/* * Copyright (C) 2002 Lars Knoll (knoll@kde.org) * (C) 2002 Dirk Mueller (mueller@kde.org) * Copyright (C) 2003, 2006, 2008, 2010 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "AutoTableLayout.h" #include "RenderTable.h" #include "RenderTableCell.h" #include "RenderTableCol.h" #include "RenderTableSection.h" #include "RenderView.h" namespace WebCore { AutoTableLayout::AutoTableLayout(RenderTable* table) : TableLayout(table) , m_hasPercent(false) , m_effectiveLogicalWidthDirty(true) { } AutoTableLayout::~AutoTableLayout() { } void AutoTableLayout::recalcColumn(unsigned effCol) { Layout& columnLayout = m_layoutStruct[effCol]; RenderTableCell* fixedContributor = nullptr; RenderTableCell* maxContributor = nullptr; for (RenderObject* child = m_table->firstChild(); child; child = child->nextSibling()) { if (is(*child)) { // RenderTableCols don't have the concept of preferred logical width, but we need to clear their dirty bits // so that if we call setPreferredWidthsDirty(true) on a col or one of its descendants, we'll mark it's // ancestors as dirty. downcast(*child).clearPreferredLogicalWidthsDirtyBits(); } else if (is(*child)) { RenderTableSection& section = downcast(*child); unsigned numRows = section.numRows(); for (unsigned i = 0; i < numRows; ++i) { RenderTableSection::CellStruct current = section.cellAt(i, effCol); RenderTableCell* cell = current.primaryCell(); if (current.inColSpan || !cell) continue; bool cellHasContent = cell->firstChild() || cell->style().hasBorder() || cell->style().hasPadding() || cell->style().hasBackground(); if (cellHasContent) columnLayout.emptyCellsOnly = false; // A cell originates in this column. Ensure we have // a min/max width of at least 1px for this column now. columnLayout.minLogicalWidth = std::max(columnLayout.minLogicalWidth, cellHasContent ? 1 : 0); columnLayout.maxLogicalWidth = std::max(columnLayout.maxLogicalWidth, 1); if (cell->colSpan() == 1) { columnLayout.minLogicalWidth = std::max(cell->minPreferredLogicalWidth().ceilToFloat(), columnLayout.minLogicalWidth); float maxPreferredWidth = cell->maxPreferredLogicalWidth().ceilToFloat(); if (maxPreferredWidth > columnLayout.maxLogicalWidth) { columnLayout.maxLogicalWidth = maxPreferredWidth; maxContributor = cell; } // All browsers implement a size limit on the cell's max width. // Our limit is based on KHTML's representation that used 16 bits widths. // FIXME: Other browsers have a lower limit for the cell's max width. const float cCellMaxWidth = 32760; Length cellLogicalWidth = cell->styleOrColLogicalWidth(); if (cellLogicalWidth.value() > cCellMaxWidth) cellLogicalWidth.setValue(Fixed, cCellMaxWidth); if (cellLogicalWidth.isNegative()) cellLogicalWidth.setValue(Fixed, 0); switch (cellLogicalWidth.type()) { case Fixed: // ignore width=0 if (cellLogicalWidth.isPositive() && !columnLayout.logicalWidth.isPercentOrCalculated()) { float logicalWidth = cell->adjustBorderBoxLogicalWidthForBoxSizing(cellLogicalWidth.value()); if (columnLayout.logicalWidth.isFixed()) { // Nav/IE weirdness if ((logicalWidth > columnLayout.logicalWidth.value()) || ((columnLayout.logicalWidth.value() == logicalWidth) && (maxContributor == cell))) { columnLayout.logicalWidth.setValue(Fixed, logicalWidth); fixedContributor = cell; } } else { columnLayout.logicalWidth.setValue(Fixed, logicalWidth); fixedContributor = cell; } } break; case Percent: m_hasPercent = true; if (cellLogicalWidth.isPositive() && (!columnLayout.logicalWidth.isPercent() || cellLogicalWidth.percent() > columnLayout.logicalWidth.percent())) columnLayout.logicalWidth = cellLogicalWidth; break; case Relative: // FIXME: Need to understand this case and whether it makes sense to compare values // which are not necessarily of the same type. if (cellLogicalWidth.value() > columnLayout.logicalWidth.value()) columnLayout.logicalWidth = cellLogicalWidth; break; default: break; } } else if (!effCol || section.primaryCellAt(i, effCol - 1) != cell) { // This spanning cell originates in this column. Insert the cell into spanning cells list. insertSpanCell(cell); } } } } // Nav/IE weirdness if (columnLayout.logicalWidth.isFixed()) { if (m_table->document().inQuirksMode() && columnLayout.maxLogicalWidth > columnLayout.logicalWidth.value() && fixedContributor != maxContributor) { columnLayout.logicalWidth = Length(); fixedContributor = nullptr; } } columnLayout.maxLogicalWidth = std::max(columnLayout.maxLogicalWidth, columnLayout.minLogicalWidth); } void AutoTableLayout::fullRecalc() { m_hasPercent = false; m_effectiveLogicalWidthDirty = true; unsigned nEffCols = m_table->numEffCols(); m_layoutStruct.resize(nEffCols); m_layoutStruct.fill(Layout()); m_spanCells.fill(0); Length groupLogicalWidth; unsigned currentColumn = 0; for (RenderTableCol* column = m_table->firstColumn(); column; column = column->nextColumn()) { if (column->isTableColumnGroupWithColumnChildren()) groupLogicalWidth = column->style().logicalWidth(); else { Length colLogicalWidth = column->style().logicalWidth(); if (colLogicalWidth.isAuto()) colLogicalWidth = groupLogicalWidth; if ((colLogicalWidth.isFixed() || colLogicalWidth.isPercentOrCalculated()) && colLogicalWidth.isZero()) colLogicalWidth = Length(); unsigned effCol = m_table->colToEffCol(currentColumn); unsigned span = column->span(); if (!colLogicalWidth.isAuto() && span == 1 && effCol < nEffCols && m_table->spanOfEffCol(effCol) == 1) { m_layoutStruct[effCol].logicalWidth = colLogicalWidth; if (colLogicalWidth.isFixed() && m_layoutStruct[effCol].maxLogicalWidth < colLogicalWidth.value()) m_layoutStruct[effCol].maxLogicalWidth = colLogicalWidth.value(); } currentColumn += span; } // For the last column in a column-group, we invalidate our group logical width. if (column->isTableColumn() && !column->nextSibling()) groupLogicalWidth = Length(); } for (unsigned i = 0; i < nEffCols; i++) recalcColumn(i); } static bool shouldScaleColumnsForParent(const RenderTable& table) { RenderBlock* containingBlock = table.containingBlock(); while (containingBlock && !is(containingBlock)) { // It doesn't matter if our table is auto or fixed: auto means we don't // scale. Fixed doesn't care if we do or not because it doesn't depend // on the cell contents' preferred widths. if (is(containingBlock)) return false; containingBlock = containingBlock->containingBlock(); } return true; } // FIXME: This needs to be adapted for vertical writing modes. static bool shouldScaleColumnsForSelf(RenderTable* table) { // Normally, scale all columns to satisfy this from CSS2.2: // "A percentage value for a column width is relative to the table width. // If the table has 'width: auto', a percentage represents a constraint on the column's width" // A special case. If this table is not fixed width and contained inside // a cell, then don't bloat the maxwidth by examining percentage growth. bool scale = true; while (table) { Length tableWidth = table->style().width(); if ((tableWidth.isAuto() || tableWidth.isPercentOrCalculated()) && !table->isOutOfFlowPositioned()) { RenderBlock* containingBlock = table->containingBlock(); while (containingBlock && !is(*containingBlock) && !is(*containingBlock) && containingBlock->style().width().isAuto() && !containingBlock->isOutOfFlowPositioned()) containingBlock = containingBlock->containingBlock(); table = nullptr; if (is(containingBlock) && (containingBlock->style().width().isAuto() || containingBlock->style().width().isPercentOrCalculated())) { RenderTableCell& cell = downcast(*containingBlock); if (cell.colSpan() > 1 || cell.table()->style().width().isAuto()) scale = false; else table = cell.table(); } } else table = nullptr; } return scale; } void AutoTableLayout::computeIntrinsicLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth) { fullRecalc(); float spanMaxLogicalWidth = calcEffectiveLogicalWidth(); minWidth = 0; maxWidth = 0; float maxPercent = 0; float maxNonPercent = 0; bool scaleColumnsForSelf = shouldScaleColumnsForSelf(m_table); // We substitute 0 percent by (epsilon / percentScaleFactor) percent in two places below to avoid division by zero. // FIXME: Handle the 0% cases properly. const float epsilon = 1 / 128.0f; float remainingPercent = 100; for (size_t i = 0; i < m_layoutStruct.size(); ++i) { minWidth += m_layoutStruct[i].effectiveMinLogicalWidth; maxWidth += m_layoutStruct[i].effectiveMaxLogicalWidth; if (scaleColumnsForSelf) { if (m_layoutStruct[i].effectiveLogicalWidth.isPercent()) { float percent = std::min(m_layoutStruct[i].effectiveLogicalWidth.percent(), remainingPercent); float logicalWidth = m_layoutStruct[i].effectiveMaxLogicalWidth * 100 / std::max(percent, epsilon); maxPercent = std::max(logicalWidth, maxPercent); remainingPercent -= percent; } else maxNonPercent += m_layoutStruct[i].effectiveMaxLogicalWidth; } } if (scaleColumnsForSelf) { maxNonPercent = maxNonPercent * 100 / std::max(remainingPercent, epsilon); m_scaledWidthFromPercentColumns = LayoutUnit(std::min(maxNonPercent, tableMaxWidth)); m_scaledWidthFromPercentColumns = std::max(m_scaledWidthFromPercentColumns, LayoutUnit(std::min(maxPercent, tableMaxWidth))); if (m_scaledWidthFromPercentColumns > maxWidth && shouldScaleColumnsForParent(*m_table)) maxWidth = m_scaledWidthFromPercentColumns; } maxWidth = std::max(maxWidth, LayoutUnit(spanMaxLogicalWidth)); } void AutoTableLayout::applyPreferredLogicalWidthQuirks(LayoutUnit& minWidth, LayoutUnit& maxWidth) const { Length tableLogicalWidth = m_table->style().logicalWidth(); if (tableLogicalWidth.isFixed() && tableLogicalWidth.isPositive()) minWidth = maxWidth = std::max(minWidth, LayoutUnit(tableLogicalWidth.value())); } /* This method takes care of colspans. effWidth is the same as width for cells without colspans. If we have colspans, they get modified. */ float AutoTableLayout::calcEffectiveLogicalWidth() { float maxLogicalWidth = 0; size_t nEffCols = m_layoutStruct.size(); float spacingInRowDirection = m_table->hBorderSpacing(); for (size_t i = 0; i < nEffCols; ++i) { m_layoutStruct[i].effectiveLogicalWidth = m_layoutStruct[i].logicalWidth; m_layoutStruct[i].effectiveMinLogicalWidth = m_layoutStruct[i].minLogicalWidth; m_layoutStruct[i].effectiveMaxLogicalWidth = m_layoutStruct[i].maxLogicalWidth; } for (size_t i = 0; i < m_spanCells.size(); ++i) { RenderTableCell* cell = m_spanCells[i]; if (!cell) break; unsigned span = cell->colSpan(); Length cellLogicalWidth = cell->styleOrColLogicalWidth(); if (!cellLogicalWidth.isRelative() && cellLogicalWidth.isZero()) cellLogicalWidth = Length(); // make it Auto unsigned effCol = m_table->colToEffCol(cell->col()); size_t lastCol = effCol; float cellMinLogicalWidth = cell->minPreferredLogicalWidth() + spacingInRowDirection; float cellMaxLogicalWidth = cell->maxPreferredLogicalWidth() + spacingInRowDirection; float totalPercent = 0; float spanMinLogicalWidth = 0; float spanMaxLogicalWidth = 0; bool allColsArePercent = true; bool allColsAreFixed = true; bool haveAuto = false; bool spanHasEmptyCellsOnly = true; float fixedWidth = 0; while (lastCol < nEffCols && span > 0) { Layout& columnLayout = m_layoutStruct[lastCol]; switch (columnLayout.logicalWidth.type()) { case Percent: totalPercent += columnLayout.logicalWidth.percent(); allColsAreFixed = false; break; case Fixed: if (columnLayout.logicalWidth.value() > 0) { fixedWidth += columnLayout.logicalWidth.value(); allColsArePercent = false; // IE resets effWidth to Auto here, but this breaks the konqueror about page and seems to be some bad // legacy behaviour anyway. mozilla doesn't do this so I decided we don't neither. break; } FALLTHROUGH; case Auto: haveAuto = true; FALLTHROUGH; default: // If the column is a percentage width, do not let the spanning cell overwrite the // width value. This caused a mis-rendering on amazon.com. // Sample snippet: // < // // //
12-3
12-3
if (!columnLayout.effectiveLogicalWidth.isPercent()) { columnLayout.effectiveLogicalWidth = Length(); allColsArePercent = false; } else totalPercent += columnLayout.effectiveLogicalWidth.percent(); allColsAreFixed = false; } if (!columnLayout.emptyCellsOnly) spanHasEmptyCellsOnly = false; span -= m_table->spanOfEffCol(lastCol); spanMinLogicalWidth += columnLayout.effectiveMinLogicalWidth; spanMaxLogicalWidth += columnLayout.effectiveMaxLogicalWidth; lastCol++; cellMinLogicalWidth -= spacingInRowDirection; cellMaxLogicalWidth -= spacingInRowDirection; } // adjust table max width if needed if (cellLogicalWidth.isPercent()) { if (totalPercent > cellLogicalWidth.percent() || allColsArePercent) { // can't satify this condition, treat as variable cellLogicalWidth = Length(); } else { maxLogicalWidth = std::max(maxLogicalWidth, std::max(spanMaxLogicalWidth, cellMaxLogicalWidth) * 100 / cellLogicalWidth.percent()); // all non percent columns in the span get percent values to sum up correctly. float percentMissing = cellLogicalWidth.percent() - totalPercent; float totalWidth = 0; for (unsigned pos = effCol; pos < lastCol; ++pos) { if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercentOrCalculated()) totalWidth += m_layoutStruct[pos].effectiveMaxLogicalWidth; } for (unsigned pos = effCol; pos < lastCol && totalWidth > 0; ++pos) { if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercentOrCalculated()) { float percent = percentMissing * m_layoutStruct[pos].effectiveMaxLogicalWidth / totalWidth; totalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; percentMissing -= percent; if (percent > 0) m_layoutStruct[pos].effectiveLogicalWidth.setValue(Percent, percent); else m_layoutStruct[pos].effectiveLogicalWidth = Length(); } } } } // make sure minWidth and maxWidth of the spanning cell are honoured if (cellMinLogicalWidth > spanMinLogicalWidth) { if (allColsAreFixed) { for (unsigned pos = effCol; fixedWidth > 0 && pos < lastCol; ++pos) { float cellLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, cellMinLogicalWidth * m_layoutStruct[pos].logicalWidth.value() / fixedWidth); fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); cellMinLogicalWidth -= cellLogicalWidth; m_layoutStruct[pos].effectiveMinLogicalWidth = cellLogicalWidth; } } else if (allColsArePercent) { // In this case, we just split the colspan's min amd max widths following the percentage. float allocatedMinLogicalWidth = 0; float allocatedMaxLogicalWidth = 0; for (unsigned pos = effCol; pos < lastCol; ++pos) { ASSERT(m_layoutStruct[pos].logicalWidth.isPercent() || m_layoutStruct[pos].effectiveLogicalWidth.isPercent()); // |allColsArePercent| means that either the logicalWidth *or* the effectiveLogicalWidth are percents, handle both of them here. float percent = m_layoutStruct[pos].logicalWidth.isPercent() ? m_layoutStruct[pos].logicalWidth.percent() : m_layoutStruct[pos].effectiveLogicalWidth.percent(); float columnMinLogicalWidth = percent * cellMinLogicalWidth / totalPercent; float columnMaxLogicalWidth = percent * cellMaxLogicalWidth / totalPercent; m_layoutStruct[pos].effectiveMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, columnMinLogicalWidth); m_layoutStruct[pos].effectiveMaxLogicalWidth = columnMaxLogicalWidth; allocatedMinLogicalWidth += columnMinLogicalWidth; allocatedMaxLogicalWidth += columnMaxLogicalWidth; } ASSERT(allocatedMinLogicalWidth < cellMinLogicalWidth || WTF::areEssentiallyEqual(allocatedMinLogicalWidth, cellMinLogicalWidth)); ASSERT(allocatedMaxLogicalWidth < cellMaxLogicalWidth || WTF::areEssentiallyEqual(allocatedMaxLogicalWidth, cellMaxLogicalWidth)); cellMinLogicalWidth -= allocatedMinLogicalWidth; cellMaxLogicalWidth -= allocatedMaxLogicalWidth; } else { float remainingMaxLogicalWidth = spanMaxLogicalWidth; float remainingMinLogicalWidth = spanMinLogicalWidth; // Give min to variable first, to fixed second, and to others third. for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { if (m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth) { float colMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, m_layoutStruct[pos].logicalWidth.value()); fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; cellMinLogicalWidth -= colMinLogicalWidth; m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; } } for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol && remainingMinLogicalWidth < cellMinLogicalWidth; ++pos) { if (!(m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth)) { float colMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, remainingMaxLogicalWidth ? cellMinLogicalWidth * m_layoutStruct[pos].effectiveMaxLogicalWidth / remainingMaxLogicalWidth : cellMinLogicalWidth); colMinLogicalWidth = std::min(m_layoutStruct[pos].effectiveMinLogicalWidth + (cellMinLogicalWidth - remainingMinLogicalWidth), colMinLogicalWidth); remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; cellMinLogicalWidth -= colMinLogicalWidth; m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; } } } } if (!cellLogicalWidth.isPercentOrCalculated()) { if (cellMaxLogicalWidth > spanMaxLogicalWidth) { for (unsigned pos = effCol; spanMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { float colMaxLogicalWidth = std::max(m_layoutStruct[pos].effectiveMaxLogicalWidth, spanMaxLogicalWidth ? cellMaxLogicalWidth * m_layoutStruct[pos].effectiveMaxLogicalWidth / spanMaxLogicalWidth : cellMaxLogicalWidth); spanMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; cellMaxLogicalWidth -= colMaxLogicalWidth; m_layoutStruct[pos].effectiveMaxLogicalWidth = colMaxLogicalWidth; } } } else { for (unsigned pos = effCol; pos < lastCol; ++pos) m_layoutStruct[pos].maxLogicalWidth = std::max(m_layoutStruct[pos].maxLogicalWidth, m_layoutStruct[pos].minLogicalWidth); } // treat span ranges consisting of empty cells only as if they had content if (spanHasEmptyCellsOnly) { for (unsigned pos = effCol; pos < lastCol; ++pos) m_layoutStruct[pos].emptyCellsOnly = false; } } m_effectiveLogicalWidthDirty = false; return std::min(maxLogicalWidth, tableMaxWidth); } /* gets all cells that originate in a column and have a cellspan > 1 Sorts them by increasing cellspan */ void AutoTableLayout::insertSpanCell(RenderTableCell *cell) { ASSERT_ARG(cell, cell && cell->colSpan() != 1); if (!cell || cell->colSpan() == 1) return; unsigned size = m_spanCells.size(); if (!size || m_spanCells[size-1] != 0) { m_spanCells.grow(size + 10); for (unsigned i = 0; i < 10; i++) m_spanCells[size+i] = 0; size += 10; } // add them in sort. This is a slow algorithm, and a binary search or a fast sorting after collection would be better unsigned pos = 0; unsigned span = cell->colSpan(); while (pos < m_spanCells.size() && m_spanCells[pos] && span > m_spanCells[pos]->colSpan()) pos++; memmove(m_spanCells.data()+pos+1, m_spanCells.data()+pos, (size-pos-1)*sizeof(RenderTableCell *)); m_spanCells[pos] = cell; } void AutoTableLayout::layout() { // table layout based on the values collected in the layout structure. float tableLogicalWidth = m_table->logicalWidth() - m_table->bordersPaddingAndSpacingInRowDirection(); float available = tableLogicalWidth; size_t nEffCols = m_table->numEffCols(); // FIXME: It is possible to be called without having properly updated our internal representation. // This means that our preferred logical widths were not recomputed as expected. if (nEffCols != m_layoutStruct.size()) { fullRecalc(); // FIXME: Table layout shouldn't modify our table structure (but does due to columns and column-groups). nEffCols = m_table->numEffCols(); } if (m_effectiveLogicalWidthDirty) calcEffectiveLogicalWidth(); bool havePercent = false; float totalRelative = 0; int numAuto = 0; int numFixed = 0; float totalAuto = 0; float totalFixed = 0; float totalPercent = 0; float allocAuto = 0; unsigned numAutoEmptyCellsOnly = 0; // fill up every cell with its minWidth for (size_t i = 0; i < nEffCols; ++i) { float cellLogicalWidth = m_layoutStruct[i].effectiveMinLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; available -= cellLogicalWidth; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; switch (logicalWidth.type()) { case Percent: havePercent = true; totalPercent += logicalWidth.percent(); break; case Relative: totalRelative += logicalWidth.value(); break; case Fixed: numFixed++; totalFixed += m_layoutStruct[i].effectiveMaxLogicalWidth; break; case Auto: if (m_layoutStruct[i].emptyCellsOnly) numAutoEmptyCellsOnly++; else { numAuto++; totalAuto += m_layoutStruct[i].effectiveMaxLogicalWidth; allocAuto += cellLogicalWidth; } break; default: break; } } // allocate width to percent cols if (available > 0 && havePercent) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercentOrCalculated()) { float cellLogicalWidth = std::max(m_layoutStruct[i].effectiveMinLogicalWidth, minimumValueForLength(logicalWidth, tableLogicalWidth)); available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; } } if (totalPercent > 100) { // remove overallocated space from the last columns float excess = tableLogicalWidth * (totalPercent - 100) / 100; for (unsigned i = nEffCols; i; ) { --i; if (m_layoutStruct[i].effectiveLogicalWidth.isPercentOrCalculated()) { float cellLogicalWidth = m_layoutStruct[i].computedLogicalWidth; float reduction = std::min(cellLogicalWidth, excess); // the lines below might look inconsistent, but that's the way it's handled in mozilla excess -= reduction; float newLogicalWidth = std::max(m_layoutStruct[i].effectiveMinLogicalWidth, cellLogicalWidth - reduction); available += cellLogicalWidth - newLogicalWidth; m_layoutStruct[i].computedLogicalWidth = newLogicalWidth; } } } } // then allocate width to fixed cols if (available > 0) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed() && logicalWidth.value() > m_layoutStruct[i].computedLogicalWidth) { available += m_layoutStruct[i].computedLogicalWidth - logicalWidth.value(); m_layoutStruct[i].computedLogicalWidth = logicalWidth.value(); } } } // now satisfy relative if (available > 0) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isRelative() && logicalWidth.value() != 0) { // width=0* gets effMinWidth. float cellLogicalWidth = logicalWidth.value() * tableLogicalWidth / totalRelative; available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; } } } // now satisfy variable if (available > 0 && numAuto) { available += allocAuto; // this gets redistributed for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isAuto() && totalAuto && !m_layoutStruct[i].emptyCellsOnly) { float cellLogicalWidth = std::max(m_layoutStruct[i].computedLogicalWidth, available * m_layoutStruct[i].effectiveMaxLogicalWidth / totalAuto); available -= cellLogicalWidth; totalAuto -= m_layoutStruct[i].effectiveMaxLogicalWidth; m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; } } } // spread over fixed columns if (available > 0 && numFixed) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed()) { float cellLogicalWidth = available * m_layoutStruct[i].effectiveMaxLogicalWidth / totalFixed; available -= cellLogicalWidth; totalFixed -= m_layoutStruct[i].effectiveMaxLogicalWidth; m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; } } } // spread over percent colums if (available > 0 && m_hasPercent && totalPercent < 100) { for (size_t i = 0; i < nEffCols; ++i) { Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercent()) { float cellLogicalWidth = available * logicalWidth.percent() / totalPercent; available -= cellLogicalWidth; totalPercent -= logicalWidth.percent(); m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; if (!available || !totalPercent) break; } } } // spread over the rest if (available > 0 && nEffCols > numAutoEmptyCellsOnly) { unsigned total = nEffCols - numAutoEmptyCellsOnly; // still have some width to spread for (unsigned i = nEffCols; i; ) { --i; // variable columns with empty cells only don't get any width if (m_layoutStruct[i].effectiveLogicalWidth.isAuto() && m_layoutStruct[i].emptyCellsOnly) continue; float cellLogicalWidth = available / total; available -= cellLogicalWidth; total--; m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; } } // If we have overallocated, reduce every cell according to the difference between desired width and minwidth // this seems to produce to the pixel exact results with IE. Wonder if some of this also holds for width distributing. if (available < 0) { // Need to reduce cells with the following prioritization: // (1) Auto // (2) Relative // (3) Fixed // (4) Percent // This is basically the reverse of how we grew the cells. if (available < 0) { float logicalWidthBeyondMin = 0; for (unsigned i = nEffCols; i; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isAuto()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isAuto()) { float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; float reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } if (available < 0) { float logicalWidthBeyondMin = 0; for (unsigned i = nEffCols; i; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isRelative()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isRelative()) { float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; float reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } if (available < 0) { float logicalWidthBeyondMin = 0; for (unsigned i = nEffCols; i; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isFixed()) { float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; float reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } if (available < 0) { float logicalWidthBeyondMin = 0; for (unsigned i = nEffCols; i; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercentOrCalculated()) logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; } for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { --i; Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; if (logicalWidth.isPercentOrCalculated()) { float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; float reduce = available * minMaxDiff / logicalWidthBeyondMin; m_layoutStruct[i].computedLogicalWidth += reduce; available -= reduce; logicalWidthBeyondMin -= minMaxDiff; if (available >= 0) break; } } } } LayoutUnit pos = 0; for (size_t i = 0; i < nEffCols; ++i) { m_table->setColumnPosition(i, pos); pos += LayoutUnit::fromFloatCeil(m_layoutStruct[i].computedLogicalWidth) + m_table->hBorderSpacing(); } m_table->setColumnPosition(m_table->columnPositions().size() - 1, pos); } }