/* * Copyright (C) 1999-2001 Harri Porten (porten@kde.org) * Copyright (C) 2001 Peter Kelly (pmk@post.com) * Copyright (C) 2003, 2007, 2008, 2011 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef CallFrame_h #define CallFrame_h #include "AbstractPC.h" #include "VM.h" #include "JSStack.h" #include "MacroAssemblerCodeRef.h" #include "Register.h" namespace JSC { class Arguments; class JSActivation; class Interpreter; class JSScope; // Represents the current state of script execution. // Passed as the first argument to most functions. class ExecState : private Register { public: JSValue calleeAsValue() const { return this[JSStack::Callee].jsValue(); } JSObject* callee() const { return this[JSStack::Callee].function(); } CodeBlock* codeBlock() const { return this[JSStack::CodeBlock].Register::codeBlock(); } JSScope* scope() const { ASSERT(this[JSStack::ScopeChain].Register::scope()); return this[JSStack::ScopeChain].Register::scope(); } // Global object in which execution began. JSGlobalObject* dynamicGlobalObject(); // Global object in which the currently executing code was defined. // Differs from dynamicGlobalObject() during function calls across web browser frames. JSGlobalObject* lexicalGlobalObject() const; // Differs from lexicalGlobalObject because this will have DOM window shell rather than // the actual DOM window, which can't be "this" for security reasons. JSObject* globalThisValue() const; VM& vm() const; // Convenience functions for access to global data. // It takes a few memory references to get from a call frame to the global data // pointer, so these are inefficient, and should be used sparingly in new code. // But they're used in many places in legacy code, so they're not going away any time soon. void clearException() { vm().exception = JSValue(); } void clearSupplementaryExceptionInfo() { vm().clearExceptionStack(); } JSValue exception() const { return vm().exception; } bool hadException() const { return vm().exception; } const CommonIdentifiers& propertyNames() const { return *vm().propertyNames; } const MarkedArgumentBuffer& emptyList() const { return *vm().emptyList; } Interpreter* interpreter() { return vm().interpreter; } Heap* heap() { return &vm().heap; } #ifndef NDEBUG void dumpCaller(); #endif static const HashTable* arrayConstructorTable(CallFrame* callFrame) { return callFrame->vm().arrayConstructorTable; } static const HashTable* arrayPrototypeTable(CallFrame* callFrame) { return callFrame->vm().arrayPrototypeTable; } static const HashTable* booleanPrototypeTable(CallFrame* callFrame) { return callFrame->vm().booleanPrototypeTable; } static const HashTable* dateTable(CallFrame* callFrame) { return callFrame->vm().dateTable; } static const HashTable* dateConstructorTable(CallFrame* callFrame) { return callFrame->vm().dateConstructorTable; } static const HashTable* errorPrototypeTable(CallFrame* callFrame) { return callFrame->vm().errorPrototypeTable; } static const HashTable* globalObjectTable(CallFrame* callFrame) { return callFrame->vm().globalObjectTable; } static const HashTable* jsonTable(CallFrame* callFrame) { return callFrame->vm().jsonTable; } static const HashTable* mathTable(CallFrame* callFrame) { return callFrame->vm().mathTable; } static const HashTable* numberConstructorTable(CallFrame* callFrame) { return callFrame->vm().numberConstructorTable; } static const HashTable* numberPrototypeTable(CallFrame* callFrame) { return callFrame->vm().numberPrototypeTable; } static const HashTable* objectConstructorTable(CallFrame* callFrame) { return callFrame->vm().objectConstructorTable; } static const HashTable* privateNamePrototypeTable(CallFrame* callFrame) { return callFrame->vm().privateNamePrototypeTable; } static const HashTable* regExpTable(CallFrame* callFrame) { return callFrame->vm().regExpTable; } static const HashTable* regExpConstructorTable(CallFrame* callFrame) { return callFrame->vm().regExpConstructorTable; } static const HashTable* regExpPrototypeTable(CallFrame* callFrame) { return callFrame->vm().regExpPrototypeTable; } static const HashTable* stringConstructorTable(CallFrame* callFrame) { return callFrame->vm().stringConstructorTable; } static CallFrame* create(Register* callFrameBase) { return static_cast(callFrameBase); } Register* registers() { return this; } CallFrame& operator=(const Register& r) { *static_cast(this) = r; return *this; } CallFrame* callerFrame() const { return this[JSStack::CallerFrame].callFrame(); } #if ENABLE(JIT) || ENABLE(LLINT) ReturnAddressPtr returnPC() const { return ReturnAddressPtr(this[JSStack::ReturnPC].vPC()); } bool hasReturnPC() const { return !!this[JSStack::ReturnPC].vPC(); } void clearReturnPC() { registers()[JSStack::ReturnPC] = static_cast(0); } #endif AbstractPC abstractReturnPC(VM& vm) { return AbstractPC(vm, this); } #if USE(JSVALUE32_64) unsigned bytecodeOffsetForNonDFGCode() const; void setBytecodeOffsetForNonDFGCode(unsigned offset); #else unsigned bytecodeOffsetForNonDFGCode() const { ASSERT(codeBlock()); return this[JSStack::ArgumentCount].tag(); } void setBytecodeOffsetForNonDFGCode(unsigned offset) { ASSERT(codeBlock()); this[JSStack::ArgumentCount].tag() = static_cast(offset); } #endif Register* frameExtent() { if (!codeBlock()) return registers(); return frameExtentInternal(); } Register* frameExtentInternal(); #if ENABLE(DFG_JIT) InlineCallFrame* inlineCallFrame() const { return this[JSStack::ReturnPC].asInlineCallFrame(); } unsigned codeOriginIndexForDFG() const { return this[JSStack::ArgumentCount].tag(); } #else // This will never be called if !ENABLE(DFG_JIT) since all calls should be guarded by // isInlineCallFrame(). But to make it easier to write code without having a bunch of // #if's, we make a dummy implementation available anyway. InlineCallFrame* inlineCallFrame() const { RELEASE_ASSERT_NOT_REACHED(); return 0; } #endif #if USE(JSVALUE32_64) Instruction* currentVPC() const { return bitwise_cast(this[JSStack::ArgumentCount].tag()); } void setCurrentVPC(Instruction* vpc) { this[JSStack::ArgumentCount].tag() = bitwise_cast(vpc); } #else Instruction* currentVPC() const; void setCurrentVPC(Instruction* vpc); #endif void setCallerFrame(CallFrame* callerFrame) { static_cast(this)[JSStack::CallerFrame] = callerFrame; } void setScope(JSScope* scope) { static_cast(this)[JSStack::ScopeChain] = scope; } ALWAYS_INLINE void init(CodeBlock* codeBlock, Instruction* vPC, JSScope* scope, CallFrame* callerFrame, int argc, JSObject* callee) { ASSERT(callerFrame); // Use noCaller() rather than 0 for the outer host call frame caller. ASSERT(callerFrame == noCaller() || callerFrame->removeHostCallFrameFlag()->stack()->end() >= this); setCodeBlock(codeBlock); setScope(scope); setCallerFrame(callerFrame); setReturnPC(vPC); // This is either an Instruction* or a pointer into JIT generated code stored as an Instruction*. setArgumentCountIncludingThis(argc); // original argument count (for the sake of the "arguments" object) setCallee(callee); } // Read a register from the codeframe (or constant from the CodeBlock). Register& r(int); // Read a register for a non-constant Register& uncheckedR(int); // Access to arguments as passed. (After capture, arguments may move to a different location.) size_t argumentCount() const { return argumentCountIncludingThis() - 1; } size_t argumentCountIncludingThis() const { return this[JSStack::ArgumentCount].payload(); } static int argumentOffset(int argument) { return s_firstArgumentOffset - argument; } static int argumentOffsetIncludingThis(int argument) { return s_thisArgumentOffset - argument; } // In the following (argument() and setArgument()), the 'argument' // parameter is the index of the arguments of the target function of // this frame. The index starts at 0 for the first arg, 1 for the // second, etc. // // The arguments (in this case) do not include the 'this' value. // arguments(0) will not fetch the 'this' value. To get/set 'this', // use thisValue() and setThisValue() below. JSValue argument(size_t argument) { if (argument >= argumentCount()) return jsUndefined(); return this[argumentOffset(argument)].jsValue(); } void setArgument(size_t argument, JSValue value) { this[argumentOffset(argument)] = value; } static int thisArgumentOffset() { return argumentOffsetIncludingThis(0); } JSValue thisValue() { return this[thisArgumentOffset()].jsValue(); } void setThisValue(JSValue value) { this[thisArgumentOffset()] = value; } JSValue argumentAfterCapture(size_t argument); static int offsetFor(size_t argumentCountIncludingThis) { return argumentCountIncludingThis + JSStack::CallFrameHeaderSize; } // FIXME: Remove these. int hostThisRegister() { return thisArgumentOffset(); } JSValue hostThisValue() { return thisValue(); } static CallFrame* noCaller() { return reinterpret_cast(HostCallFrameFlag); } bool hasHostCallFrameFlag() const { return reinterpret_cast(this) & HostCallFrameFlag; } CallFrame* addHostCallFrameFlag() const { return reinterpret_cast(reinterpret_cast(this) | HostCallFrameFlag); } CallFrame* removeHostCallFrameFlag() { return reinterpret_cast(reinterpret_cast(this) & ~HostCallFrameFlag); } void setArgumentCountIncludingThis(int count) { static_cast(this)[JSStack::ArgumentCount].payload() = count; } void setCallee(JSObject* callee) { static_cast(this)[JSStack::Callee] = Register::withCallee(callee); } void setCodeBlock(CodeBlock* codeBlock) { static_cast(this)[JSStack::CodeBlock] = codeBlock; } void setReturnPC(void* value) { static_cast(this)[JSStack::ReturnPC] = (Instruction*)value; } #if ENABLE(DFG_JIT) bool isInlineCallFrame(); void setInlineCallFrame(InlineCallFrame* inlineCallFrame) { static_cast(this)[JSStack::ReturnPC] = inlineCallFrame; } // Call this to get the semantically correct JS CallFrame* for the // currently executing function. CallFrame* trueCallFrame(AbstractPC); // Call this to get the semantically correct JS CallFrame* corresponding // to the caller. This resolves issues surrounding inlining and the // HostCallFrameFlag stuff. CallFrame* trueCallerFrame(); CodeBlock* someCodeBlockForPossiblyInlinedCode(); #else bool isInlineCallFrame() { return false; } CallFrame* trueCallFrame(AbstractPC) { return this; } CallFrame* trueCallerFrame() { return callerFrame()->removeHostCallFrameFlag(); } CodeBlock* someCodeBlockForPossiblyInlinedCode() { return codeBlock(); } #endif CallFrame* callerFrameNoFlags() { return callerFrame()->removeHostCallFrameFlag(); } // Call this to get the true call frame (accounted for inlining and any // other optimizations), when you have entered into VM code through one // of the "blessed" entrypoints (JITStubs or DFGOperations). This means // that if you're pretty much anywhere in the VM you can safely call this; // though if you were to magically get an ExecState* by, say, interrupting // a thread that is running JS code and brutishly scraped the call frame // register, calling this method would probably lead to horrible things // happening. CallFrame* trueCallFrameFromVMCode() { return trueCallFrame(AbstractPC()); } private: static const intptr_t HostCallFrameFlag = 1; static const int s_thisArgumentOffset = -1 - JSStack::CallFrameHeaderSize; static const int s_firstArgumentOffset = s_thisArgumentOffset - 1; #ifndef NDEBUG JSStack* stack(); #endif #if ENABLE(DFG_JIT) bool isInlineCallFrameSlow(); #endif ExecState(); ~ExecState(); // The following are for internal use in debugging and verification // code only and not meant as an API for general usage: size_t argIndexForRegister(Register* reg) { // The register at 'offset' number of slots from the frame pointer // i.e. // reg = frame[offset]; // ==> reg = frame + offset; // ==> offset = reg - frame; int offset = reg - this->registers(); // The offset is defined (based on argumentOffset()) to be: // offset = s_firstArgumentOffset - argIndex; // Hence: // argIndex = s_firstArgumentOffset - offset; size_t argIndex = s_firstArgumentOffset - offset; return argIndex; } JSValue getArgumentUnsafe(size_t argIndex) { // User beware! This method does not verify that there is a valid // argument at the specified argIndex. This is used for debugging // and verification code only. The caller is expected to know what // he/she is doing when calling this method. return this[argumentOffset(argIndex)].jsValue(); } friend class JSStack; friend class VMInspector; }; } // namespace JSC #endif // CallFrame_h