/* * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "FloatPolygon.h" #include namespace WebCore { static inline float determinant(const FloatSize& a, const FloatSize& b) { return a.width() * b.height() - a.height() * b.width(); } static inline bool areCollinearPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2) { return !determinant(p1 - p0, p2 - p0); } static inline bool areCoincidentPoints(const FloatPoint& p0, const FloatPoint& p1) { return p0.x() == p1.x() && p0.y() == p1.y(); } static inline bool isPointOnLineSegment(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point) { return point.x() >= std::min(vertex1.x(), vertex2.x()) && point.x() <= std::max(vertex1.x(), vertex2.x()) && areCollinearPoints(vertex1, vertex2, point); } static inline unsigned nextVertexIndex(unsigned vertexIndex, unsigned nVertices, bool clockwise) { return ((clockwise) ? vertexIndex + 1 : vertexIndex - 1 + nVertices) % nVertices; } static unsigned findNextEdgeVertexIndex(const FloatPolygon& polygon, unsigned vertexIndex1, bool clockwise) { unsigned nVertices = polygon.numberOfVertices(); unsigned vertexIndex2 = nextVertexIndex(vertexIndex1, nVertices, clockwise); while (vertexIndex2 && areCoincidentPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2))) vertexIndex2 = nextVertexIndex(vertexIndex2, nVertices, clockwise); while (vertexIndex2) { unsigned vertexIndex3 = nextVertexIndex(vertexIndex2, nVertices, clockwise); if (!areCollinearPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2), polygon.vertexAt(vertexIndex3))) break; vertexIndex2 = vertexIndex3; } return vertexIndex2; } FloatPolygon::FloatPolygon(std::unique_ptr> vertices, WindRule fillRule) : m_vertices(WTFMove(vertices)) , m_fillRule(fillRule) { unsigned nVertices = numberOfVertices(); m_edges.resize(nVertices); m_empty = nVertices < 3; if (nVertices) m_boundingBox.setLocation(vertexAt(0)); if (m_empty) return; unsigned minVertexIndex = 0; for (unsigned i = 1; i < nVertices; ++i) { const FloatPoint& vertex = vertexAt(i); if (vertex.y() < vertexAt(minVertexIndex).y() || (vertex.y() == vertexAt(minVertexIndex).y() && vertex.x() < vertexAt(minVertexIndex).x())) minVertexIndex = i; } FloatPoint nextVertex = vertexAt((minVertexIndex + 1) % nVertices); FloatPoint prevVertex = vertexAt((minVertexIndex + nVertices - 1) % nVertices); bool clockwise = determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0; unsigned edgeIndex = 0; unsigned vertexIndex1 = 0; do { m_boundingBox.extend(vertexAt(vertexIndex1)); unsigned vertexIndex2 = findNextEdgeVertexIndex(*this, vertexIndex1, clockwise); m_edges[edgeIndex].m_polygon = this; m_edges[edgeIndex].m_vertexIndex1 = vertexIndex1; m_edges[edgeIndex].m_vertexIndex2 = vertexIndex2; m_edges[edgeIndex].m_edgeIndex = edgeIndex; ++edgeIndex; vertexIndex1 = vertexIndex2; } while (vertexIndex1); if (edgeIndex > 3) { const FloatPolygonEdge& firstEdge = m_edges[0]; const FloatPolygonEdge& lastEdge = m_edges[edgeIndex - 1]; if (areCollinearPoints(lastEdge.vertex1(), lastEdge.vertex2(), firstEdge.vertex2())) { m_edges[0].m_vertexIndex1 = lastEdge.m_vertexIndex1; edgeIndex--; } } m_edges.resize(edgeIndex); m_empty = m_edges.size() < 3; if (m_empty) return; for (unsigned i = 0; i < m_edges.size(); ++i) { FloatPolygonEdge* edge = &m_edges[i]; m_edgeTree.add(EdgeInterval(edge->minY(), edge->maxY(), edge)); } } bool FloatPolygon::overlappingEdges(float minY, float maxY, Vector& result) const { Vector overlappingEdgeIntervals; m_edgeTree.allOverlaps(FloatPolygon::EdgeInterval(minY, maxY, 0), overlappingEdgeIntervals); unsigned overlappingEdgeIntervalsSize = overlappingEdgeIntervals.size(); result.resize(overlappingEdgeIntervalsSize); for (unsigned i = 0; i < overlappingEdgeIntervalsSize; ++i) { const FloatPolygonEdge* edge = static_cast(overlappingEdgeIntervals[i].data()); ASSERT(edge); result[i] = edge; } return overlappingEdgeIntervalsSize > 0; } static inline float leftSide(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point) { return ((point.x() - vertex1.x()) * (vertex2.y() - vertex1.y())) - ((vertex2.x() - vertex1.x()) * (point.y() - vertex1.y())); } bool FloatPolygon::containsEvenOdd(const FloatPoint& point) const { unsigned crossingCount = 0; for (unsigned i = 0; i < numberOfEdges(); ++i) { const FloatPoint& vertex1 = edgeAt(i).vertex1(); const FloatPoint& vertex2 = edgeAt(i).vertex2(); if (isPointOnLineSegment(vertex1, vertex2, point)) return true; if ((vertex1.y() <= point.y() && vertex2.y() > point.y()) || (vertex1.y() > point.y() && vertex2.y() <= point.y())) { float vt = (point.y() - vertex1.y()) / (vertex2.y() - vertex1.y()); if (point.x() < vertex1.x() + vt * (vertex2.x() - vertex1.x())) ++crossingCount; } } return crossingCount & 1; } bool FloatPolygon::containsNonZero(const FloatPoint& point) const { int windingNumber = 0; for (unsigned i = 0; i < numberOfEdges(); ++i) { const FloatPoint& vertex1 = edgeAt(i).vertex1(); const FloatPoint& vertex2 = edgeAt(i).vertex2(); if (isPointOnLineSegment(vertex1, vertex2, point)) return true; if (vertex2.y() < point.y()) { if ((vertex1.y() > point.y()) && (leftSide(vertex1, vertex2, point) > 0)) ++windingNumber; } else if (vertex2.y() > point.y()) { if ((vertex1.y() <= point.y()) && (leftSide(vertex1, vertex2, point) < 0)) --windingNumber; } } return windingNumber; } bool FloatPolygon::contains(const FloatPoint& point) const { if (!m_boundingBox.contains(point)) return false; return fillRule() == RULE_NONZERO ? containsNonZero(point) : containsEvenOdd(point); } bool VertexPair::overlapsRect(const FloatRect& rect) const { bool boundsOverlap = (minX() < rect.maxX()) && (maxX() > rect.x()) && (minY() < rect.maxY()) && (maxY() > rect.y()); if (!boundsOverlap) return false; float leftSideValues[4] = { leftSide(vertex1(), vertex2(), rect.minXMinYCorner()), leftSide(vertex1(), vertex2(), rect.maxXMinYCorner()), leftSide(vertex1(), vertex2(), rect.minXMaxYCorner()), leftSide(vertex1(), vertex2(), rect.maxXMaxYCorner()) }; int currentLeftSideSign = 0; for (unsigned i = 0; i < 4; ++i) { if (!leftSideValues[i]) continue; int leftSideSign = leftSideValues[i] > 0 ? 1 : -1; if (!currentLeftSideSign) currentLeftSideSign = leftSideSign; else if (currentLeftSideSign != leftSideSign) return true; } return false; } bool VertexPair::intersection(const VertexPair& other, FloatPoint& point) const { // See: http://paulbourke.net/geometry/pointlineplane/, "Intersection point of two lines in 2 dimensions" const FloatSize& thisDelta = vertex2() - vertex1(); const FloatSize& otherDelta = other.vertex2() - other.vertex1(); float denominator = determinant(thisDelta, otherDelta); if (!denominator) return false; // The two line segments: "this" vertex1,vertex2 and "other" vertex1,vertex2, have been defined // in parametric form. Each point on the line segment is: vertex1 + u * (vertex2 - vertex1), // when 0 <= u <= 1. We're computing the values of u for each line at their intersection point. const FloatSize& vertex1Delta = vertex1() - other.vertex1(); float uThisLine = determinant(otherDelta, vertex1Delta) / denominator; float uOtherLine = determinant(thisDelta, vertex1Delta) / denominator; if (uThisLine < 0 || uOtherLine < 0 || uThisLine > 1 || uOtherLine > 1) return false; point = vertex1() + uThisLine * thisDelta; return true; } } // namespace WebCore