Node& node) { return (node.codeOrigin.inlineDepth() - 1) * 2; } void Graph::printNodeWhiteSpace(PrintStream& out, Node& node) { printWhiteSpace(out, amountOfNodeWhiteSpace(node)); } void Graph::dump(PrintStream& out, Edge edge) { out.print( useKindToString(edge.useKind()), "@", edge.index(), AbbreviatedSpeculationDump(at(edge).prediction())); } void Graph::dump(PrintStream& out, const char* prefix, NodeIndex nodeIndex) { Node& node = at(nodeIndex); NodeType op = node.op(); unsigned refCount = node.refCount(); bool skipped = !refCount; bool mustGenerate = node.mustGenerate(); if (mustGenerate) --refCount; out.print(prefix); printNodeWhiteSpace(out, node); // Example/explanation of dataflow dump output // // 14: GetByVal(@3, @13) // ^1 ^2 ^3 ^4 ^5 // // (1) The nodeIndex of this operation. // (2) The reference count. The number printed is the 'real' count, // not including the 'mustGenerate' ref. If the node is // 'mustGenerate' then the count it prefixed with '!'. // (3) The virtual register slot assigned to this node. // (4) The name of the operation. // (5) The arguments to the operation. The may be of the form: // @# - a NodeIndex referencing a prior node in the graph. // arg# - an argument number. // $# - the index in the CodeBlock of a constant { for numeric constants the value is displayed | for integers, in both decimal and hex }. // id# - the index in the CodeBlock of an identifier { if codeBlock is passed to dump(), the string representation is displayed }. // var# - the index of a var on the global object, used by GetGlobalVar/PutGlobalVar operations. out.printf("% 4d:%s<%c%u:", (int)nodeIndex, skipped ? " skipped " : " ", mustGenerate ? '!' : ' ', refCount); if (node.hasResult() && !skipped && node.hasVirtualRegister()) out.print(node.virtualRegister()); else out.print("-"); out.print(">\t", opName(op), "("); bool hasPrinted = false; if (node.flags() & NodeHasVarArgs) { for (unsigned childIdx = node.firstChild(); childIdx < node.firstChild() + node.numChildren(); childIdx++) { if (hasPrinted) out.print(", "); else hasPrinted = true; if (!m_varArgChildren[childIdx]) continue; dump(out, m_varArgChildren[childIdx]); } } else { if (!!node.child1()) { dump(out, node.child1()); hasPrinted = true; } if (!!node.child2()) { out.print(", "); // Whether or not there is a first child, we print a comma to ensure that we see a blank entry if there wasn't one. dump(out, node.child2()); hasPrinted = true; } if (!!node.child3()) { if (!node.child1() && !node.child2()) out.print(", "); // If the third child is the first non-empty one then make sure we have two blanks preceding it. out.print(", "); dump(out, node.child3()); hasPrinted = true; } } if (strlen(nodeFlagsAsString(node.flags()))) { out.print(hasPrinted ? ", " : "", nodeFlagsAsString(node.flags())); hasPrinted = true; } if (node.hasArrayMode()) { out.print(hasPrinted ? ", " : "", node.arrayMode().toString()); hasPrinted = true; } if (node.hasVarNumber()) { out.print(hasPrinted ? ", " : "", "var", node.varNumber()); hasPrinted = true; } if (node.hasRegisterPointer()) { out.print(hasPrinted ? ", " : "", "global", globalObjectFor(node.codeOrigin)->findRegisterIndex(node.registerPointer()), "(", RawPointer(node.registerPointer()), ")"); hasPrinted = true; } if (node.hasIdentifier()) { out.print(hasPrinted ? ", " : "", "id", node.identifierNumber(), "{", m_codeBlock->identifier(node.identifierNumber()).string(), "}"); hasPrinted = true; } if (node.hasStructureSet()) { for (size_t i = 0; i < node.structureSet().size(); ++i) { out.print(hasPrinted ? ", " : "", "struct(", RawPointer(node.structureSet()[i]), ": ", indexingTypeToString(node.structureSet()[i]->indexingType()), ")"); hasPrinted = true; } } if (node.hasStructure()) { out.print(hasPrinted ? ", " : "", "struct(", RawPointer(node.structure()), ": ", indexingTypeToString(node.structure()->indexingType()), ")"); hasPrinted = true; } if (node.hasStructureTransitionData()) { out.print(hasPrinted ? ", " : "", "struct(", RawPointer(node.structureTransitionData().previousStructure), " -> ", RawPointer(node.structureTransitionData().newStructure), ")"); hasPrinted = true; } if (node.hasFunction()) { out.print(hasPrinted ? ", " : "", RawPointer(node.function())); hasPrinted = true; } if (node.hasStorageAccessData()) { StorageAccessData& storageAccessData = m_storageAccessData[node.storageAccessDataIndex()]; out.print(hasPrinted ? ", " : "", "id", storageAccessData.identifierNumber, "{", m_codeBlock->identifier(storageAccessData.identifierNumber).string(), "}"); out.print(", ", static_cast(storageAccessData.offset)); hasPrinted = true; } ASSERT(node.hasVariableAccessData() == node.hasLocal()); if (node.hasVariableAccessData()) { VariableAccessData* variableAccessData = node.variableAccessData(); int operand = variableAccessData->operand(); if (operandIsArgument(operand)) out.print(hasPrinted ? ", " : "", "arg", operandToArgument(operand), "(", VariableAccessDataDump(*this, variableAccessData), ")"); else out.print(hasPrinted ? ", " : "", "r", operand, "(", VariableAccessDataDump(*this, variableAccessData), ")"); hasPrinted = true; } if (node.hasConstantBuffer()) { if (hasPrinted) out.print(", "); out.print(node.startConstant(), ":["); for (unsigned i = 0; i < node.numConstants(); ++i) { if (i) out.print(", "); out.print(m_codeBlock->constantBuffer(node.startConstant())[i].description()); } out.print("]"); hasPrinted = true; } if (node.hasIndexingType()) { if (hasPrinted) out.print(", "); out.print(indexingTypeToString(node.indexingType())); } if (op == JSConstant) { out.print(hasPrinted ? ", " : "", "$", node.constantNumber()); JSValue value = valueOfJSConstant(nodeIndex); out.print(" = ", value.description()); hasPrinted = true; } if (op == WeakJSConstant) { out.print(hasPrinted ? ", " : "", RawPointer(node.weakConstant())); hasPrinted = true; } if (node.isBranch() || node.isJump()) { out.print(hasPrinted ? ", " : "", "T:#", node.takenBlockIndex()); hasPrinted = true; } if (node.isBranch()) { out.print(hasPrinted ? ", " : "", "F:#", node.notTakenBlockIndex()); hasPrinted = true; } out.print(hasPrinted ? ", " : "", "bc#", node.codeOrigin.bytecodeIndex); hasPrinted = true; (void)hasPrinted; out.print(")"); if (!skipped) { if (node.hasVariableAccessData()) out.print(" predicting ", SpeculationDump(node.variableAccessData()->prediction()), node.variableAccessData()->shouldUseDoubleFormat() ? ", forcing double" : ""); else if (node.hasHeapPrediction()) out.print(" predicting ", SpeculationDump(node.getHeapPrediction())); } out.print("\n"); } void Graph::dumpBlockHeader(PrintStream& out, const char* prefix, BlockIndex blockIndex, PhiNodeDumpMode phiNodeDumpMode) { BasicBlock* block = m_blocks[blockIndex].get(); out.print(prefix, "Block #", blockIndex, " (bc#", block->bytecodeBegin, "): ", block->isReachable ? "" : "(skipped)", block->isOSRTarget ? " (OSR target)" : "", "\n"); out.print(prefix, " Predecessors:"); for (size_t i = 0; i < block->m_predecessors.size(); ++i) out.print(" #", block->m_predecessors[i]); out.print("\n"); if (m_dominators.isValid()) { out.print(prefix, " Dominated by:"); for (size_t i = 0; i < m_blocks.size(); ++i) { if (!m_dominators.dominates(i, blockIndex)) continue; out.print(" #", i); } out.print("\n"); out.print(prefix, " Dominates:"); for (size_t i = 0; i < m_blocks.size(); ++i) { if (!m_dominators.dominates(blockIndex, i)) continue; out.print(" #", i); } out.print("\n"); } out.print(prefix, " Phi Nodes:"); for (size_t i = 0; i < block->phis.size(); ++i) { NodeIndex phiNodeIndex = block->phis[i]; Node& phiNode = at(phiNodeIndex); if (!phiNode.shouldGenerate() && phiNodeDumpMode == DumpLivePhisOnly) continue; out.print(" @", phiNodeIndex, "->("); if (phiNode.child1()) { out.print("@", phiNode.child1().index()); if (phiNode.child2()) { out.print(", @", phiNode.child2().index()); if (phiNode.child3()) out.print(", @", phiNode.child3().index()); } } out.print(")", i + 1 < block->phis.size() ? "," : ""); } out.print("\n"); } void Graph::dump(PrintStream& out) { NodeIndex lastNodeIndex = NoNode; for (size_t b = 0; b < m_blocks.size(); ++b) { BasicBlock* block = m_blocks[b].get(); if (!block) continue; dumpBlockHeader(out, "", b, DumpAllPhis); out.print(" vars before: "); if (block->cfaHasVisited) dumpOperands(block->valuesAtHead, out); else out.print(""); out.print("\n"); out.print(" var links: "); dumpOperands(block->variablesAtHead, out); out.print("\n"); for (size_t i = 0; i < block->size(); ++i) { dumpCodeOrigin(out, "", lastNodeIndex, block->at(i)); dump(out, "", block->at(i)); lastNodeIndex = block->at(i); } out.print(" vars after: "); if (block->cfaHasVisited) dumpOperands(block->valuesAtTail, out); else out.print(""); out.print("\n"); out.print(" var links: "); dumpOperands(block->variablesAtTail, out); out.print("\n"); } } // FIXME: Convert this to be iterative, not recursive. #define DO_TO_CHILDREN(node, thingToDo) do { \ Node& _node = (node); \ if (_node.flags() & NodeHasVarArgs) { \ for (unsigned _childIdx = _node.firstChild(); \ _childIdx < _node.firstChild() + _node.numChildren(); \ _childIdx++) { \ if (!!m_varArgChildren[_childIdx]) \ thingToDo(m_varArgChildren[_childIdx]); \ } \ } else { \ if (!_node.child1()) { \ ASSERT(!_node.child2() \ && !_node.child3()); \ break; \ } \ thingToDo(_node.child1()); \ \ if (!_node.child2()) { \ ASSERT(!_node.child3()); \ break; \ } \ thingToDo(_node.child2()); \ \ if (!_node.child3()) \ break; \ thingToDo(_node.child3()); \ } \ } while (false) void Graph::refChildren(NodeIndex op) { DO_TO_CHILDREN(at(op), ref); } void Graph::derefChildren(NodeIndex op) { DO_TO_CHILDREN(at(op), deref); } void Graph::predictArgumentTypes() { ASSERT(m_codeBlock->numParameters() >= 1); for (size_t arg = 0; arg < static_cast(m_codeBlock->numParameters()); ++arg) { ValueProfile* profile = m_profiledBlock->valueProfileForArgument(arg); if (!profile) continue; at(m_arguments[arg]).variableAccessData()->predict(profile->computeUpdatedPrediction()); #if DFG_ENABLE(DEBUG_VERBOSE) dataLog( "Argument [", arg, "] prediction: ", SpeculationDump(at(m_arguments[arg]).variableAccessData()->prediction()), "\n"); #endif } } void Graph::handleSuccessor(Vector& worklist, BlockIndex blockIndex, BlockIndex successorIndex) { BasicBlock* successor = m_blocks[successorIndex].get(); if (!successor->isReachable) { successor->isReachable = true; worklist.append(successorIndex); } successor->m_predecessors.append(blockIndex); } void Graph::collectGarbage() { // First reset the counts to 0 for all nodes. for (unsigned i = size(); i--;) at(i).setRefCount(0); // Now find the roots: the nodes that are must-generate. Set their ref counts to // 1 and put them on the worklist. Vector worklist; for (BlockIndex blockIndex = 0; blockIndex < m_blocks.size(); ++blockIndex) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; for (unsigned indexInBlock = block->size(); indexInBlock--;) { NodeIndex nodeIndex = block->at(indexInBlock); Node& node = at(nodeIndex); if (!(node.flags() & NodeMustGenerate)) continue; node.setRefCount(1); worklist.append(nodeIndex); } } while (!worklist.isEmpty()) { NodeIndex nodeIndex = worklist.last(); worklist.removeLast(); Node& node = at(nodeIndex); ASSERT(node.shouldGenerate()); // It should not be on the worklist unless it's ref'ed. if (node.flags() & NodeHasVarArgs) { for (unsigned childIdx = node.firstChild(); childIdx < node.firstChild() + node.numChildren(); ++childIdx) { if (!m_varArgChildren[childIdx]) continue; NodeIndex childNodeIndex = m_varArgChildren[childIdx].index(); if (!at(childNodeIndex).ref()) continue; worklist.append(childNodeIndex); } } else if (node.child1()) { if (at(node.child1()).ref()) worklist.append(node.child1().index()); if (node.child2()) { if (at(node.child2()).ref()) worklist.append(node.child2().index()); if (node.child3()) { if (at(node.child3()).ref()) worklist.append(node.child3().index()); } } } } } void Graph::determineReachability() { Vector worklist; worklist.append(0); m_blocks[0]->isReachable = true; while (!worklist.isEmpty()) { BlockIndex index = worklist.last(); worklist.removeLast(); BasicBlock* block = m_blocks[index].get(); ASSERT(block->isLinked); Node& node = at(block->last()); ASSERT(node.isTerminal()); if (node.isJump()) handleSuccessor(worklist, index, node.takenBlockIndex()); else if (node.isBranch()) { handleSuccessor(worklist, index, node.takenBlockIndex()); handleSuccessor(worklist, index, node.notTakenBlockIndex()); } } } void Graph::resetReachability() { for (BlockIndex blockIndex = m_blocks.size(); blockIndex--;) { BasicBlock* block = m_blocks[blockIndex].get(); if (!block) continue; block->isReachable = false; block->m_predecessors.clear(); } determineReachability(); } void Graph::resetExitStates() { for (unsigned i = size(); i--;) at(i).setCanExit(true); } } } // namespace JSC::DFG #endif