/* * Copyright (C) 2010, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(WEB_AUDIO) #include "BiquadDSPKernel.h" #include "BiquadProcessor.h" #include "FloatConversion.h" #include #include namespace WebCore { // FIXME: As a recursive linear filter, depending on its parameters, a biquad filter can have // an infinite tailTime. In practice, Biquad filters do not usually (except for very high resonance values) // have a tailTime of longer than approx. 200ms. This value could possibly be calculated based on the // settings of the Biquad. static const double MaxBiquadDelayTime = 0.2; void BiquadDSPKernel::updateCoefficientsIfNecessary(bool useSmoothing, bool forceUpdate) { if (forceUpdate || biquadProcessor()->filterCoefficientsDirty()) { double value1; double value2; double gain; double detune; // in Cents if (biquadProcessor()->hasSampleAccurateValues()) { value1 = biquadProcessor()->parameter1()->finalValue(); value2 = biquadProcessor()->parameter2()->finalValue(); gain = biquadProcessor()->parameter3()->finalValue(); detune = biquadProcessor()->parameter4()->finalValue(); } else if (useSmoothing) { value1 = biquadProcessor()->parameter1()->smoothedValue(); value2 = biquadProcessor()->parameter2()->smoothedValue(); gain = biquadProcessor()->parameter3()->smoothedValue(); detune = biquadProcessor()->parameter4()->smoothedValue(); } else { value1 = biquadProcessor()->parameter1()->value(); value2 = biquadProcessor()->parameter2()->value(); gain = biquadProcessor()->parameter3()->value(); detune = biquadProcessor()->parameter4()->value(); } // Convert from Hertz to normalized frequency 0 -> 1. double nyquist = this->nyquist(); double normalizedFrequency = value1 / nyquist; // Offset frequency by detune. if (detune) normalizedFrequency *= pow(2, detune / 1200); // Configure the biquad with the new filter parameters for the appropriate type of filter. switch (biquadProcessor()->type()) { case BiquadProcessor::LowPass: m_biquad.setLowpassParams(normalizedFrequency, value2); break; case BiquadProcessor::HighPass: m_biquad.setHighpassParams(normalizedFrequency, value2); break; case BiquadProcessor::BandPass: m_biquad.setBandpassParams(normalizedFrequency, value2); break; case BiquadProcessor::LowShelf: m_biquad.setLowShelfParams(normalizedFrequency, gain); break; case BiquadProcessor::HighShelf: m_biquad.setHighShelfParams(normalizedFrequency, gain); break; case BiquadProcessor::Peaking: m_biquad.setPeakingParams(normalizedFrequency, value2, gain); break; case BiquadProcessor::Notch: m_biquad.setNotchParams(normalizedFrequency, value2); break; case BiquadProcessor::Allpass: m_biquad.setAllpassParams(normalizedFrequency, value2); break; } } } void BiquadDSPKernel::process(const float* source, float* destination, size_t framesToProcess) { ASSERT(source && destination && biquadProcessor()); // Recompute filter coefficients if any of the parameters have changed. // FIXME: as an optimization, implement a way that a Biquad object can simply copy its internal filter coefficients from another Biquad object. // Then re-factor this code to only run for the first BiquadDSPKernel of each BiquadProcessor. updateCoefficientsIfNecessary(true, false); m_biquad.process(source, destination, framesToProcess); } void BiquadDSPKernel::getFrequencyResponse(int nFrequencies, const float* frequencyHz, float* magResponse, float* phaseResponse) { bool isGood = nFrequencies > 0 && frequencyHz && magResponse && phaseResponse; ASSERT(isGood); if (!isGood) return; Vector frequency(nFrequencies); double nyquist = this->nyquist(); // Convert from frequency in Hz to normalized frequency (0 -> 1), // with 1 equal to the Nyquist frequency. for (int k = 0; k < nFrequencies; ++k) frequency[k] = narrowPrecisionToFloat(frequencyHz[k] / nyquist); // We want to get the final values of the coefficients and compute // the response from that instead of some intermediate smoothed // set. Forcefully update the coefficients even if they are not // dirty. updateCoefficientsIfNecessary(false, true); m_biquad.getFrequencyResponse(nFrequencies, frequency.data(), magResponse, phaseResponse); } double BiquadDSPKernel::tailTime() const { return MaxBiquadDelayTime; } double BiquadDSPKernel::latencyTime() const { return 0; } } // namespace WebCore #endif // ENABLE(WEB_AUDIO)