/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(JIT) #include "JIT.h" #include "CodeBlock.h" #include "JITInlines.h" #include "JITStubCall.h" #include "JITStubs.h" #include "JSArray.h" #include "JSFunction.h" #include "Interpreter.h" #include "Operations.h" #include "ResultType.h" #include "SamplingTool.h" #ifndef NDEBUG #include #endif using namespace std; namespace JSC { void JIT::emit_op_jless(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jless, op1, op2, target, LessThan); } void JIT::emit_op_jlesseq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual); } void JIT::emit_op_jgreater(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan); } void JIT::emit_op_jgreatereq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual); } void JIT::emit_op_jnless(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual); } void JIT::emit_op_jnlesseq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan); } void JIT::emit_op_jngreater(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual); } void JIT::emit_op_jngreatereq(Instruction* currentInstruction) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan); } void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, cti_op_jless, false, iter); } void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, cti_op_jlesseq, false, iter); } void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, cti_op_jgreater, false, iter); } void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, cti_op_jgreatereq, false, iter); } void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, cti_op_jless, true, iter); } void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, cti_op_jlesseq, true, iter); } void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, cti_op_jgreater, true, iter); } void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector::iterator& iter) { unsigned op1 = currentInstruction[1].u.operand; unsigned op2 = currentInstruction[2].u.operand; unsigned target = currentInstruction[3].u.operand; emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, cti_op_jgreatereq, true, iter); } #if USE(JSVALUE64) void JIT::emit_op_negate(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned src = currentInstruction[2].u.operand; emitGetVirtualRegister(src, regT0); Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0); addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff))); neg32(regT0); emitFastArithReTagImmediate(regT0, regT0); Jump end = jump(); srcNotInt.link(this); emitJumpSlowCaseIfNotImmediateNumber(regT0); move(TrustedImm64((int64_t)0x8000000000000000ull), regT1); xor64(regT1, regT0); end.link(this); emitPutVirtualRegister(dst); } void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; linkSlowCase(iter); // 0x7fffffff check linkSlowCase(iter); // double check JITStubCall stubCall(this, cti_op_negate); stubCall.addArgument(regT0); stubCall.call(dst); } void JIT::emit_op_lshift(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; emitGetVirtualRegisters(op1, regT0, op2, regT2); // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT2); emitFastArithImmToInt(regT0); emitFastArithImmToInt(regT2); lshift32(regT2, regT0); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(result); } void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; UNUSED_PARAM(op1); UNUSED_PARAM(op2); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_lshift); stubCall.addArgument(regT0); stubCall.addArgument(regT2); stubCall.call(result); } void JIT::emit_op_rshift(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { // isOperandConstantImmediateInt(op2) => 1 SlowCase emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); // Mask with 0x1f as per ecma-262 11.7.2 step 7. rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); } else { emitGetVirtualRegisters(op1, regT0, op2, regT2); if (supportsFloatingPointTruncate()) { Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases addSlowCase(emitJumpIfNotImmediateNumber(regT0)); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT0); addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); lhsIsInt.link(this); emitJumpSlowCaseIfNotImmediateInteger(regT2); } else { // !supportsFloatingPoint() => 2 SlowCases emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT2); } emitFastArithImmToInt(regT2); rshift32(regT2, regT0); } emitFastArithIntToImmNoCheck(regT0, regT0); emitPutVirtualRegister(result); } void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_rshift); if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); } else { if (supportsFloatingPointTruncate()) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); // We're reloading op1 to regT0 as we can no longer guarantee that // we have not munged the operand. It may have already been shifted // correctly, but it still will not have been tagged. stubCall.addArgument(op1, regT0); stubCall.addArgument(regT2); } else { linkSlowCase(iter); linkSlowCase(iter); stubCall.addArgument(regT0); stubCall.addArgument(regT2); } } stubCall.call(result); } void JIT::emit_op_urshift(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; // Slow case of urshift makes assumptions about what registers hold the // shift arguments, so any changes must be updated there as well. if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitFastArithImmToInt(regT0); int shift = getConstantOperand(op2).asInt32(); if (shift) urshift32(Imm32(shift & 0x1f), regT0); // unsigned shift < 0 or shift = k*2^32 may result in (essentially) // a toUint conversion, which can result in a value we can represent // as an immediate int. if (shift < 0 || !(shift & 31)) addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(dst, regT0); return; } emitGetVirtualRegisters(op1, regT0, op2, regT1); if (!isOperandConstantImmediateInt(op1)) emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); emitFastArithImmToInt(regT0); emitFastArithImmToInt(regT1); urshift32(regT1, regT0); addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(dst, regT0); } void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector::iterator& iter) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op2)) { int shift = getConstantOperand(op2).asInt32(); // op1 = regT0 linkSlowCase(iter); // int32 check if (supportsFloatingPointTruncate()) { JumpList failures; failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT0); failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); if (shift) urshift32(Imm32(shift & 0x1f), regT0); if (shift < 0 || !(shift & 31)) failures.append(branch32(LessThan, regT0, TrustedImm32(0))); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(dst, regT0); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); failures.link(this); } if (shift < 0 || !(shift & 31)) linkSlowCase(iter); // failed to box in hot path } else { // op1 = regT0 // op2 = regT1 if (!isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); // int32 check -- op1 is not an int if (supportsFloatingPointTruncate()) { JumpList failures; failures.append(emitJumpIfNotImmediateNumber(regT0)); // op1 is not a double add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT0); failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0)); failures.append(emitJumpIfNotImmediateInteger(regT1)); // op2 is not an int emitFastArithImmToInt(regT1); urshift32(regT1, regT0); failures.append(branch32(LessThan, regT0, TrustedImm32(0))); emitFastArithReTagImmediate(regT0, regT0); emitPutVirtualRegister(dst, regT0); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift)); failures.link(this); } } linkSlowCase(iter); // int32 check - op2 is not an int linkSlowCase(iter); // Can't represent unsigned result as an immediate } JITStubCall stubCall(this, cti_op_urshift); stubCall.addArgument(op1, regT0); stubCall.addArgument(op2, regT1); stubCall.call(dst); } void JIT::emit_compareAndJump(OpcodeID, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition) { // We generate inline code for the following cases in the fast path: // - int immediate to constant int immediate // - constant int immediate to int immediate // - int immediate to int immediate if (isOperandConstantImmediateChar(op1)) { emitGetVirtualRegister(op2, regT0); addSlowCase(emitJumpIfNotJSCell(regT0)); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateChar(op2)) { emitGetVirtualRegister(op1, regT0); addSlowCase(emitJumpIfNotJSCell(regT0)); JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); int32_t op2imm = getConstantOperandImmediateInt(op2); addJump(branch32(condition, regT0, Imm32(op2imm)), target); } else if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT1); int32_t op1imm = getConstantOperandImmediateInt(op1); addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); addJump(branch32(condition, regT0, regT1), target); } } void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition condition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector::iterator& iter) { COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless); COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless); COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless); COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless); COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless); COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless); COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless); // We generate inline code for the following cases in the slow path: // - floating-point number to constant int immediate // - constant int immediate to floating-point number // - floating-point number to floating-point number. if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, stub); stubCall.addArgument(op1, regT0); stubCall.addArgument(op2, regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); return; } if (isOperandConstantImmediateInt(op2)) { linkSlowCase(iter); if (supportsFloatingPoint()) { Jump fail1 = emitJumpIfNotImmediateNumber(regT0); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT0); int32_t op2imm = getConstantOperand(op2).asInt32(); move(Imm32(op2imm), regT1); convertInt32ToDouble(regT1, fpRegT1); emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); fail1.link(this); } JITStubCall stubCall(this, stub); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(); emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); } else if (isOperandConstantImmediateInt(op1)) { linkSlowCase(iter); if (supportsFloatingPoint()) { Jump fail1 = emitJumpIfNotImmediateNumber(regT1); add64(tagTypeNumberRegister, regT1); move64ToDouble(regT1, fpRegT1); int32_t op1imm = getConstantOperand(op1).asInt32(); move(Imm32(op1imm), regT0); convertInt32ToDouble(regT0, fpRegT0); emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); fail1.link(this); } JITStubCall stubCall(this, stub); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); } else { linkSlowCase(iter); if (supportsFloatingPoint()) { Jump fail1 = emitJumpIfNotImmediateNumber(regT0); Jump fail2 = emitJumpIfNotImmediateNumber(regT1); Jump fail3 = emitJumpIfImmediateInteger(regT1); add64(tagTypeNumberRegister, regT0); add64(tagTypeNumberRegister, regT1); move64ToDouble(regT0, fpRegT0); move64ToDouble(regT1, fpRegT1); emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); fail1.link(this); fail2.link(this); fail3.link(this); } linkSlowCase(iter); JITStubCall stubCall(this, stub); stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(); emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target); } } void JIT::emit_op_bitand(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); int32_t imm = getConstantOperandImmediateInt(op1); and64(Imm32(imm), regT0); if (imm >= 0) emitFastArithIntToImmNoCheck(regT0, regT0); } else if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); int32_t imm = getConstantOperandImmediateInt(op2); and64(Imm32(imm), regT0); if (imm >= 0) emitFastArithIntToImmNoCheck(regT0, regT0); } else { emitGetVirtualRegisters(op1, regT0, op2, regT1); and64(regT1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); } emitPutVirtualRegister(result); } void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; linkSlowCase(iter); if (isOperandConstantImmediateInt(op1)) { JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT0); stubCall.call(result); } else if (isOperandConstantImmediateInt(op2)) { JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(regT0); stubCall.addArgument(op2, regT2); stubCall.call(result); } else { JITStubCall stubCall(this, cti_op_bitand); stubCall.addArgument(op1, regT2); stubCall.addArgument(regT1); stubCall.call(result); } } void JIT::emit_op_inc(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitGetVirtualRegister(srcDst, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); emitFastArithIntToImmNoCheck(regT0, regT0); emitPutVirtualRegister(srcDst); } void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; Jump notImm = getSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegister(srcDst, regT0); notImm.link(this); JITStubCall stubCall(this, cti_op_inc); stubCall.addArgument(regT0); stubCall.call(srcDst); } void JIT::emit_op_dec(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; emitGetVirtualRegister(srcDst, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); emitFastArithIntToImmNoCheck(regT0, regT0); emitPutVirtualRegister(srcDst); } void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; Jump notImm = getSlowCase(iter); linkSlowCase(iter); emitGetVirtualRegister(srcDst, regT0); notImm.link(this); JITStubCall stubCall(this, cti_op_dec); stubCall.addArgument(regT0); stubCall.call(srcDst); } /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ #if CPU(X86) || CPU(X86_64) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; // Make sure registers are correct for x86 IDIV instructions. ASSERT(regT0 == X86Registers::eax); ASSERT(regT1 == X86Registers::edx); ASSERT(regT2 == X86Registers::ecx); emitGetVirtualRegisters(op1, regT3, op2, regT2); emitJumpSlowCaseIfNotImmediateInteger(regT3); emitJumpSlowCaseIfNotImmediateInteger(regT2); move(regT3, regT0); addSlowCase(branchTest32(Zero, regT2)); Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1)); addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1))); denominatorNotNeg1.link(this); m_assembler.cdq(); m_assembler.idivl_r(regT2); Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); addSlowCase(branchTest32(Zero, regT1)); numeratorPositive.link(this); emitFastArithReTagImmediate(regT1, regT0); emitPutVirtualRegister(result); } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(regT3); stubCall.addArgument(regT2); stubCall.call(result); } #else // CPU(X86) || CPU(X86_64) void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) { RELEASE_ASSERT_NOT_REACHED(); } #endif // CPU(X86) || CPU(X86_64) /* ------------------------------ END: OP_MOD ------------------------------ */ /* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes) { emitGetVirtualRegisters(op1, regT0, op2, regT1); emitJumpSlowCaseIfNotImmediateInteger(regT0); emitJumpSlowCaseIfNotImmediateInteger(regT1); #if ENABLE(VALUE_PROFILER) RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); #endif if (opcodeID == op_add) addSlowCase(branchAdd32(Overflow, regT1, regT0)); else if (opcodeID == op_sub) addSlowCase(branchSub32(Overflow, regT1, regT0)); else { ASSERT(opcodeID == op_mul); #if ENABLE(VALUE_PROFILER) if (shouldEmitProfiling()) { // We want to be able to measure if this is taking the slow case just // because of negative zero. If this produces positive zero, then we // don't want the slow case to be taken because that will throw off // speculative compilation. move(regT0, regT2); addSlowCase(branchMul32(Overflow, regT1, regT2)); JumpList done; done.append(branchTest32(NonZero, regT2)); Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0)); done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0))); negativeZero.link(this); // We only get here if we have a genuine negative zero. Record this, // so that the speculative JIT knows that we failed speculation // because of a negative zero. add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter)); addSlowCase(jump()); done.link(this); move(regT2, regT0); } else { addSlowCase(branchMul32(Overflow, regT1, regT0)); addSlowCase(branchTest32(Zero, regT0)); } #else addSlowCase(branchMul32(Overflow, regT1, regT0)); addSlowCase(branchTest32(Zero, regT0)); #endif } emitFastArithIntToImmNoCheck(regT0, regT0); } void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) { // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); Jump notImm1; Jump notImm2; if (op1HasImmediateIntFastCase) { notImm2 = getSlowCase(iter); } else if (op2HasImmediateIntFastCase) { notImm1 = getSlowCase(iter); } else { notImm1 = getSlowCase(iter); notImm2 = getSlowCase(iter); } linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. linkSlowCase(iter); emitGetVirtualRegister(op1, regT0); Label stubFunctionCall(this); JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul); if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) { emitGetVirtualRegister(op1, regT0); emitGetVirtualRegister(op2, regT1); } stubCall.addArgument(regT0); stubCall.addArgument(regT1); stubCall.call(result); Jump end = jump(); if (op1HasImmediateIntFastCase) { notImm2.link(this); if (!types.second().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); emitGetVirtualRegister(op1, regT1); convertInt32ToDouble(regT1, fpRegT1); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT2); } else if (op2HasImmediateIntFastCase) { notImm1.link(this); if (!types.first().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); emitGetVirtualRegister(op2, regT1); convertInt32ToDouble(regT1, fpRegT1); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT2); } else { // if we get here, eax is not an int32, edx not yet checked. notImm1.link(this); if (!types.first().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); if (!types.second().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT1); Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); convertInt32ToDouble(regT1, fpRegT2); Jump op2wasInteger = jump(); // if we get here, eax IS an int32, edx is not. notImm2.link(this); if (!types.second().definitelyIsNumber()) emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); convertInt32ToDouble(regT0, fpRegT1); op2isDouble.link(this); add64(tagTypeNumberRegister, regT1); move64ToDouble(regT1, fpRegT2); op2wasInteger.link(this); } if (opcodeID == op_add) addDouble(fpRegT2, fpRegT1); else if (opcodeID == op_sub) subDouble(fpRegT2, fpRegT1); else if (opcodeID == op_mul) mulDouble(fpRegT2, fpRegT1); else { ASSERT(opcodeID == op_div); divDouble(fpRegT2, fpRegT1); } moveDoubleTo64(fpRegT1, regT0); sub64(tagTypeNumberRegister, regT0); emitPutVirtualRegister(result, regT0); end.link(this); } void JIT::emit_op_add(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { addSlowCase(); JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); return; } if (isOperandConstantImmediateInt(op1)) { emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1)); emitFastArithIntToImmNoCheck(regT1, regT0); } else if (isOperandConstantImmediateInt(op2)) { emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1)); emitFastArithIntToImmNoCheck(regT1, regT0); } else compileBinaryArithOp(op_add, result, op1, op2, types); emitPutVirtualRegister(result); } void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { linkDummySlowCase(iter); return; } bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); } void JIT::emit_op_mul(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); // For now, only plant a fast int case if the constant operand is greater than zero. int32_t value; if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { #if ENABLE(VALUE_PROFILER) // Add a special fast case profile because the DFG JIT will expect one. m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); #endif emitGetVirtualRegister(op2, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); emitFastArithReTagImmediate(regT1, regT0); } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { #if ENABLE(VALUE_PROFILER) // Add a special fast case profile because the DFG JIT will expect one. m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); #endif emitGetVirtualRegister(op1, regT0); emitJumpSlowCaseIfNotImmediateInteger(regT0); addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); emitFastArithReTagImmediate(regT1, regT0); } else compileBinaryArithOp(op_mul, result, op1, op2, types); emitPutVirtualRegister(result); } void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); } void JIT::emit_op_div(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (isOperandConstantImmediateDouble(op1)) { emitGetVirtualRegister(op1, regT0); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT0); } else if (isOperandConstantImmediateInt(op1)) { emitLoadInt32ToDouble(op1, fpRegT0); } else { emitGetVirtualRegister(op1, regT0); if (!types.first().definitelyIsNumber()) emitJumpSlowCaseIfNotImmediateNumber(regT0); Jump notInt = emitJumpIfNotImmediateInteger(regT0); convertInt32ToDouble(regT0, fpRegT0); Jump skipDoubleLoad = jump(); notInt.link(this); add64(tagTypeNumberRegister, regT0); move64ToDouble(regT0, fpRegT0); skipDoubleLoad.link(this); } if (isOperandConstantImmediateDouble(op2)) { emitGetVirtualRegister(op2, regT1); add64(tagTypeNumberRegister, regT1); move64ToDouble(regT1, fpRegT1); } else if (isOperandConstantImmediateInt(op2)) { emitLoadInt32ToDouble(op2, fpRegT1); } else { emitGetVirtualRegister(op2, regT1); if (!types.second().definitelyIsNumber()) emitJumpSlowCaseIfNotImmediateNumber(regT1); Jump notInt = emitJumpIfNotImmediateInteger(regT1); convertInt32ToDouble(regT1, fpRegT1); Jump skipDoubleLoad = jump(); notInt.link(this); add64(tagTypeNumberRegister, regT1); move64ToDouble(regT1, fpRegT1); skipDoubleLoad.link(this); } divDouble(fpRegT1, fpRegT0); #if ENABLE(VALUE_PROFILER) // Is the result actually an integer? The DFG JIT would really like to know. If it's // not an integer, we increment a count. If this together with the slow case counter // are below threshold then the DFG JIT will compile this division with a specualtion // that the remainder is zero. // As well, there are cases where a double result here would cause an important field // in the heap to sometimes have doubles in it, resulting in double predictions getting // propagated to a use site where it might cause damage (such as the index to an array // access). So if we are DFG compiling anything in the program, we want this code to // ensure that it produces integers whenever possible. JumpList notInteger; branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1); // If we've got an integer, we might as well make that the result of the division. emitFastArithReTagImmediate(regT0, regT0); Jump isInteger = jump(); notInteger.link(this); moveDoubleTo64(fpRegT0, regT0); Jump doubleZero = branchTest64(Zero, regT0); add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter)); sub64(tagTypeNumberRegister, regT0); Jump trueDouble = jump(); doubleZero.link(this); move(tagTypeNumberRegister, regT0); trueDouble.link(this); isInteger.link(this); #else // Double result. moveDoubleTo64(fpRegT0, regT0); sub64(tagTypeNumberRegister, regT0); #endif emitPutVirtualRegister(dst, regT0); } void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { #ifndef NDEBUG breakpoint(); #endif return; } if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { if (!types.first().definitelyIsNumber()) linkSlowCase(iter); } if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { if (!types.second().definitelyIsNumber()) linkSlowCase(iter); } // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. JITStubCall stubCall(this, cti_op_div); stubCall.addArgument(op1, regT2); stubCall.addArgument(op2, regT2); stubCall.call(result); } void JIT::emit_op_sub(Instruction* currentInstruction) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); compileBinaryArithOp(op_sub, result, op1, op2, types); emitPutVirtualRegister(result); } void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector::iterator& iter) { unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false); } /* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ #endif // USE(JSVALUE64) } // namespace JSC #endif // ENABLE(JIT)