/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2007 David Smith (catfish.man@gmail.com) * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved. * Copyright (C) Research In Motion Limited 2010. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "RenderBlock.h" #include "ColumnInfo.h" #include "Document.h" #include "Element.h" #include "FloatQuad.h" #include "Frame.h" #include "FrameSelection.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLFormElement.h" #include "HTMLNames.h" #include "HitTestResult.h" #include "InlineIterator.h" #include "InlineTextBox.h" #include "LayoutRepainter.h" #include "OverflowEvent.h" #include "PODFreeListArena.h" #include "Page.h" #include "PaintInfo.h" #include "RenderBoxRegionInfo.h" #include "RenderCombineText.h" #include "RenderDeprecatedFlexibleBox.h" #include "RenderFlowThread.h" #include "RenderImage.h" #include "RenderInline.h" #include "RenderLayer.h" #include "RenderMarquee.h" #include "RenderRegion.h" #include "RenderReplica.h" #include "RenderTableCell.h" #include "RenderTextFragment.h" #include "RenderTheme.h" #include "RenderView.h" #include "Settings.h" #include "SVGTextRunRenderingContext.h" #include "TransformState.h" #include using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { using namespace HTMLNames; typedef WTF::HashMap ColumnInfoMap; static ColumnInfoMap* gColumnInfoMap = 0; typedef WTF::HashMap*> PercentHeightDescendantsMap; static PercentHeightDescendantsMap* gPercentHeightDescendantsMap = 0; typedef WTF::HashMap*> PercentHeightContainerMap; static PercentHeightContainerMap* gPercentHeightContainerMap = 0; typedef WTF::HashMap*> ContinuationOutlineTableMap; typedef WTF::HashSet DelayedUpdateScrollInfoSet; static int gDelayUpdateScrollInfo = 0; static DelayedUpdateScrollInfoSet* gDelayedUpdateScrollInfoSet = 0; // We only create "generated" renderers like one for first-letter and // before/after pseudo elements if: // - the firstLetterBlock can have children in the DOM and // - the block doesn't have any special assumption on its text children. // This correctly prevents form controls from having such renderers. static inline bool canHaveGeneratedChildren(RenderObject* renderer) { return (renderer->canHaveChildren() && (!renderer->isDeprecatedFlexibleBox() || static_cast(renderer)->canHaveGeneratedChildren())); } bool RenderBlock::s_canPropagateFloatIntoSibling = false; // This class helps dispatching the 'overflow' event on layout change. overflow can be set on RenderBoxes, yet the existing code // only works on RenderBlocks. If this change, this class should be shared with other RenderBoxes. class OverflowEventDispatcher { WTF_MAKE_NONCOPYABLE(OverflowEventDispatcher); public: OverflowEventDispatcher(const RenderBlock* block) : m_block(block) , m_hadHorizontalLayoutOverflow(false) , m_hadVerticalLayoutOverflow(false) { m_shouldDispatchEvent = !m_block->isAnonymous() && m_block->hasOverflowClip() && m_block->document()->hasListenerType(Document::OVERFLOWCHANGED_LISTENER); if (m_shouldDispatchEvent) { m_hadHorizontalLayoutOverflow = m_block->hasHorizontalLayoutOverflow(); m_hadVerticalLayoutOverflow = m_block->hasVerticalLayoutOverflow(); } } ~OverflowEventDispatcher() { if (!m_shouldDispatchEvent) return; bool hasHorizontalLayoutOverflow = m_block->hasHorizontalLayoutOverflow(); bool hasVerticalLayoutOverflow = m_block->hasVerticalLayoutOverflow(); bool horizontalLayoutOverflowChanged = hasHorizontalLayoutOverflow != m_hadHorizontalLayoutOverflow; bool verticalLayoutOverflowChanged = hasVerticalLayoutOverflow != m_hadVerticalLayoutOverflow; if (horizontalLayoutOverflowChanged || verticalLayoutOverflowChanged) { if (FrameView* frameView = m_block->document()->view()) frameView->scheduleEvent(OverflowEvent::create(horizontalLayoutOverflowChanged, hasHorizontalLayoutOverflow, verticalLayoutOverflowChanged, hasVerticalLayoutOverflow), m_block->node()); } } private: const RenderBlock* m_block; bool m_shouldDispatchEvent; bool m_hadHorizontalLayoutOverflow; bool m_hadVerticalLayoutOverflow; }; // Our MarginInfo state used when laying out block children. RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding) : m_atBeforeSideOfBlock(true) , m_atAfterSideOfBlock(false) , m_marginBeforeQuirk(false) , m_marginAfterQuirk(false) , m_determinedMarginBeforeQuirk(false) { // Whether or not we can collapse our own margins with our children. We don't do this // if we had any border/padding (obviously), if we're the root or HTML elements, or if // we're positioned, floating, a table cell. RenderStyle* blockStyle = block->style(); m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() && !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable() && !block->isWritingModeRoot() && blockStyle->hasAutoColumnCount() && blockStyle->hasAutoColumnWidth() && !blockStyle->columnSpan(); m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && !beforeBorderPadding && blockStyle->marginBeforeCollapse() != MSEPARATE; // If any height other than auto is specified in CSS, then we don't collapse our bottom // margins with our children's margins. To do otherwise would be to risk odd visual // effects when the children overflow out of the parent block and yet still collapse // with it. We also don't collapse if we have any bottom border/padding. m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && (afterBorderPadding == 0) && (blockStyle->logicalHeight().isAuto() && !blockStyle->logicalHeight().value()) && blockStyle->marginAfterCollapse() != MSEPARATE; m_quirkContainer = block->isTableCell() || block->isBody() || blockStyle->marginBeforeCollapse() == MDISCARD || blockStyle->marginAfterCollapse() == MDISCARD; m_positiveMargin = m_canCollapseMarginBeforeWithChildren ? block->maxPositiveMarginBefore() : zeroLayoutUnit; m_negativeMargin = m_canCollapseMarginBeforeWithChildren ? block->maxNegativeMarginBefore() : zeroLayoutUnit; } // ------------------------------------------------------------------------------------------------------- RenderBlock::RenderBlock(Node* node) : RenderBox(node) , m_lineHeight(-1) , m_beingDestroyed(false) , m_hasPositionedFloats(false) , m_hasMarkupTruncation(false) { setChildrenInline(true); } RenderBlock::~RenderBlock() { if (m_floatingObjects) deleteAllValues(m_floatingObjects->set()); if (hasColumns()) delete gColumnInfoMap->take(this); if (gPercentHeightDescendantsMap) { if (HashSet* descendantSet = gPercentHeightDescendantsMap->take(this)) { HashSet::iterator end = descendantSet->end(); for (HashSet::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) { HashSet* containerSet = gPercentHeightContainerMap->get(*descendant); ASSERT(containerSet); if (!containerSet) continue; ASSERT(containerSet->contains(this)); containerSet->remove(this); if (containerSet->isEmpty()) { gPercentHeightContainerMap->remove(*descendant); delete containerSet; } } delete descendantSet; } } } void RenderBlock::willBeDestroyed() { // Mark as being destroyed to avoid trouble with merges in removeChild(). m_beingDestroyed = true; // Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will // properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise. children()->destroyLeftoverChildren(); // Destroy our continuation before anything other than anonymous children. // The reason we don't destroy it before anonymous children is that they may // have continuations of their own that are anonymous children of our continuation. RenderBoxModelObject* continuation = this->continuation(); if (continuation) { continuation->destroy(); setContinuation(0); } if (!documentBeingDestroyed()) { if (firstLineBox()) { // We can't wait for RenderBox::destroy to clear the selection, // because by then we will have nuked the line boxes. // FIXME: The FrameSelection should be responsible for this when it // is notified of DOM mutations. if (isSelectionBorder()) view()->clearSelection(); // If we are an anonymous block, then our line boxes might have children // that will outlast this block. In the non-anonymous block case those // children will be destroyed by the time we return from this function. if (isAnonymousBlock()) { for (InlineFlowBox* box = firstLineBox(); box; box = box->nextLineBox()) { while (InlineBox* childBox = box->firstChild()) childBox->remove(); } } } else if (parent()) parent()->dirtyLinesFromChangedChild(this); } m_lineBoxes.deleteLineBoxes(renderArena()); if (lineGridBox()) lineGridBox()->destroy(renderArena()); if (UNLIKELY(gDelayedUpdateScrollInfoSet != 0)) gDelayedUpdateScrollInfoSet->remove(this); RenderBox::willBeDestroyed(); } void RenderBlock::styleWillChange(StyleDifference diff, const RenderStyle* newStyle) { RenderStyle* oldStyle = style(); s_canPropagateFloatIntoSibling = oldStyle ? !isFloatingOrPositioned() && !avoidsFloats() : false; setReplaced(newStyle->isDisplayInlineType()); if (oldStyle && parent() && diff == StyleDifferenceLayout && oldStyle->position() != newStyle->position()) { if (newStyle->position() == StaticPosition) // Clear our positioned objects list. Our absolutely positioned descendants will be // inserted into our containing block's positioned objects list during layout. removePositionedObjects(0); else if (oldStyle->position() == StaticPosition) { // Remove our absolutely positioned descendants from their current containing block. // They will be inserted into our positioned objects list during layout. RenderObject* cb = parent(); while (cb && (cb->style()->position() == StaticPosition || (cb->isInline() && !cb->isReplaced())) && !cb->isRenderView()) { if (cb->style()->position() == RelativePosition && cb->isInline() && !cb->isReplaced()) { cb = cb->containingBlock(); break; } cb = cb->parent(); } if (cb->isRenderBlock()) toRenderBlock(cb)->removePositionedObjects(this); } if (containsFloats() && !isFloating() && !isPositioned() && (newStyle->position() == AbsolutePosition || newStyle->position() == FixedPosition)) markAllDescendantsWithFloatsForLayout(); } RenderBox::styleWillChange(diff, newStyle); } void RenderBlock::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBox::styleDidChange(diff, oldStyle); if (!isAnonymousBlock()) { // Ensure that all of our continuation blocks pick up the new style. for (RenderBlock* currCont = blockElementContinuation(); currCont; currCont = currCont->blockElementContinuation()) { RenderBoxModelObject* nextCont = currCont->continuation(); currCont->setContinuation(0); currCont->setStyle(style()); currCont->setContinuation(nextCont); } } propagateStyleToAnonymousChildren(true); m_lineHeight = -1; // Update pseudos for :before and :after now. if (!isAnonymous() && document()->usesBeforeAfterRules() && canHaveGeneratedChildren(this)) { updateBeforeAfterContent(BEFORE); updateBeforeAfterContent(AFTER); } // After our style changed, if we lose our ability to propagate floats into next sibling // blocks, then we need to find the top most parent containing that overhanging float and // then mark its descendants with floats for layout and clear all floats from its next // sibling blocks that exist in our floating objects list. See bug 56299 and 62875. bool canPropagateFloatIntoSibling = !isFloatingOrPositioned() && !avoidsFloats(); if (diff == StyleDifferenceLayout && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) { RenderBlock* parentBlock = this; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (RenderObject* curr = parent(); curr && !curr->isRenderView(); curr = curr->parent()) { if (curr->isRenderBlock()) { RenderBlock* currBlock = toRenderBlock(curr); if (currBlock->hasOverhangingFloats()) { for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { RenderBox* renderer = (*it)->renderer(); if (currBlock->hasOverhangingFloat(renderer)) { parentBlock = currBlock; break; } } } } } parentBlock->markAllDescendantsWithFloatsForLayout(); parentBlock->markSiblingsWithFloatsForLayout(); } } void RenderBlock::updateBeforeAfterContent(PseudoId pseudoId) { // If this is an anonymous wrapper, then the parent applies its own pseudo-element style to it. if (parent() && parent()->createsAnonymousWrapper()) return; children()->updateBeforeAfterContent(this, pseudoId); } RenderBlock* RenderBlock::continuationBefore(RenderObject* beforeChild) { if (beforeChild && beforeChild->parent() == this) return this; RenderBlock* curr = toRenderBlock(continuation()); RenderBlock* nextToLast = this; RenderBlock* last = this; while (curr) { if (beforeChild && beforeChild->parent() == curr) { if (curr->firstChild() == beforeChild) return last; return curr; } nextToLast = last; last = curr; curr = toRenderBlock(curr->continuation()); } if (!beforeChild && !last->firstChild()) return nextToLast; return last; } void RenderBlock::addChildToContinuation(RenderObject* newChild, RenderObject* beforeChild) { RenderBlock* flow = continuationBefore(beforeChild); ASSERT(!beforeChild || beforeChild->parent()->isAnonymousColumnSpanBlock() || beforeChild->parent()->isRenderBlock()); RenderBoxModelObject* beforeChildParent = 0; if (beforeChild) beforeChildParent = toRenderBoxModelObject(beforeChild->parent()); else { RenderBoxModelObject* cont = flow->continuation(); if (cont) beforeChildParent = cont; else beforeChildParent = flow; } if (newChild->isFloatingOrPositioned()) { beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); return; } // A continuation always consists of two potential candidates: a block or an anonymous // column span box holding column span children. bool childIsNormal = newChild->isInline() || !newChild->style()->columnSpan(); bool bcpIsNormal = beforeChildParent->isInline() || !beforeChildParent->style()->columnSpan(); bool flowIsNormal = flow->isInline() || !flow->style()->columnSpan(); if (flow == beforeChildParent) { flow->addChildIgnoringContinuation(newChild, beforeChild); return; } // The goal here is to match up if we can, so that we can coalesce and create the // minimal # of continuations needed for the inline. if (childIsNormal == bcpIsNormal) { beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); return; } if (flowIsNormal == childIsNormal) { flow->addChildIgnoringContinuation(newChild, 0); // Just treat like an append. return; } beforeChildParent->addChildIgnoringContinuation(newChild, beforeChild); } void RenderBlock::addChildToAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild) { ASSERT(!continuation()); // We don't yet support column spans that aren't immediate children of the multi-column block. // The goal is to locate a suitable box in which to place our child. RenderBlock* beforeChildParent = 0; if (beforeChild) { RenderObject* curr = beforeChild; while (curr && curr->parent() != this) curr = curr->parent(); beforeChildParent = toRenderBlock(curr); ASSERT(beforeChildParent); ASSERT(beforeChildParent->isAnonymousColumnsBlock() || beforeChildParent->isAnonymousColumnSpanBlock()); } else beforeChildParent = toRenderBlock(lastChild()); // If the new child is floating or positioned it can just go in that block. if (newChild->isFloatingOrPositioned()) { beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); return; } // See if the child can be placed in the box. bool newChildHasColumnSpan = newChild->style()->columnSpan() && !newChild->isInline(); bool beforeChildParentHoldsColumnSpans = beforeChildParent->isAnonymousColumnSpanBlock(); if (newChildHasColumnSpan == beforeChildParentHoldsColumnSpans) { beforeChildParent->addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); return; } if (!beforeChild) { // Create a new block of the correct type. RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock(); children()->appendChildNode(this, newBox); newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0); return; } RenderObject* immediateChild = beforeChild; bool isPreviousBlockViable = true; while (immediateChild->parent() != this) { if (isPreviousBlockViable) isPreviousBlockViable = !immediateChild->previousSibling(); immediateChild = immediateChild->parent(); } if (isPreviousBlockViable && immediateChild->previousSibling()) { toRenderBlock(immediateChild->previousSibling())->addChildIgnoringAnonymousColumnBlocks(newChild, 0); // Treat like an append. return; } // Split our anonymous blocks. RenderObject* newBeforeChild = splitAnonymousBlocksAroundChild(beforeChild); // Create a new anonymous box of the appropriate type. RenderBlock* newBox = newChildHasColumnSpan ? createAnonymousColumnSpanBlock() : createAnonymousColumnsBlock(); children()->insertChildNode(this, newBox, newBeforeChild); newBox->addChildIgnoringAnonymousColumnBlocks(newChild, 0); return; } RenderBlock* RenderBlock::containingColumnsBlock(bool allowAnonymousColumnBlock) { RenderBlock* firstChildIgnoringAnonymousWrappers = 0; for (RenderObject* curr = this; curr; curr = curr->parent()) { if (!curr->isRenderBlock() || curr->isFloatingOrPositioned() || curr->isTableCell() || curr->isRoot() || curr->isRenderView() || curr->hasOverflowClip() || curr->isInlineBlockOrInlineTable()) return 0; // FIXME: Table manages its own table parts, most of which are RenderBoxes. // Multi-column code cannot handle splitting the flow in table. Disabling it // to prevent crashes. if (curr->isTable()) return 0; RenderBlock* currBlock = toRenderBlock(curr); if (!currBlock->createsAnonymousWrapper()) firstChildIgnoringAnonymousWrappers = currBlock; if (currBlock->style()->specifiesColumns() && (allowAnonymousColumnBlock || !currBlock->isAnonymousColumnsBlock())) return firstChildIgnoringAnonymousWrappers; if (currBlock->isAnonymousColumnSpanBlock()) return 0; } return 0; } RenderBlock* RenderBlock::clone() const { RenderBlock* cloneBlock; if (isAnonymousBlock()) { cloneBlock = createAnonymousBlock(); cloneBlock->setChildrenInline(childrenInline()); } else { RenderObject* cloneRenderer = node()->createRenderer(renderArena(), style()); cloneBlock = toRenderBlock(cloneRenderer); cloneBlock->setStyle(style()); // This takes care of setting the right value of childrenInline in case // generated content is added to cloneBlock and 'this' does not have // generated content added yet. cloneBlock->setChildrenInline(cloneBlock->firstChild() ? cloneBlock->firstChild()->isInline() : childrenInline()); } return cloneBlock; } void RenderBlock::splitBlocks(RenderBlock* fromBlock, RenderBlock* toBlock, RenderBlock* middleBlock, RenderObject* beforeChild, RenderBoxModelObject* oldCont) { // Create a clone of this inline. RenderBlock* cloneBlock = clone(); if (!isAnonymousBlock()) cloneBlock->setContinuation(oldCont); if (!beforeChild && isAfterContent(lastChild())) beforeChild = lastChild(); // If we are moving inline children from |this| to cloneBlock, then we need // to clear our line box tree. if (beforeChild && childrenInline()) deleteLineBoxTree(); // We have to remove the descendant child from our positioned objects list // before we do the split and move some of the children to cloneBlock. Since // we are doing layout anyway, it is easier to blow away the entire list, than // traversing down the subtree looking for positioned childs and then remove them // from our positioned objects list. if (beforeChild) removePositionedObjects(0); // Now take all of the children from beforeChild to the end and remove // them from |this| and place them in the clone. moveChildrenTo(cloneBlock, beforeChild, 0, true); // Hook |clone| up as the continuation of the middle block. if (!cloneBlock->isAnonymousBlock()) middleBlock->setContinuation(cloneBlock); // We have been reparented and are now under the fromBlock. We need // to walk up our block parent chain until we hit the containing anonymous columns block. // Once we hit the anonymous columns block we're done. RenderBoxModelObject* curr = toRenderBoxModelObject(parent()); RenderBoxModelObject* currChild = this; RenderObject* currChildNextSibling = currChild->nextSibling(); while (curr && curr != fromBlock) { ASSERT(curr->isRenderBlock()); RenderBlock* blockCurr = toRenderBlock(curr); // Create a new clone. RenderBlock* cloneChild = cloneBlock; cloneBlock = blockCurr->clone(); // Insert our child clone as the first child. cloneBlock->addChildIgnoringContinuation(cloneChild, 0); // Hook the clone up as a continuation of |curr|. Note we do encounter // anonymous blocks possibly as we walk up the block chain. When we split an // anonymous block, there's no need to do any continuation hookup, since we haven't // actually split a real element. if (!blockCurr->isAnonymousBlock()) { oldCont = blockCurr->continuation(); blockCurr->setContinuation(cloneBlock); cloneBlock->setContinuation(oldCont); } // Someone may have indirectly caused a to split. When this happens, the :after content // has to move into the inline continuation. Call updateBeforeAfterContent to ensure that the inline's :after // content gets properly destroyed. bool isLastChild = (currChildNextSibling == blockCurr->lastChild()); if (document()->usesBeforeAfterRules()) blockCurr->children()->updateBeforeAfterContent(blockCurr, AFTER); if (isLastChild && currChildNextSibling != blockCurr->lastChild()) currChildNextSibling = 0; // We destroyed the last child, so now we need to update // the value of currChildNextSibling. // Now we need to take all of the children starting from the first child // *after* currChild and append them all to the clone. blockCurr->moveChildrenTo(cloneBlock, currChildNextSibling, 0, true); // Keep walking up the chain. currChild = curr; currChildNextSibling = currChild->nextSibling(); curr = toRenderBoxModelObject(curr->parent()); } // Now we are at the columns block level. We need to put the clone into the toBlock. toBlock->children()->appendChildNode(toBlock, cloneBlock); // Now take all the children after currChild and remove them from the fromBlock // and put them in the toBlock. fromBlock->moveChildrenTo(toBlock, currChildNextSibling, 0, true); } void RenderBlock::splitFlow(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild, RenderBoxModelObject* oldCont) { RenderBlock* pre = 0; RenderBlock* block = containingColumnsBlock(); // Delete our line boxes before we do the inline split into continuations. block->deleteLineBoxTree(); bool madeNewBeforeBlock = false; if (block->isAnonymousColumnsBlock()) { // We can reuse this block and make it the preBlock of the next continuation. pre = block; pre->removePositionedObjects(0); block = toRenderBlock(block->parent()); } else { // No anonymous block available for use. Make one. pre = block->createAnonymousColumnsBlock(); pre->setChildrenInline(false); madeNewBeforeBlock = true; } RenderBlock* post = block->createAnonymousColumnsBlock(); post->setChildrenInline(false); RenderObject* boxFirst = madeNewBeforeBlock ? block->firstChild() : pre->nextSibling(); if (madeNewBeforeBlock) block->children()->insertChildNode(block, pre, boxFirst); block->children()->insertChildNode(block, newBlockBox, boxFirst); block->children()->insertChildNode(block, post, boxFirst); block->setChildrenInline(false); if (madeNewBeforeBlock) block->moveChildrenTo(pre, boxFirst, 0, true); splitBlocks(pre, post, newBlockBox, beforeChild, oldCont); // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting // time in makeChildrenNonInline by just setting this explicitly up front. newBlockBox->setChildrenInline(false); // We delayed adding the newChild until now so that the |newBlockBox| would be fully // connected, thus allowing newChild access to a renderArena should it need // to wrap itself in additional boxes (e.g., table construction). newBlockBox->addChild(newChild); // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) // get deleted properly. Because objects moves from the pre block into the post block, we want to // make new line boxes instead of leaving the old line boxes around. pre->setNeedsLayoutAndPrefWidthsRecalc(); block->setNeedsLayoutAndPrefWidthsRecalc(); post->setNeedsLayoutAndPrefWidthsRecalc(); } RenderObject* RenderBlock::splitAnonymousBlocksAroundChild(RenderObject* beforeChild) { if (beforeChild->isTablePart()) beforeChild = splitTablePartsAroundChild(beforeChild); while (beforeChild->parent() != this) { RenderBlock* blockToSplit = toRenderBlock(beforeChild->parent()); if (blockToSplit->firstChild() != beforeChild) { // We have to split the parentBlock into two blocks. RenderBlock* post = createAnonymousBlockWithSameTypeAs(blockToSplit); post->setChildrenInline(blockToSplit->childrenInline()); RenderBlock* parentBlock = toRenderBlock(blockToSplit->parent()); parentBlock->children()->insertChildNode(parentBlock, post, blockToSplit->nextSibling()); blockToSplit->moveChildrenTo(post, beforeChild, 0, blockToSplit->hasLayer()); post->setNeedsLayoutAndPrefWidthsRecalc(); blockToSplit->setNeedsLayoutAndPrefWidthsRecalc(); beforeChild = post; } else beforeChild = blockToSplit; } return beforeChild; } static void markTableForSectionAndCellRecalculation(RenderObject* child) { RenderObject* curr = child; while (!curr->isTable()) { if (curr->isTableSection()) toRenderTableSection(curr)->setNeedsCellRecalc(); curr = curr->parent(); } RenderTable* table = toRenderTable(curr); table->setNeedsSectionRecalc(); table->setNeedsLayoutAndPrefWidthsRecalc(); } static void moveAllTableChildrenTo(RenderObject* fromTablePart, RenderTable* toTable, RenderObject* startChild) { for (RenderObject* curr = startChild; curr;) { // Need to store next sibling as we won't have access to it // after we are removed from table. RenderObject* next = curr->nextSibling(); fromTablePart->removeChild(curr); toTable->addChild(curr); if (curr->isTableSection()) toRenderTableSection(curr)->setNeedsCellRecalc(); curr->setNeedsLayoutAndPrefWidthsRecalc(); curr = next; } // This marks fromTable for section and cell recalculation. markTableForSectionAndCellRecalculation(fromTablePart); // startChild is now part of toTable. This marks toTable for section and cell recalculation. markTableForSectionAndCellRecalculation(startChild); } RenderObject* RenderBlock::splitTablePartsAroundChild(RenderObject* beforeChild) { ASSERT(beforeChild->isTablePart()); while (beforeChild->parent() != this) { RenderObject* tablePartToSplit = beforeChild->parent(); if (!tablePartToSplit->isTablePart() && !tablePartToSplit->isTable()) break; if (tablePartToSplit->firstChild() != beforeChild) { // Get our table container. RenderObject* curr = tablePartToSplit; while (!curr->isTable()) curr = curr->parent(); RenderTable* table = toRenderTable(curr); // Create an anonymous table container next to our table container. RenderBlock* parentBlock = toRenderBlock(table->parent()); RenderTable* postTable = parentBlock->createAnonymousTable(); parentBlock->children()->insertChildNode(parentBlock, postTable, table->nextSibling()); // Move all the children from beforeChild to the newly created anonymous table container. moveAllTableChildrenTo(tablePartToSplit, postTable, beforeChild); beforeChild = postTable; } else beforeChild = tablePartToSplit; } return beforeChild; } void RenderBlock::makeChildrenAnonymousColumnBlocks(RenderObject* beforeChild, RenderBlock* newBlockBox, RenderObject* newChild) { RenderBlock* pre = 0; RenderBlock* post = 0; RenderBlock* block = this; // Eventually block will not just be |this|, but will also be a block nested inside |this|. Assign to a variable // so that we don't have to patch all of the rest of the code later on. // Delete the block's line boxes before we do the split. block->deleteLineBoxTree(); if (beforeChild && beforeChild->parent() != this) beforeChild = splitAnonymousBlocksAroundChild(beforeChild); if (beforeChild != firstChild()) { pre = block->createAnonymousColumnsBlock(); pre->setChildrenInline(block->childrenInline()); } if (beforeChild) { post = block->createAnonymousColumnsBlock(); post->setChildrenInline(block->childrenInline()); } RenderObject* boxFirst = block->firstChild(); if (pre) block->children()->insertChildNode(block, pre, boxFirst); block->children()->insertChildNode(block, newBlockBox, boxFirst); if (post) block->children()->insertChildNode(block, post, boxFirst); block->setChildrenInline(false); // The pre/post blocks always have layers, so we know to always do a full insert/remove (so we pass true as the last argument). block->moveChildrenTo(pre, boxFirst, beforeChild, true); block->moveChildrenTo(post, beforeChild, 0, true); // We already know the newBlockBox isn't going to contain inline kids, so avoid wasting // time in makeChildrenNonInline by just setting this explicitly up front. newBlockBox->setChildrenInline(false); // We delayed adding the newChild until now so that the |newBlockBox| would be fully // connected, thus allowing newChild access to a renderArena should it need // to wrap itself in additional boxes (e.g., table construction). newBlockBox->addChild(newChild); // Always just do a full layout in order to ensure that line boxes (especially wrappers for images) // get deleted properly. Because objects moved from the pre block into the post block, we want to // make new line boxes instead of leaving the old line boxes around. if (pre) pre->setNeedsLayoutAndPrefWidthsRecalc(); block->setNeedsLayoutAndPrefWidthsRecalc(); if (post) post->setNeedsLayoutAndPrefWidthsRecalc(); } RenderBlock* RenderBlock::columnsBlockForSpanningElement(RenderObject* newChild) { // FIXME: This function is the gateway for the addition of column-span support. It will // be added to in three stages: // (1) Immediate children of a multi-column block can span. // (2) Nested block-level children with only block-level ancestors between them and the multi-column block can span. // (3) Nested children with block or inline ancestors between them and the multi-column block can span (this is when we // cross the streams and have to cope with both types of continuations mixed together). // This function currently supports (1) and (2). RenderBlock* columnsBlockAncestor = 0; if (!newChild->isText() && newChild->style()->columnSpan() && !newChild->isBeforeOrAfterContent() && !newChild->isFloatingOrPositioned() && !newChild->isInline() && !isAnonymousColumnSpanBlock()) { columnsBlockAncestor = containingColumnsBlock(false); if (columnsBlockAncestor) { // Make sure that none of the parent ancestors have a continuation. // If yes, we do not want split the block into continuations. RenderObject* curr = this; while (curr && curr != columnsBlockAncestor) { if (curr->isRenderBlock() && toRenderBlock(curr)->continuation()) { columnsBlockAncestor = 0; break; } curr = curr->parent(); } } } return columnsBlockAncestor; } void RenderBlock::addChildIgnoringAnonymousColumnBlocks(RenderObject* newChild, RenderObject* beforeChild) { // Make sure we don't append things after :after-generated content if we have it. if (!beforeChild) beforeChild = afterPseudoElementRenderer(); if (beforeChild && beforeChild->parent() != this) { RenderObject* beforeChildContainer = beforeChild->parent(); while (beforeChildContainer->parent() != this) beforeChildContainer = beforeChildContainer->parent(); ASSERT(beforeChildContainer); if (beforeChildContainer->isAnonymous()) { // If the requested beforeChild is not one of our children, then this is because // there is an anonymous container within this object that contains the beforeChild. RenderObject* beforeChildAnonymousContainer = beforeChildContainer; if (beforeChildAnonymousContainer->isAnonymousBlock()) { // Insert the child into the anonymous block box instead of here. if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild) beforeChild->parent()->addChild(newChild, beforeChild); else addChild(newChild, beforeChild->parent()); return; } ASSERT(beforeChildAnonymousContainer->isTable()); if (newChild->isTablePart()) { // Insert into the anonymous table. beforeChildAnonymousContainer->addChild(newChild, beforeChild); return; } beforeChild = splitTablePartsAroundChild(beforeChild); ASSERT(beforeChild->parent() == this); if (beforeChild->parent() != this) { // We should never reach here. If we do, we need to use the // safe fallback to use the topmost beforeChild container. beforeChild = beforeChildContainer; } } else { // We will reach here when beforeChild is a run-in element. // If run-in element precedes a block-level element, it becomes the // the first inline child of that block level element. The insertion // point will be before that block-level element. ASSERT(beforeChild->isRunIn()); beforeChild = beforeChildContainer; } } // Check for a spanning element in columns. RenderBlock* columnsBlockAncestor = columnsBlockForSpanningElement(newChild); if (columnsBlockAncestor) { // We are placing a column-span element inside a block. RenderBlock* newBox = createAnonymousColumnSpanBlock(); if (columnsBlockAncestor != this) { // We are nested inside a multi-column element and are being split by the span. We have to break up // our block into continuations. RenderBoxModelObject* oldContinuation = continuation(); // When we split an anonymous block, there's no need to do any continuation hookup, // since we haven't actually split a real element. if (!isAnonymousBlock()) setContinuation(newBox); // Someone may have put a

inside a , causing a split. When this happens, the :after content // has to move into the inline continuation. Call updateBeforeAfterContent to ensure that our :after // content gets properly destroyed. bool isLastChild = (beforeChild == lastChild()); if (document()->usesBeforeAfterRules()) children()->updateBeforeAfterContent(this, AFTER); if (isLastChild && beforeChild != lastChild()) beforeChild = 0; // We destroyed the last child, so now we need to update our insertion // point to be 0. It's just a straight append now. splitFlow(beforeChild, newBox, newChild, oldContinuation); return; } // We have to perform a split of this block's children. This involves creating an anonymous block box to hold // the column-spanning |newChild|. We take all of the children from before |newChild| and put them into // one anonymous columns block, and all of the children after |newChild| go into another anonymous block. makeChildrenAnonymousColumnBlocks(beforeChild, newBox, newChild); return; } bool madeBoxesNonInline = false; // A block has to either have all of its children inline, or all of its children as blocks. // So, if our children are currently inline and a block child has to be inserted, we move all our // inline children into anonymous block boxes. if (childrenInline() && !newChild->isInline() && !newChild->isFloatingOrPositioned()) { // This is a block with inline content. Wrap the inline content in anonymous blocks. makeChildrenNonInline(beforeChild); madeBoxesNonInline = true; if (beforeChild && beforeChild->parent() != this) { beforeChild = beforeChild->parent(); ASSERT(beforeChild->isAnonymousBlock()); ASSERT(beforeChild->parent() == this); } } else if (!childrenInline() && (newChild->isFloatingOrPositioned() || newChild->isInline())) { // If we're inserting an inline child but all of our children are blocks, then we have to make sure // it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise // a new one is created and inserted into our list of children in the appropriate position. RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild(); if (afterChild && afterChild->isAnonymousBlock()) { afterChild->addChild(newChild); return; } if (newChild->isInline()) { // No suitable existing anonymous box - create a new one. RenderBlock* newBox = createAnonymousBlock(); RenderBox::addChild(newBox, beforeChild); newBox->addChild(newChild); return; } } RenderBox::addChild(newChild, beforeChild); if (madeBoxesNonInline && parent() && isAnonymousBlock() && parent()->isRenderBlock()) toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); // this object may be dead here } void RenderBlock::addChild(RenderObject* newChild, RenderObject* beforeChild) { if (continuation() && !isAnonymousBlock()) addChildToContinuation(newChild, beforeChild); else addChildIgnoringContinuation(newChild, beforeChild); } void RenderBlock::addChildIgnoringContinuation(RenderObject* newChild, RenderObject* beforeChild) { if (!isAnonymousBlock() && firstChild() && (firstChild()->isAnonymousColumnsBlock() || firstChild()->isAnonymousColumnSpanBlock())) addChildToAnonymousColumnBlocks(newChild, beforeChild); else addChildIgnoringAnonymousColumnBlocks(newChild, beforeChild); } static void getInlineRun(RenderObject* start, RenderObject* boundary, RenderObject*& inlineRunStart, RenderObject*& inlineRunEnd) { // Beginning at |start| we find the largest contiguous run of inlines that // we can. We denote the run with start and end points, |inlineRunStart| // and |inlineRunEnd|. Note that these two values may be the same if // we encounter only one inline. // // We skip any non-inlines we encounter as long as we haven't found any // inlines yet. // // |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary| // is inline or not, we will not include it in a run with inlines before it. It's as though we encountered // a non-inline. // Start by skipping as many non-inlines as we can. RenderObject * curr = start; bool sawInline; do { while (curr && !(curr->isInline() || curr->isFloatingOrPositioned())) curr = curr->nextSibling(); inlineRunStart = inlineRunEnd = curr; if (!curr) return; // No more inline children to be found. sawInline = curr->isInline(); curr = curr->nextSibling(); while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) { inlineRunEnd = curr; if (curr->isInline()) sawInline = true; curr = curr->nextSibling(); } } while (!sawInline); } void RenderBlock::deleteLineBoxTree() { if (containsFloats()) { // Clear references to originating lines, since the lines are being deleted const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { ASSERT(!((*it)->m_originatingLine) || (*it)->m_originatingLine->renderer() == this); (*it)->m_originatingLine = 0; } } m_lineBoxes.deleteLineBoxTree(renderArena()); } RootInlineBox* RenderBlock::createRootInlineBox() { return new (renderArena()) RootInlineBox(this); } RootInlineBox* RenderBlock::createAndAppendRootInlineBox() { RootInlineBox* rootBox = createRootInlineBox(); m_lineBoxes.appendLineBox(rootBox); return rootBox; } void RenderBlock::moveChildTo(RenderBlock* toBlock, RenderObject* child, RenderObject* beforeChild, bool fullRemoveInsert) { ASSERT(this == child->parent()); ASSERT(!beforeChild || toBlock == beforeChild->parent()); if (fullRemoveInsert) { // Takes care of adding the new child correctly if toBlock and fromBlock // have different kind of children (block vs inline). toBlock->addChildIgnoringContinuation(children()->removeChildNode(this, child), beforeChild); } else toBlock->children()->insertChildNode(toBlock, children()->removeChildNode(this, child, false), beforeChild, false); } void RenderBlock::moveChildrenTo(RenderBlock* toBlock, RenderObject* startChild, RenderObject* endChild, RenderObject* beforeChild, bool fullRemoveInsert) { ASSERT(!beforeChild || toBlock == beforeChild->parent()); for (RenderObject* child = startChild; child && child != endChild; ) { // Save our next sibling as moveChildTo will clear it. RenderObject* nextSibling = child->nextSibling(); moveChildTo(toBlock, child, beforeChild, fullRemoveInsert); child = nextSibling; } } void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint) { // makeChildrenNonInline takes a block whose children are *all* inline and it // makes sure that inline children are coalesced under anonymous // blocks. If |insertionPoint| is defined, then it represents the insertion point for // the new block child that is causing us to have to wrap all the inlines. This // means that we cannot coalesce inlines before |insertionPoint| with inlines following // |insertionPoint|, because the new child is going to be inserted in between the inlines, // splitting them. ASSERT(isInlineBlockOrInlineTable() || !isInline()); ASSERT(!insertionPoint || insertionPoint->parent() == this); setChildrenInline(false); RenderObject *child = firstChild(); if (!child) return; deleteLineBoxTree(); while (child) { RenderObject *inlineRunStart, *inlineRunEnd; getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd); if (!inlineRunStart) break; child = inlineRunEnd->nextSibling(); RenderBlock* block = createAnonymousBlock(); children()->insertChildNode(this, block, inlineRunStart); moveChildrenTo(block, inlineRunStart, child); } #ifndef NDEBUG for (RenderObject *c = firstChild(); c; c = c->nextSibling()) ASSERT(!c->isInline()); #endif repaint(); } void RenderBlock::removeLeftoverAnonymousBlock(RenderBlock* child) { ASSERT(child->isAnonymousBlock()); ASSERT(!child->childrenInline()); if (child->continuation() || (child->firstChild() && (child->isAnonymousColumnSpanBlock() || child->isAnonymousColumnsBlock()))) return; RenderObject* firstAnChild = child->m_children.firstChild(); RenderObject* lastAnChild = child->m_children.lastChild(); if (firstAnChild) { RenderObject* o = firstAnChild; while (o) { o->setParent(this); o = o->nextSibling(); } firstAnChild->setPreviousSibling(child->previousSibling()); lastAnChild->setNextSibling(child->nextSibling()); if (child->previousSibling()) child->previousSibling()->setNextSibling(firstAnChild); if (child->nextSibling()) child->nextSibling()->setPreviousSibling(lastAnChild); if (child == m_children.firstChild()) m_children.setFirstChild(firstAnChild); if (child == m_children.lastChild()) m_children.setLastChild(lastAnChild); } else { if (child == m_children.firstChild()) m_children.setFirstChild(child->nextSibling()); if (child == m_children.lastChild()) m_children.setLastChild(child->previousSibling()); if (child->previousSibling()) child->previousSibling()->setNextSibling(child->nextSibling()); if (child->nextSibling()) child->nextSibling()->setPreviousSibling(child->previousSibling()); } child->setParent(0); child->setPreviousSibling(0); child->setNextSibling(0); child->children()->setFirstChild(0); child->m_next = 0; child->destroy(); } static bool canMergeContiguousAnonymousBlocks(RenderObject* oldChild, RenderObject* prev, RenderObject* next) { if (oldChild->documentBeingDestroyed() || oldChild->isInline() || oldChild->virtualContinuation()) return false; if ((prev && (!prev->isAnonymousBlock() || toRenderBlock(prev)->continuation() || toRenderBlock(prev)->beingDestroyed())) || (next && (!next->isAnonymousBlock() || toRenderBlock(next)->continuation() || toRenderBlock(next)->beingDestroyed()))) return false; // FIXME: This check isn't required when inline run-ins can't be split into continuations. if (prev && prev->firstChild() && prev->firstChild()->isInline() && prev->firstChild()->isRunIn()) return false; if ((prev && (prev->isRubyRun() || prev->isRubyBase())) || (next && (next->isRubyRun() || next->isRubyBase()))) return false; if (!prev || !next) return true; // Make sure the types of the anonymous blocks match up. return prev->isAnonymousColumnsBlock() == next->isAnonymousColumnsBlock() && prev->isAnonymousColumnSpanBlock() == next->isAnonymousColumnSpanBlock(); } void RenderBlock::collapseAnonymousBoxChild(RenderBlock* parent, RenderObject* child) { parent->setNeedsLayoutAndPrefWidthsRecalc(); parent->setChildrenInline(child->childrenInline()); RenderObject* nextSibling = child->nextSibling(); RenderFlowThread* childFlowThread = child->enclosingRenderFlowThread(); RenderBlock* anonBlock = toRenderBlock(parent->children()->removeChildNode(parent, child, child->hasLayer())); anonBlock->moveAllChildrenTo(parent, nextSibling, child->hasLayer()); // Delete the now-empty block's lines and nuke it. if (!parent->documentBeingDestroyed()) anonBlock->deleteLineBoxTree(); if (childFlowThread && !parent->documentBeingDestroyed()) childFlowThread->removeFlowChildInfo(anonBlock); anonBlock->destroy(); } void RenderBlock::removeChild(RenderObject* oldChild) { // If this child is a block, and if our previous and next siblings are // both anonymous blocks with inline content, then we can go ahead and // fold the inline content back together. RenderObject* prev = oldChild->previousSibling(); RenderObject* next = oldChild->nextSibling(); bool canMergeAnonymousBlocks = canMergeContiguousAnonymousBlocks(oldChild, prev, next); if (canMergeAnonymousBlocks && prev && next) { prev->setNeedsLayoutAndPrefWidthsRecalc(); RenderBlock* nextBlock = toRenderBlock(next); RenderBlock* prevBlock = toRenderBlock(prev); if (prev->childrenInline() != next->childrenInline()) { RenderBlock* inlineChildrenBlock = prev->childrenInline() ? prevBlock : nextBlock; RenderBlock* blockChildrenBlock = prev->childrenInline() ? nextBlock : prevBlock; // Place the inline children block inside of the block children block instead of deleting it. // In order to reuse it, we have to reset it to just be a generic anonymous block. Make sure // to clear out inherited column properties by just making a new style, and to also clear the // column span flag if it is set. ASSERT(!inlineChildrenBlock->continuation()); RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); children()->removeChildNode(this, inlineChildrenBlock, inlineChildrenBlock->hasLayer()); inlineChildrenBlock->setStyle(newStyle); // Now just put the inlineChildrenBlock inside the blockChildrenBlock. blockChildrenBlock->children()->insertChildNode(blockChildrenBlock, inlineChildrenBlock, prev == inlineChildrenBlock ? blockChildrenBlock->firstChild() : 0, inlineChildrenBlock->hasLayer() || blockChildrenBlock->hasLayer()); next->setNeedsLayoutAndPrefWidthsRecalc(); // inlineChildrenBlock got reparented to blockChildrenBlock, so it is no longer a child // of "this". we null out prev or next so that is not used later in the function. if (inlineChildrenBlock == prevBlock) prev = 0; else next = 0; } else { // Take all the children out of the |next| block and put them in // the |prev| block. nextBlock->moveAllChildrenTo(prevBlock, nextBlock->hasLayer() || prevBlock->hasLayer()); // Delete the now-empty block's lines and nuke it. nextBlock->deleteLineBoxTree(); nextBlock->destroy(); next = 0; } } RenderBox::removeChild(oldChild); RenderObject* child = prev ? prev : next; if (canMergeAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBoxIncludingDeprecated()) { // The removal has knocked us down to containing only a single anonymous // box. We can go ahead and pull the content right back up into our // box. collapseAnonymousBoxChild(this, child); } else if (((prev && prev->isAnonymousBlock()) || (next && next->isAnonymousBlock())) && !isFlexibleBoxIncludingDeprecated()) { // It's possible that the removal has knocked us down to a single anonymous // block with pseudo-style element siblings (e.g. first-letter). If these // are floating, then we need to pull the content up also. RenderBlock* anonBlock = toRenderBlock((prev && prev->isAnonymousBlock()) ? prev : next); if ((anonBlock->previousSibling() || anonBlock->nextSibling()) && (!anonBlock->previousSibling() || (anonBlock->previousSibling()->style()->styleType() != NOPSEUDO && anonBlock->previousSibling()->isFloating() && !anonBlock->previousSibling()->previousSibling())) && (!anonBlock->nextSibling() || (anonBlock->nextSibling()->style()->styleType() != NOPSEUDO && anonBlock->nextSibling()->isFloating() && !anonBlock->nextSibling()->nextSibling()))) { collapseAnonymousBoxChild(this, anonBlock); } } if (!firstChild() && !documentBeingDestroyed()) { // If this was our last child be sure to clear out our line boxes. if (childrenInline()) deleteLineBoxTree(); } } bool RenderBlock::isSelfCollapsingBlock() const { // We are not self-collapsing if we // (a) have a non-zero height according to layout (an optimization to avoid wasting time) // (b) are a table, // (c) have border/padding, // (d) have a min-height // (e) have specified that one of our margins can't collapse using a CSS extension if (logicalHeight() > 0 || isTable() || borderAndPaddingLogicalHeight() || style()->logicalMinHeight().isPositive() || style()->marginBeforeCollapse() == MSEPARATE || style()->marginAfterCollapse() == MSEPARATE) return false; Length logicalHeightLength = style()->logicalHeight(); bool hasAutoHeight = logicalHeightLength.isAuto(); if (logicalHeightLength.isPercent() && !document()->inQuirksMode()) { hasAutoHeight = true; for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { if (cb->style()->logicalHeight().isFixed() || cb->isTableCell()) hasAutoHeight = false; } } // If the height is 0 or auto, then whether or not we are a self-collapsing block depends // on whether we have content that is all self-collapsing or not. if (hasAutoHeight || ((logicalHeightLength.isFixed() || logicalHeightLength.isPercent()) && logicalHeightLength.isZero())) { // If the block has inline children, see if we generated any line boxes. If we have any // line boxes, then we can't be self-collapsing, since we have content. if (childrenInline()) return !firstLineBox(); // Whether or not we collapse is dependent on whether all our normal flow children // are also self-collapsing. for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isFloatingOrPositioned()) continue; if (!child->isSelfCollapsingBlock()) return false; } return true; } return false; } void RenderBlock::startDelayUpdateScrollInfo() { if (gDelayUpdateScrollInfo == 0) { ASSERT(!gDelayedUpdateScrollInfoSet); gDelayedUpdateScrollInfoSet = new DelayedUpdateScrollInfoSet; } ASSERT(gDelayedUpdateScrollInfoSet); ++gDelayUpdateScrollInfo; } void RenderBlock::finishDelayUpdateScrollInfo() { --gDelayUpdateScrollInfo; ASSERT(gDelayUpdateScrollInfo >= 0); if (gDelayUpdateScrollInfo == 0) { ASSERT(gDelayedUpdateScrollInfoSet); OwnPtr infoSet(adoptPtr(gDelayedUpdateScrollInfoSet)); gDelayedUpdateScrollInfoSet = 0; for (DelayedUpdateScrollInfoSet::iterator it = infoSet->begin(); it != infoSet->end(); ++it) { RenderBlock* block = *it; if (block->hasOverflowClip()) { block->layer()->updateScrollInfoAfterLayout(); } } } } void RenderBlock::updateScrollInfoAfterLayout() { if (!hasOverflowClip()) return; if (!hasLayer()) { updateCachedSizeForOverflowClip(); return; } if (gDelayUpdateScrollInfo) gDelayedUpdateScrollInfoSet->add(this); else layer()->updateScrollInfoAfterLayout(); } void RenderBlock::layout() { OverflowEventDispatcher dispatcher(this); // Update our first letter info now. updateFirstLetter(); // Table cells call layoutBlock directly, so don't add any logic here. Put code into // layoutBlock(). layoutBlock(false); // It's safe to check for control clip here, since controls can never be table cells. // If we have a lightweight clip, there can never be any overflow from children. if (hasControlClip() && m_overflow) clearLayoutOverflow(); } void RenderBlock::computeInitialRegionRangeForBlock() { if (inRenderFlowThread()) { // Set our start and end regions. No regions above or below us will be considered by our children. They are // effectively clamped to our region range. LayoutUnit oldHeight = logicalHeight(); LayoutUnit oldLogicalTop = logicalTop(); setLogicalHeight(numeric_limits::max() / 2); computeLogicalHeight(); enclosingRenderFlowThread()->setRegionRangeForBox(this, offsetFromLogicalTopOfFirstPage()); setLogicalHeight(oldHeight); setLogicalTop(oldLogicalTop); } } void RenderBlock::computeRegionRangeForBlock() { if (inRenderFlowThread()) enclosingRenderFlowThread()->setRegionRangeForBox(this, offsetFromLogicalTopOfFirstPage()); } void RenderBlock::layoutBlock(bool relayoutChildren, LayoutUnit pageLogicalHeight, BlockLayoutPass layoutPass) { ASSERT(needsLayout()); if (isInline() && !isInlineBlockOrInlineTable()) // Inline

s inside various table elements can return; // cause us to come in here. Just bail. if (!relayoutChildren && simplifiedLayout()) return; LayoutRepainter repainter(*this, everHadLayout() && checkForRepaintDuringLayout()); LayoutUnit oldWidth = logicalWidth(); LayoutUnit oldColumnWidth = desiredColumnWidth(); computeLogicalWidth(); calcColumnWidth(); m_overflow.clear(); if (oldWidth != logicalWidth() || oldColumnWidth != desiredColumnWidth()) relayoutChildren = true; // If nothing changed about our floating positioned objects, let's go ahead and try to place them as // floats to avoid doing two passes. BlockLayoutPass floatsLayoutPass = layoutPass; if (floatsLayoutPass == NormalLayoutPass && !relayoutChildren && !positionedFloatsNeedRelayout()) floatsLayoutPass = PositionedFloatLayoutPass; clearFloats(floatsLayoutPass); LayoutUnit previousHeight = logicalHeight(); setLogicalHeight(0); bool hasSpecifiedPageLogicalHeight = false; bool pageLogicalHeightChanged = false; ColumnInfo* colInfo = columnInfo(); if (hasColumns()) { if (!pageLogicalHeight) { // We need to go ahead and set our explicit page height if one exists, so that we can // avoid doing two layout passes. computeLogicalHeight(); LayoutUnit columnHeight = contentLogicalHeight(); if (columnHeight > 0) { pageLogicalHeight = columnHeight; hasSpecifiedPageLogicalHeight = true; } setLogicalHeight(0); } if (colInfo->columnHeight() != pageLogicalHeight && everHadLayout()) { colInfo->setColumnHeight(pageLogicalHeight); pageLogicalHeightChanged = true; } if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight) colInfo->clearForcedBreaks(); colInfo->setPaginationUnit(paginationUnit()); } RenderView* renderView = view(); RenderStyle* styleToUse = style(); LayoutStateMaintainer statePusher(renderView, this, locationOffset(), hasColumns() || hasTransform() || hasReflection() || styleToUse->isFlippedBlocksWritingMode(), pageLogicalHeight, pageLogicalHeightChanged, colInfo); if (inRenderFlowThread()) { // Regions changing widths can force us to relayout our children. if (logicalWidthChangedInRegions()) relayoutChildren = true; } computeInitialRegionRangeForBlock(); // We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track // our current maximal positive and negative margins. These values are used when we // are collapsed with adjacent blocks, so for example, if you have block A and B // collapsing together, then you'd take the maximal positive margin from both A and B // and subtract it from the maximal negative margin from both A and B to get the // true collapsed margin. This algorithm is recursive, so when we finish layout() // our block knows its current maximal positive/negative values. // // Start out by setting our margin values to our current margins. Table cells have // no margins, so we don't fill in the values for table cells. bool isCell = isTableCell(); if (!isCell) { initMaxMarginValues(); setMarginBeforeQuirk(styleToUse->marginBefore().quirk()); setMarginAfterQuirk(styleToUse->marginAfter().quirk()); Node* n = node(); if (n && n->hasTagName(formTag) && static_cast(n)->isMalformed()) { // See if this form is malformed (i.e., unclosed). If so, don't give the form // a bottom margin. setMaxMarginAfterValues(0, 0); } setPaginationStrut(0); } // For overflow:scroll blocks, ensure we have both scrollbars in place always. if (scrollsOverflow() && style()->appearance() != ListboxPart) { if (styleToUse->overflowX() == OSCROLL) layer()->setHasHorizontalScrollbar(true); if (styleToUse->overflowY() == OSCROLL) layer()->setHasVerticalScrollbar(true); } LayoutUnit repaintLogicalTop = 0; LayoutUnit repaintLogicalBottom = 0; LayoutUnit maxFloatLogicalBottom = 0; if (!firstChild() && !isAnonymousBlock()) setChildrenInline(true); if (childrenInline()) layoutInlineChildren(relayoutChildren, repaintLogicalTop, repaintLogicalBottom); else layoutBlockChildren(relayoutChildren, maxFloatLogicalBottom); // Expand our intrinsic height to encompass floats. LayoutUnit toAdd = borderAfter() + paddingAfter() + scrollbarLogicalHeight(); if (lowestFloatLogicalBottom() > (logicalHeight() - toAdd) && expandsToEncloseOverhangingFloats()) setLogicalHeight(lowestFloatLogicalBottom() + toAdd); if (layoutColumns(hasSpecifiedPageLogicalHeight, pageLogicalHeight, statePusher)) return; // Calculate our new height. LayoutUnit oldHeight = logicalHeight(); LayoutUnit oldClientAfterEdge = clientLogicalBottom(); computeLogicalHeight(); LayoutUnit newHeight = logicalHeight(); if (oldHeight != newHeight) { if (oldHeight > newHeight && maxFloatLogicalBottom > newHeight && !childrenInline()) { // One of our children's floats may have become an overhanging float for us. We need to look for it. for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isBlockFlow() && !child->isFloatingOrPositioned()) { RenderBlock* block = toRenderBlock(child); if (block->lowestFloatLogicalBottomIncludingPositionedFloats() + block->logicalTop() > newHeight) addOverhangingFloats(block, false); } } } } if (previousHeight != newHeight) relayoutChildren = true; bool needAnotherLayoutPass = layoutPositionedObjects(relayoutChildren || isRoot()); computeRegionRangeForBlock(); // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway). computeOverflow(oldClientAfterEdge); statePusher.pop(); if (renderView->layoutState()->m_pageLogicalHeight) setPageLogicalOffset(renderView->layoutState()->pageLogicalOffset(logicalTop())); updateLayerTransform(); // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. updateScrollInfoAfterLayout(); // FIXME: This repaint logic should be moved into a separate helper function! // Repaint with our new bounds if they are different from our old bounds. bool didFullRepaint = repainter.repaintAfterLayout(); if (!didFullRepaint && repaintLogicalTop != repaintLogicalBottom && (styleToUse->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) { // FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines // it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either. LayoutUnit repaintLogicalLeft = logicalLeftVisualOverflow(); LayoutUnit repaintLogicalRight = logicalRightVisualOverflow(); if (hasOverflowClip()) { // If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow. // Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit. // layoutInlineChildren should be patched to compute the entire repaint rect. repaintLogicalLeft = min(repaintLogicalLeft, logicalLeftLayoutOverflow()); repaintLogicalRight = max(repaintLogicalRight, logicalRightLayoutOverflow()); } LayoutRect repaintRect; if (isHorizontalWritingMode()) repaintRect = LayoutRect(repaintLogicalLeft, repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop); else repaintRect = LayoutRect(repaintLogicalTop, repaintLogicalLeft, repaintLogicalBottom - repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft); // The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union. adjustRectForColumns(repaintRect); repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline)); if (hasOverflowClipWithLayer()) { // Adjust repaint rect for scroll offset repaintRect.move(-scrolledContentOffset()); // Don't allow this rect to spill out of our overflow box. repaintRect.intersect(LayoutRect(LayoutPoint(), size())); } // Make sure the rect is still non-empty after intersecting for overflow above if (!repaintRect.isEmpty()) { repaintRectangle(repaintRect); // We need to do a partial repaint of our content. if (hasReflection()) repaintRectangle(reflectedRect(repaintRect)); } } if (needAnotherLayoutPass && layoutPass == NormalLayoutPass) { setChildNeedsLayout(true, false); layoutBlock(false, pageLogicalHeight, PositionedFloatLayoutPass); } else setNeedsLayout(false); } void RenderBlock::addOverflowFromChildren() { if (!hasColumns()) { if (childrenInline()) addOverflowFromInlineChildren(); else addOverflowFromBlockChildren(); } else { ColumnInfo* colInfo = columnInfo(); if (columnCount(colInfo)) { LayoutRect lastRect = columnRectAt(colInfo, columnCount(colInfo) - 1); addLayoutOverflow(lastRect); if (!hasOverflowClip()) addVisualOverflow(lastRect); } } } void RenderBlock::computeOverflow(LayoutUnit oldClientAfterEdge, bool recomputeFloats) { // Add overflow from children. addOverflowFromChildren(); if (!hasColumns() && (recomputeFloats || isRoot() || expandsToEncloseOverhangingFloats() || hasSelfPaintingLayer())) addOverflowFromFloats(); // Add in the overflow from positioned objects. addOverflowFromPositionedObjects(); if (hasOverflowClip()) { // When we have overflow clip, propagate the original spillout since it will include collapsed bottom margins // and bottom padding. Set the axis we don't care about to be 1, since we want this overflow to always // be considered reachable. LayoutRect clientRect(clientBoxRect()); LayoutRect rectToApply; if (isHorizontalWritingMode()) rectToApply = LayoutRect(clientRect.x(), clientRect.y(), 1, max(0, oldClientAfterEdge - clientRect.y())); else rectToApply = LayoutRect(clientRect.x(), clientRect.y(), max(0, oldClientAfterEdge - clientRect.x()), 1); addLayoutOverflow(rectToApply); } // Add visual overflow from box-shadow and border-image-outset. addVisualEffectOverflow(); // Add visual overflow from theme. addVisualOverflowFromTheme(); if (isRenderFlowThread()) enclosingRenderFlowThread()->computeOverflowStateForRegions(oldClientAfterEdge); } void RenderBlock::addOverflowFromBlockChildren() { for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (!child->isFloatingOrPositioned()) addOverflowFromChild(child); } } void RenderBlock::addOverflowFromFloats() { if (!m_floatingObjects) return; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; if (r->m_isDescendant && !r->m_renderer->isPositioned()) addOverflowFromChild(r->m_renderer, IntSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r))); } return; } void RenderBlock::addOverflowFromPositionedObjects() { if (!m_positionedObjects) return; RenderBox* positionedObject; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { positionedObject = *it; // Fixed positioned elements don't contribute to layout overflow, since they don't scroll with the content. if (positionedObject->style()->position() != FixedPosition) { int x = positionedObject->x(); if (style()->shouldPlaceBlockDirectionScrollbarOnLogicalLeft()) x -= verticalScrollbarWidth(); addOverflowFromChild(positionedObject, IntSize(x, positionedObject->y())); } } } void RenderBlock::addVisualOverflowFromTheme() { if (!style()->hasAppearance()) return; IntRect inflatedRect = borderBoxRect(); theme()->adjustRepaintRect(this, inflatedRect); addVisualOverflow(inflatedRect); } bool RenderBlock::expandsToEncloseOverhangingFloats() const { return isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || (parent() && parent()->isDeprecatedFlexibleBox()) || hasColumns() || isTableCell() || isTableCaption() || isFieldset() || isWritingModeRoot() || isRoot(); } void RenderBlock::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo) { bool isHorizontal = isHorizontalWritingMode(); bool hasStaticBlockPosition = child->style()->hasStaticBlockPosition(isHorizontal); LayoutUnit logicalTop = logicalHeight(); setStaticInlinePositionForChild(child, logicalTop, startOffsetForContent(logicalTop)); if (!marginInfo.canCollapseWithMarginBefore()) { child->computeBlockDirectionMargins(this); LayoutUnit marginBefore = marginBeforeForChild(child); LayoutUnit collapsedBeforePos = marginInfo.positiveMargin(); LayoutUnit collapsedBeforeNeg = marginInfo.negativeMargin(); if (marginBefore > 0) { if (marginBefore > collapsedBeforePos) collapsedBeforePos = marginBefore; } else { if (-marginBefore > collapsedBeforeNeg) collapsedBeforeNeg = -marginBefore; } logicalTop += (collapsedBeforePos - collapsedBeforeNeg) - marginBefore; } RenderLayer* childLayer = child->layer(); if (childLayer->staticBlockPosition() != logicalTop) { childLayer->setStaticBlockPosition(logicalTop); if (hasStaticBlockPosition) child->setChildNeedsLayout(true, false); } } void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo) { // The float should be positioned taking into account the bottom margin // of the previous flow. We add that margin into the height, get the // float positioned properly, and then subtract the margin out of the // height again. In the case of self-collapsing blocks, we always just // use the top margins, since the self-collapsing block collapsed its // own bottom margin into its top margin. // // Note also that the previous flow may collapse its margin into the top of // our block. If this is the case, then we do not add the margin in to our // height when computing the position of the float. This condition can be tested // for by simply calling canCollapseWithMarginBefore. See // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for // an example of this scenario. LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? zeroLayoutUnit : marginInfo.margin(); setLogicalHeight(logicalHeight() + marginOffset); positionNewFloats(); setLogicalHeight(logicalHeight() - marginOffset); } bool RenderBlock::handleSpecialChild(RenderBox* child, const MarginInfo& marginInfo) { // Handle in the given order return handlePositionedChild(child, marginInfo) || handleFloatingChild(child, marginInfo) || handleRunInChild(child); } bool RenderBlock::handlePositionedChild(RenderBox* child, const MarginInfo& marginInfo) { if (child->isPositioned()) { child->containingBlock()->insertPositionedObject(child); adjustPositionedBlock(child, marginInfo); return true; } return false; } bool RenderBlock::handleFloatingChild(RenderBox* child, const MarginInfo& marginInfo) { if (child->isFloating()) { insertFloatingObject(child); adjustFloatingBlock(marginInfo); return true; } return false; } bool RenderBlock::handleRunInChild(RenderBox* child) { // See if we have a run-in element with inline children. If the // children aren't inline, then just treat the run-in as a normal // block. if (!child->isRunIn() || !child->childrenInline()) return false; // FIXME: We don't handle non-block elements with run-in for now. if (!child->isRenderBlock()) return false; // Run-in child shouldn't intrude into the sibling block if it is part of a // continuation chain. In that case, treat it as a normal block. if (child->isElementContinuation() || child->virtualContinuation()) return false; RenderBlock* blockRunIn = toRenderBlock(child); RenderObject* curr = blockRunIn->nextSibling(); if (!curr || !curr->isRenderBlock() || !curr->childrenInline() || curr->isRunIn() || curr->isAnonymous() || curr->isFloatingOrPositioned()) return false; RenderBlock* currBlock = toRenderBlock(curr); // First we destroy any :before/:after content. It will be regenerated by the new inline. // Exception is if the run-in itself is generated. if (child->style()->styleType() != BEFORE && child->style()->styleType() != AFTER) { RenderObject* generatedContent; if (child->getCachedPseudoStyle(BEFORE) && (generatedContent = child->beforePseudoElementRenderer())) generatedContent->destroy(); if (child->getCachedPseudoStyle(AFTER) && (generatedContent = child->afterPseudoElementRenderer())) generatedContent->destroy(); } // Remove the old child. children()->removeChildNode(this, blockRunIn); // Create an inline. Node* runInNode = blockRunIn->node(); RenderInline* inlineRunIn = new (renderArena()) RenderInline(runInNode ? runInNode : document()); inlineRunIn->setStyle(blockRunIn->style()); // Move the nodes from the old child to the new child for (RenderObject* runInChild = blockRunIn->firstChild(); runInChild;) { RenderObject* nextSibling = runInChild->nextSibling(); blockRunIn->children()->removeChildNode(blockRunIn, runInChild, false); inlineRunIn->addChild(runInChild); // Use addChild instead of appendChildNode since it handles correct placement of the children relative to :after-generated content. runInChild = nextSibling; } // Now insert the new child under |currBlock|. Use addChild instead of insertChildNode since it handles correct placement of the children, esp where we cannot insert // anything before the first child. e.g. details tag. See https://bugs.webkit.org/show_bug.cgi?id=58228. currBlock->addChild(inlineRunIn, currBlock->firstChild()); // If the run-in had an element, we need to set the new renderer. if (runInNode) runInNode->setRenderer(inlineRunIn); // Destroy the block run-in, which includes deleting its line box tree. blockRunIn->deleteLineBoxTree(); blockRunIn->destroy(); // The block acts like an inline, so just null out its // position. return true; } LayoutUnit RenderBlock::collapseMargins(RenderBox* child, MarginInfo& marginInfo) { // Get the four margin values for the child and cache them. const MarginValues childMargins = marginValuesForChild(child); // Get our max pos and neg top margins. LayoutUnit posTop = childMargins.positiveMarginBefore(); LayoutUnit negTop = childMargins.negativeMarginBefore(); // For self-collapsing blocks, collapse our bottom margins into our // top to get new posTop and negTop values. if (child->isSelfCollapsingBlock()) { posTop = max(posTop, childMargins.positiveMarginAfter()); negTop = max(negTop, childMargins.negativeMarginAfter()); } // See if the top margin is quirky. We only care if this child has // margins that will collapse with us. bool topQuirk = child->isMarginBeforeQuirk() || style()->marginBeforeCollapse() == MDISCARD; if (marginInfo.canCollapseWithMarginBefore()) { // This child is collapsing with the top of the // block. If it has larger margin values, then we need to update // our own maximal values. if (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk) setMaxMarginBeforeValues(max(posTop, maxPositiveMarginBefore()), max(negTop, maxNegativeMarginBefore())); // The minute any of the margins involved isn't a quirk, don't // collapse it away, even if the margin is smaller (www.webreference.com // has an example of this, a
with 0.8em author-specified inside // a
inside a . if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) { setMarginBeforeQuirk(false); marginInfo.setDeterminedMarginBeforeQuirk(true); } if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore()) // We have no top margin and our top child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. // Don't do this for a block that split two inlines though. You do // still apply margins in this case. setMarginBeforeQuirk(true); } if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop)) marginInfo.setMarginBeforeQuirk(topQuirk); LayoutUnit beforeCollapseLogicalTop = logicalHeight(); LayoutUnit logicalTop = beforeCollapseLogicalTop; if (child->isSelfCollapsingBlock()) { // This child has no height. We need to compute our // position before we collapse the child's margins together, // so that we can get an accurate position for the zero-height block. LayoutUnit collapsedBeforePos = max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore()); LayoutUnit collapsedBeforeNeg = max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore()); marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg); // Now collapse the child's margins together, which means examining our // bottom margin values as well. marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter()); marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter()); if (!marginInfo.canCollapseWithMarginBefore()) // We need to make sure that the position of the self-collapsing block // is correct, since it could have overflowing content // that needs to be positioned correctly (e.g., a block that // had a specified height of 0 but that actually had subcontent). logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg; } else { if (child->style()->marginBeforeCollapse() == MSEPARATE) { setLogicalHeight(logicalHeight() + marginInfo.margin() + marginBeforeForChild(child)); logicalTop = logicalHeight(); } else if (!marginInfo.atBeforeSideOfBlock() || (!marginInfo.canCollapseMarginBeforeWithChildren() && (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginBeforeQuirk()))) { // We're collapsing with a previous sibling's margins and not // with the top of the block. setLogicalHeight(logicalHeight() + max(marginInfo.positiveMargin(), posTop) - max(marginInfo.negativeMargin(), negTop)); logicalTop = logicalHeight(); } marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); if (marginInfo.margin()) marginInfo.setMarginAfterQuirk(child->isMarginAfterQuirk() || style()->marginAfterCollapse() == MDISCARD); } // If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins // collapsed into the page edge. LayoutState* layoutState = view()->layoutState(); if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTop > beforeCollapseLogicalTop && hasNextPage(beforeCollapseLogicalTop)) { LayoutUnit oldLogicalTop = logicalTop; logicalTop = min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop)); setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop)); } return logicalTop; } LayoutUnit RenderBlock::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, LayoutUnit oldTopPosMargin, LayoutUnit oldTopNegMargin, LayoutUnit yPos) { LayoutUnit heightIncrease = getClearDelta(child, yPos); if (!heightIncrease) return yPos; if (child->isSelfCollapsingBlock()) { // For self-collapsing blocks that clear, they can still collapse their // margins with following siblings. Reset the current margins to represent // the self-collapsing block's margins only. // CSS2.1 states: // "An element that has had clearance applied to it never collapses its top margin with its parent block's bottom margin. // Therefore if we are at the bottom of the block, let's go ahead and reset margins to only include the // self-collapsing block's bottom margin. bool atBottomOfBlock = true; for (RenderBox* curr = child->nextSiblingBox(); curr && atBottomOfBlock; curr = curr->nextSiblingBox()) { if (!curr->isFloatingOrPositioned()) atBottomOfBlock = false; } MarginValues childMargins = marginValuesForChild(child); if (atBottomOfBlock) { marginInfo.setPositiveMargin(childMargins.positiveMarginAfter()); marginInfo.setNegativeMargin(childMargins.negativeMarginAfter()); } else { marginInfo.setPositiveMargin(max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter())); marginInfo.setNegativeMargin(max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter())); } // Adjust our height such that we are ready to be collapsed with subsequent siblings (or the bottom // of the parent block). setLogicalHeight(child->y() - max(0, marginInfo.margin())); } else // Increase our height by the amount we had to clear. setLogicalHeight(height() + heightIncrease); if (marginInfo.canCollapseWithMarginBefore()) { // We can no longer collapse with the top of the block since a clear // occurred. The empty blocks collapse into the cleared block. // FIXME: This isn't quite correct. Need clarification for what to do // if the height the cleared block is offset by is smaller than the // margins involved. setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin); marginInfo.setAtBeforeSideOfBlock(false); } return yPos + heightIncrease; } LayoutUnit RenderBlock::estimateLogicalTopPosition(RenderBox* child, const MarginInfo& marginInfo, LayoutUnit& estimateWithoutPagination) { // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological // relayout if there are intruding floats. LayoutUnit logicalTopEstimate = logicalHeight(); if (!marginInfo.canCollapseWithMarginBefore()) { LayoutUnit childMarginBefore = child->selfNeedsLayout() ? marginBeforeForChild(child) : collapsedMarginBeforeForChild(child); logicalTopEstimate += max(marginInfo.margin(), childMarginBefore); } // Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current // page. LayoutState* layoutState = view()->layoutState(); if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTopEstimate > logicalHeight() && hasNextPage(logicalHeight())) logicalTopEstimate = min(logicalTopEstimate, nextPageLogicalTop(logicalHeight())); logicalTopEstimate += getClearDelta(child, logicalTopEstimate); estimateWithoutPagination = logicalTopEstimate; if (layoutState->isPaginated()) { // If the object has a page or column break value of "before", then we should shift to the top of the next page. logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate); // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate); if (!child->selfNeedsLayout() && child->isRenderBlock()) logicalTopEstimate += toRenderBlock(child)->paginationStrut(); } return logicalTopEstimate; } LayoutUnit RenderBlock::computeStartPositionDeltaForChildAvoidingFloats(const RenderBox* child, LayoutUnit childMarginStart, LayoutUnit childLogicalWidth, RenderRegion* region, LayoutUnit offsetFromLogicalTopOfFirstPage) { LayoutUnit startPosition = startOffsetForContent(region, offsetFromLogicalTopOfFirstPage); // Add in our start margin. LayoutUnit oldPosition = startPosition + childMarginStart; LayoutUnit newPosition = oldPosition; LayoutUnit blockOffset = logicalTopForChild(child); if (region) blockOffset = max(blockOffset, blockOffset + (region->offsetFromLogicalTopOfFirstPage() - offsetFromLogicalTopOfFirstPage)); LayoutUnit startOff = startOffsetForLine(blockOffset, false, region, offsetFromLogicalTopOfFirstPage); if (style()->textAlign() != WEBKIT_CENTER && !child->style()->marginStartUsing(style()).isAuto()) { if (childMarginStart < 0) startOff += childMarginStart; newPosition = max(newPosition, startOff); // Let the float sit in the child's margin if it can fit. } else if (startOff != startPosition) { // The object is shifting to the "end" side of the block. The object might be centered, so we need to // recalculate our inline direction margins. Note that the containing block content // width computation will take into account the delta between |startOff| and |startPosition| // so that we can just pass the content width in directly to the |computeMarginsInContainingBlockInlineDirection| // function. LayoutUnit oldMarginStart = marginStartForChild(child); LayoutUnit oldMarginEnd = marginEndForChild(child); RenderBox* mutableChild = const_cast(child); mutableChild->computeInlineDirectionMargins(this, availableLogicalWidthForLine(blockOffset, false, region, offsetFromLogicalTopOfFirstPage), childLogicalWidth); newPosition = startOff + marginStartForChild(child); if (inRenderFlowThread()) { setMarginStartForChild(mutableChild, oldMarginStart); setMarginEndForChild(mutableChild, oldMarginEnd); } } return newPosition - oldPosition; } void RenderBlock::determineLogicalLeftPositionForChild(RenderBox* child) { LayoutUnit startPosition = borderStart() + paddingStart(); if (style()->shouldPlaceBlockDirectionScrollbarOnLogicalLeft()) startPosition -= verticalScrollbarWidth(); LayoutUnit totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth(); // Add in our start margin. LayoutUnit childMarginStart = marginStartForChild(child); LayoutUnit newPosition = startPosition + childMarginStart; // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need // to shift over as necessary to dodge any floats that might get in the way. if (child->avoidsFloats() && containsFloats() && !inRenderFlowThread()) newPosition += computeStartPositionDeltaForChildAvoidingFloats(child, marginStartForChild(child), logicalWidthForChild(child)); setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child), ApplyLayoutDelta); } void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo) { if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) { // Update our max pos/neg bottom margins, since we collapsed our bottom margins // with our children. setMaxMarginAfterValues(max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), max(maxNegativeMarginAfter(), marginInfo.negativeMargin())); if (!marginInfo.marginAfterQuirk()) setMarginAfterQuirk(false); if (marginInfo.marginAfterQuirk() && marginAfter() == 0) // We have no bottom margin and our last child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. setMarginAfterQuirk(true); } } void RenderBlock::handleAfterSideOfBlock(LayoutUnit beforeSide, LayoutUnit afterSide, MarginInfo& marginInfo) { marginInfo.setAtAfterSideOfBlock(true); // If we can't collapse with children then go ahead and add in the bottom margin. if (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore() && (!document()->inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.marginAfterQuirk())) setLogicalHeight(logicalHeight() + marginInfo.margin()); // Now add in our bottom border/padding. setLogicalHeight(logicalHeight() + afterSide); // Negative margins can cause our height to shrink below our minimal height (border/padding). // If this happens, ensure that the computed height is increased to the minimal height. setLogicalHeight(max(logicalHeight(), beforeSide + afterSide)); // Update our bottom collapsed margin info. setCollapsedBottomMargin(marginInfo); } void RenderBlock::setLogicalLeftForChild(RenderBox* child, LayoutUnit logicalLeft, ApplyLayoutDeltaMode applyDelta) { if (isHorizontalWritingMode()) { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(LayoutSize(child->x() - logicalLeft, 0)); child->setX(logicalLeft); } else { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(LayoutSize(0, child->y() - logicalLeft)); child->setY(logicalLeft); } } void RenderBlock::setLogicalTopForChild(RenderBox* child, LayoutUnit logicalTop, ApplyLayoutDeltaMode applyDelta) { if (isHorizontalWritingMode()) { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(LayoutSize(0, child->y() - logicalTop)); child->setY(logicalTop); } else { if (applyDelta == ApplyLayoutDelta) view()->addLayoutDelta(LayoutSize(child->x() - logicalTop, 0)); child->setX(logicalTop); } } void RenderBlock::layoutBlockChildren(bool relayoutChildren, LayoutUnit& maxFloatLogicalBottom) { if (gPercentHeightDescendantsMap) { if (HashSet* descendants = gPercentHeightDescendantsMap->get(this)) { HashSet::iterator end = descendants->end(); for (HashSet::iterator it = descendants->begin(); it != end; ++it) { RenderBox* box = *it; while (box != this) { if (box->normalChildNeedsLayout()) break; box->setChildNeedsLayout(true, false); box = box->containingBlock(); ASSERT(box); if (!box) break; } } } } LayoutUnit beforeEdge = borderBefore() + paddingBefore(); LayoutUnit afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight(); setLogicalHeight(beforeEdge); // Lay out our hypothetical grid line as though it occurs at the top of the block. if (view()->layoutState()->lineGrid() == this) layoutLineGridBox(); // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts, MarginInfo marginInfo(this, beforeEdge, afterEdge); // Fieldsets need to find their legend and position it inside the border of the object. // The legend then gets skipped during normal layout. The same is true for ruby text. // It doesn't get included in the normal layout process but is instead skipped. RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren); LayoutUnit previousFloatLogicalBottom = 0; maxFloatLogicalBottom = 0; RenderBox* next = firstChildBox(); while (next) { RenderBox* child = next; next = child->nextSiblingBox(); if (childToExclude == child) continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs). // Make sure we layout children if they need it. // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into // an auto value. Add a method to determine this, so that we can avoid the relayout. RenderStyle* childStyle = child->style(); if (relayoutChildren || ((childStyle->logicalHeight().isPercent() || childStyle->logicalMinHeight().isPercent() || childStyle->logicalMaxHeight().isPercent()) && !isRenderView())) child->setChildNeedsLayout(true, false); // If relayoutChildren is set and the child has percentage padding or an embedded content box, we also need to invalidate the childs pref widths. if (relayoutChildren && child->needsPreferredWidthsRecalculation()) child->setPreferredLogicalWidthsDirty(true, false); // Handle the four types of special elements first. These include positioned content, floating content, compacts and // run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks. if (handleSpecialChild(child, marginInfo)) continue; // Lay out the child. layoutBlockChild(child, marginInfo, previousFloatLogicalBottom, maxFloatLogicalBottom); } // Now do the handling of the bottom of the block, adding in our bottom border/padding and // determining the correct collapsed bottom margin information. handleAfterSideOfBlock(beforeEdge, afterEdge, marginInfo); } void RenderBlock::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, LayoutUnit& previousFloatLogicalBottom, LayoutUnit& maxFloatLogicalBottom) { LayoutUnit oldPosMarginBefore = maxPositiveMarginBefore(); LayoutUnit oldNegMarginBefore = maxNegativeMarginBefore(); // The child is a normal flow object. Compute the margins we will use for collapsing now. child->computeBlockDirectionMargins(this); // Do not allow a collapse if the margin-before-collapse style is set to SEPARATE. RenderStyle* childStyle = child->style(); if (childStyle->marginBeforeCollapse() == MSEPARATE) { marginInfo.setAtBeforeSideOfBlock(false); marginInfo.clearMargin(); } // Try to guess our correct logical top position. In most cases this guess will // be correct. Only if we're wrong (when we compute the real logical top position) // will we have to potentially relayout. LayoutUnit estimateWithoutPagination; LayoutUnit logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo, estimateWithoutPagination); // Cache our old rect so that we can dirty the proper repaint rects if the child moves. LayoutRect oldRect(child->x(), child->y() , child->width(), child->height()); LayoutUnit oldLogicalTop = logicalTopForChild(child); #if !ASSERT_DISABLED LayoutSize oldLayoutDelta = view()->layoutDelta(); #endif // Go ahead and position the child as though it didn't collapse with the top. setLogicalTopForChild(child, logicalTopEstimate, ApplyLayoutDelta); RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; bool markDescendantsWithFloats = false; if (logicalTopEstimate != oldLogicalTop && !child->avoidsFloats() && childRenderBlock && childRenderBlock->containsFloats()) markDescendantsWithFloats = true; else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) { // If an element might be affected by the presence of floats, then always mark it for // layout. LayoutUnit fb = max(previousFloatLogicalBottom, lowestFloatLogicalBottomIncludingPositionedFloats()); if (fb > logicalTopEstimate) markDescendantsWithFloats = true; } if (childRenderBlock) { if (markDescendantsWithFloats) childRenderBlock->markAllDescendantsWithFloatsForLayout(); if (!child->isWritingModeRoot()) previousFloatLogicalBottom = max(previousFloatLogicalBottom, oldLogicalTop + childRenderBlock->lowestFloatLogicalBottomIncludingPositionedFloats()); } if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); bool childHadLayout = child->everHadLayout(); bool childNeededLayout = child->needsLayout(); if (childNeededLayout) child->layout(); // Cache if we are at the top of the block right now. bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock(); // Now determine the correct ypos based off examination of collapsing margin // values. LayoutUnit logicalTopBeforeClear = collapseMargins(child, marginInfo); // Now check for clear. LayoutUnit logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear); bool paginated = view()->layoutState()->isPaginated(); if (paginated) logicalTopAfterClear = adjustBlockChildForPagination(logicalTopAfterClear, estimateWithoutPagination, child, atBeforeSideOfBlock && logicalTopBeforeClear == logicalTopAfterClear); setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta); // Now we have a final top position. See if it really does end up being different from our estimate. if (logicalTopAfterClear != logicalTopEstimate) { if (child->shrinkToAvoidFloats()) { // The child's width depends on the line width. // When the child shifts to clear an item, its width can // change (because it has more available line width). // So go ahead and mark the item as dirty. child->setChildNeedsLayout(true, false); } if (childRenderBlock) { if (!child->avoidsFloats() && childRenderBlock->containsFloats()) childRenderBlock->markAllDescendantsWithFloatsForLayout(); if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); } // Our guess was wrong. Make the child lay itself out again. child->layoutIfNeeded(); } // We are no longer at the top of the block if we encounter a non-empty child. // This has to be done after checking for clear, so that margins can be reset if a clear occurred. if (marginInfo.atBeforeSideOfBlock() && !child->isSelfCollapsingBlock()) marginInfo.setAtBeforeSideOfBlock(false); // Now place the child in the correct left position determineLogicalLeftPositionForChild(child); // Update our height now that the child has been placed in the correct position. setLogicalHeight(logicalHeight() + logicalHeightForChild(child)); if (childStyle->marginAfterCollapse() == MSEPARATE) { setLogicalHeight(logicalHeight() + marginAfterForChild(child)); marginInfo.clearMargin(); } // If the child has overhanging floats that intrude into following siblings (or possibly out // of this block), then the parent gets notified of the floats now. if (childRenderBlock && childRenderBlock->containsFloats()) maxFloatLogicalBottom = max(maxFloatLogicalBottom, addOverhangingFloats(toRenderBlock(child), !childNeededLayout)); LayoutSize childOffset(child->x() - oldRect.x(), child->y() - oldRect.y()); if (childOffset.width() || childOffset.height()) { view()->addLayoutDelta(childOffset); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout()) child->repaintDuringLayoutIfMoved(oldRect); } if (!childHadLayout && child->checkForRepaintDuringLayout()) { child->repaint(); child->repaintOverhangingFloats(true); } if (paginated) { // Check for an after page/column break. LayoutUnit newHeight = applyAfterBreak(child, logicalHeight(), marginInfo); if (newHeight != height()) setLogicalHeight(newHeight); } ASSERT(oldLayoutDelta == view()->layoutDelta()); } void RenderBlock::simplifiedNormalFlowLayout() { if (childrenInline()) { ListHashSet lineBoxes; for (InlineWalker walker(this); !walker.atEnd(); walker.advance()) { RenderObject* o = walker.current(); if (!o->isPositioned() && (o->isReplaced() || o->isFloating())) { o->layoutIfNeeded(); if (toRenderBox(o)->inlineBoxWrapper()) { RootInlineBox* box = toRenderBox(o)->inlineBoxWrapper()->root(); lineBoxes.add(box); } } else if (o->isText() || (o->isRenderInline() && !walker.atEndOfInline())) o->setNeedsLayout(false); } // FIXME: Glyph overflow will get lost in this case, but not really a big deal. GlyphOverflowAndFallbackFontsMap textBoxDataMap; for (ListHashSet::const_iterator it = lineBoxes.begin(); it != lineBoxes.end(); ++it) { RootInlineBox* box = *it; box->computeOverflow(box->lineTop(), box->lineBottom(), textBoxDataMap); } } else { for (RenderBox* box = firstChildBox(); box; box = box->nextSiblingBox()) { if (!box->isPositioned()) box->layoutIfNeeded(); } } } bool RenderBlock::simplifiedLayout() { if ((!posChildNeedsLayout() && !needsSimplifiedNormalFlowLayout()) || normalChildNeedsLayout() || selfNeedsLayout()) return false; LayoutStateMaintainer statePusher(view(), this, locationOffset(), hasColumns() || hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode()); if (needsPositionedMovementLayout() && !tryLayoutDoingPositionedMovementOnly()) return false; // Lay out positioned descendants or objects that just need to recompute overflow. if (needsSimplifiedNormalFlowLayout()) simplifiedNormalFlowLayout(); // Lay out our positioned objects if our positioned child bit is set. if (posChildNeedsLayout() && layoutPositionedObjects(false)) return false; // If a positioned float is causing our normal flow to change, then we have to bail and do a full layout. // Recompute our overflow information. // FIXME: We could do better here by computing a temporary overflow object from layoutPositionedObjects and only // updating our overflow if we either used to have overflow or if the new temporary object has overflow. // For now just always recompute overflow. This is no worse performance-wise than the old code that called rightmostPosition and // lowestPosition on every relayout so it's not a regression. m_overflow.clear(); computeOverflow(clientLogicalBottom(), true); statePusher.pop(); updateLayerTransform(); updateScrollInfoAfterLayout(); setNeedsLayout(false); return true; } bool RenderBlock::positionedFloatsNeedRelayout() { if (!hasPositionedFloats()) return false; RenderBox* positionedObject; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { positionedObject = *it; if (!positionedObject->isFloating()) continue; if (positionedObject->needsLayout()) return true; if (positionedObject->style()->hasStaticBlockPosition(isHorizontalWritingMode()) && positionedObject->parent() != this && positionedObject->parent()->isBlockFlow()) return true; if (view()->layoutState()->pageLogicalHeightChanged() || (view()->layoutState()->pageLogicalHeight() && view()->layoutState()->pageLogicalOffset(logicalTop()) != pageLogicalOffset())) return true; } return false; } bool RenderBlock::layoutPositionedObjects(bool relayoutChildren) { if (!m_positionedObjects) return false; if (hasColumns()) view()->layoutState()->clearPaginationInformation(); // Positioned objects are not part of the column flow, so they don't paginate with the columns. bool didFloatingBoxRelayout = false; RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the // non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned // objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is // positioned explicitly) this should not incur a performance penalty. if (relayoutChildren || (r->style()->hasStaticBlockPosition(isHorizontalWritingMode()) && r->parent() != this)) r->setChildNeedsLayout(true, false); // If relayoutChildren is set and the child has percentage padding or an embedded content box, we also need to invalidate the childs pref widths. if (relayoutChildren && r->needsPreferredWidthsRecalculation()) r->setPreferredLogicalWidthsDirty(true, false); if (!r->needsLayout()) r->markForPaginationRelayoutIfNeeded(); // FIXME: Technically we could check the old placement and the new placement of the box and only invalidate if // the margin box of the object actually changed. if (r->needsLayout() && r->isFloating()) didFloatingBoxRelayout = true; // We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width // and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout. if (r->needsPositionedMovementLayoutOnly() && r->tryLayoutDoingPositionedMovementOnly()) r->setNeedsLayout(false); // If we are paginated or in a line grid, go ahead and compute a vertical position for our object now. // If it's wrong we'll lay out again. LayoutUnit oldLogicalTop = 0; bool needsBlockDirectionLocationSetBeforeLayout = r->needsLayout() && view()->layoutState()->needsBlockDirectionLocationSetBeforeLayout(); if (needsBlockDirectionLocationSetBeforeLayout) { if (isHorizontalWritingMode() == r->isHorizontalWritingMode()) r->computeLogicalHeight(); else r->computeLogicalWidth(); oldLogicalTop = logicalTopForChild(r); } r->layoutIfNeeded(); // Lay out again if our estimate was wrong. if (needsBlockDirectionLocationSetBeforeLayout && logicalTopForChild(r) != oldLogicalTop) { r->setChildNeedsLayout(true, false); r->layoutIfNeeded(); } } if (hasColumns()) view()->layoutState()->m_columnInfo = columnInfo(); // FIXME: Kind of gross. We just put this back into the layout state so that pop() will work. return didFloatingBoxRelayout; } void RenderBlock::markPositionedObjectsForLayout() { if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; r->setChildNeedsLayout(true); } } } void RenderBlock::markForPaginationRelayoutIfNeeded() { ASSERT(!needsLayout()); if (needsLayout()) return; if (view()->layoutState()->pageLogicalHeightChanged() || (view()->layoutState()->pageLogicalHeight() && view()->layoutState()->pageLogicalOffset(logicalTop()) != pageLogicalOffset())) setChildNeedsLayout(true, false); } void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants) { // Repaint any overhanging floats (if we know we're the one to paint them). // Otherwise, bail out. if (!hasOverhangingFloats()) return; // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating // in this block. Better yet would be to push extra state for the containers of other floats. LayoutStateDisabler layoutStateDisabler(view()); const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; // Only repaint the object if it is overhanging, is not in its own layer, and // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter // condition is replaced with being a descendant of us. if (logicalBottomForFloat(r) > logicalHeight() && ((paintAllDescendants && r->m_renderer->isDescendantOf(this)) || r->m_shouldPaint) && !r->m_renderer->hasSelfPaintingLayer()) { r->m_renderer->repaint(); r->m_renderer->repaintOverhangingFloats(); } } } void RenderBlock::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { LayoutPoint adjustedPaintOffset = paintOffset + location(); PaintPhase phase = paintInfo.phase; // Check if we need to do anything at all. // FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView // paints the root's background. if (!isRoot()) { LayoutRect overflowBox = visualOverflowRect(); flipForWritingMode(overflowBox); overflowBox.inflate(maximalOutlineSize(paintInfo.phase)); overflowBox.moveBy(adjustedPaintOffset); if (!overflowBox.intersects(paintInfo.rect)) return; } bool pushedClip = pushContentsClip(paintInfo, adjustedPaintOffset); paintObject(paintInfo, adjustedPaintOffset); if (pushedClip) popContentsClip(paintInfo, phase, adjustedPaintOffset); // Our scrollbar widgets paint exactly when we tell them to, so that they work properly with // z-index. We paint after we painted the background/border, so that the scrollbars will // sit above the background/border. if (hasOverflowClipWithLayer() && style()->visibility() == VISIBLE && (phase == PaintPhaseBlockBackground || phase == PaintPhaseChildBlockBackground) && paintInfo.shouldPaintWithinRoot(this)) layer()->paintOverflowControls(paintInfo.context, roundedIntPoint(adjustedPaintOffset), paintInfo.rect); } void RenderBlock::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { if (paintInfo.context->paintingDisabled()) return; const Color& ruleColor = style()->visitedDependentColor(CSSPropertyWebkitColumnRuleColor); bool ruleTransparent = style()->columnRuleIsTransparent(); EBorderStyle ruleStyle = style()->columnRuleStyle(); LayoutUnit ruleThickness = style()->columnRuleWidth(); LayoutUnit colGap = columnGap(); bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent && ruleThickness <= colGap; if (!renderRule) return; ColumnInfo* colInfo = columnInfo(); unsigned colCount = columnCount(colInfo); bool antialias = shouldAntialiasLines(paintInfo.context); if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) { LayoutUnit currLogicalLeftOffset = style()->isLeftToRightDirection() ? zeroLayoutUnit : contentLogicalWidth(); LayoutUnit ruleAdd = logicalLeftOffsetForContent(); LayoutUnit ruleLogicalLeft = style()->isLeftToRightDirection() ? zeroLayoutUnit : contentLogicalWidth(); LayoutUnit inlineDirectionSize = colInfo->desiredColumnWidth(); BoxSide boxSide = isHorizontalWritingMode() ? style()->isLeftToRightDirection() ? BSLeft : BSRight : style()->isLeftToRightDirection() ? BSTop : BSBottom; for (unsigned i = 0; i < colCount; i++) { // Move to the next position. if (style()->isLeftToRightDirection()) { ruleLogicalLeft += inlineDirectionSize + colGap / 2; currLogicalLeftOffset += inlineDirectionSize + colGap; } else { ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); currLogicalLeftOffset -= (inlineDirectionSize + colGap); } // Now paint the column rule. if (i < colCount - 1) { LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft(); LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth(); LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd; LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness; IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom); drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias); } ruleLogicalLeft = currLogicalLeftOffset; } } else { LayoutUnit ruleLeft = isHorizontalWritingMode() ? borderLeft() + paddingLeft() : colGap / 2 - colGap - ruleThickness / 2 + borderBefore() + paddingBefore(); LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness; LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 + borderBefore() + paddingBefore() : borderStart() + paddingStart(); LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight(); LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight); flipForWritingMode(ruleRect); ruleRect.moveBy(paintOffset); BoxSide boxSide = isHorizontalWritingMode() ? !style()->isFlippedBlocksWritingMode() ? BSTop : BSBottom : !style()->isFlippedBlocksWritingMode() ? BSLeft : BSRight; LayoutSize step(0, !style()->isFlippedBlocksWritingMode() ? colInfo->columnHeight() + colGap : -(colInfo->columnHeight() + colGap)); if (!isHorizontalWritingMode()) step = step.transposedSize(); for (unsigned i = 1; i < colCount; i++) { ruleRect.move(step); IntRect pixelSnappedRuleRect = pixelSnappedIntRect(ruleRect); drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias); } } } void RenderBlock::paintColumnContents(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool paintingFloats) { // We need to do multiple passes, breaking up our child painting into strips. GraphicsContext* context = paintInfo.context; ColumnInfo* colInfo = columnInfo(); unsigned colCount = columnCount(colInfo); if (!colCount) return; LayoutUnit currLogicalTopOffset = 0; for (unsigned i = 0; i < colCount; i++) { // For each rect, we clip to the rect, and then we adjust our coords. LayoutRect colRect = columnRectAt(colInfo, i); flipForWritingMode(colRect); LayoutUnit logicalLeftOffset = (isHorizontalWritingMode() ? colRect.x() : colRect.y()) - logicalLeftOffsetForContent(); LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(logicalLeftOffset, currLogicalTopOffset) : LayoutSize(currLogicalTopOffset, logicalLeftOffset); if (colInfo->progressionAxis() == ColumnInfo::BlockAxis) { if (isHorizontalWritingMode()) offset.expand(0, colRect.y() - borderTop() - paddingTop()); else offset.expand(colRect.x() - borderLeft() - paddingLeft(), 0); } colRect.moveBy(paintOffset); PaintInfo info(paintInfo); info.rect.intersect(pixelSnappedIntRect(colRect)); if (!info.rect.isEmpty()) { GraphicsContextStateSaver stateSaver(*context); // Each strip pushes a clip, since column boxes are specified as being // like overflow:hidden. context->clip(colRect); // Adjust our x and y when painting. LayoutPoint adjustedPaintOffset = paintOffset + offset; if (paintingFloats) paintFloats(info, adjustedPaintOffset, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip); else paintContents(info, adjustedPaintOffset); } LayoutUnit blockDelta = (isHorizontalWritingMode() ? colRect.height() : colRect.width()); if (style()->isFlippedBlocksWritingMode()) currLogicalTopOffset += blockDelta; else currLogicalTopOffset -= blockDelta; } } void RenderBlock::paintContents(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { // Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC. // It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document // will do a full repaint(). if (document()->didLayoutWithPendingStylesheets() && !isRenderView()) return; // We don't want to hand off painting in the line box tree with the accumulated error of the render tree, as this will cause // us to mess up painting aligned things (such as underlines in text) with both the render tree and line box tree's error. LayoutPoint roundedPaintOffset = roundedIntPoint(paintOffset); if (childrenInline()) m_lineBoxes.paint(this, paintInfo, roundedPaintOffset); else paintChildren(paintInfo, roundedPaintOffset); } void RenderBlock::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase; newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase; // We don't paint our own background, but we do let the kids paint their backgrounds. PaintInfo info(paintInfo); info.phase = newPhase; info.updatePaintingRootForChildren(this); // FIXME: Paint-time pagination is obsolete and is now only used by embedded WebViews inside AppKit // NSViews. Do not add any more code for this. RenderView* renderView = view(); bool usePrintRect = !renderView->printRect().isEmpty(); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { // Check for page-break-before: always, and if it's set, break and bail. bool checkBeforeAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakBefore() == PBALWAYS); LayoutUnit absoluteChildY = paintOffset.y() + child->y(); if (checkBeforeAlways && absoluteChildY > paintInfo.rect.y() && absoluteChildY < paintInfo.rect.maxY()) { view()->setBestTruncatedAt(absoluteChildY, this, true); return; } if (!child->isFloating() && child->isReplaced() && usePrintRect && child->height() <= renderView->printRect().height()) { // Paginate block-level replaced elements. if (absoluteChildY + child->height() > renderView->printRect().maxY()) { if (absoluteChildY < renderView->truncatedAt()) renderView->setBestTruncatedAt(absoluteChildY, child); // If we were able to truncate, don't paint. if (absoluteChildY >= renderView->truncatedAt()) break; } } LayoutPoint childPoint = flipForWritingModeForChild(child, paintOffset); if (!child->hasSelfPaintingLayer() && !child->isFloating()) child->paint(info, childPoint); // Check for page-break-after: always, and if it's set, break and bail. bool checkAfterAlways = !childrenInline() && (usePrintRect && child->style()->pageBreakAfter() == PBALWAYS); if (checkAfterAlways && (absoluteChildY + child->height()) > paintInfo.rect.y() && (absoluteChildY + child->height()) < paintInfo.rect.maxY()) { view()->setBestTruncatedAt(absoluteChildY + child->height() + max(0, child->collapsedMarginAfter()), this, true); return; } } } void RenderBlock::paintCaret(PaintInfo& paintInfo, const LayoutPoint& paintOffset, CaretType type) { // Paint the caret if the FrameSelection says so or if caret browsing is enabled bool caretBrowsing = frame()->settings() && frame()->settings()->caretBrowsingEnabled(); RenderObject* caretPainter; bool isContentEditable; if (type == CursorCaret) { caretPainter = frame()->selection()->caretRenderer(); isContentEditable = frame()->selection()->isContentEditable(); } else { caretPainter = frame()->page()->dragCaretController()->caretRenderer(); isContentEditable = frame()->page()->dragCaretController()->isContentEditable(); } if (caretPainter == this && (isContentEditable || caretBrowsing)) { if (type == CursorCaret) frame()->selection()->paintCaret(paintInfo.context, paintOffset, paintInfo.rect); else frame()->page()->dragCaretController()->paintDragCaret(frame(), paintInfo.context, paintOffset, paintInfo.rect); } } void RenderBlock::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { PaintPhase paintPhase = paintInfo.phase; // 1. paint background, borders etc if ((paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && style()->visibility() == VISIBLE) { if (hasBoxDecorations()) paintBoxDecorations(paintInfo, paintOffset); if (hasColumns()) paintColumnRules(paintInfo, paintOffset); } if (paintPhase == PaintPhaseMask && style()->visibility() == VISIBLE) { paintMask(paintInfo, paintOffset); return; } // We're done. We don't bother painting any children. if (paintPhase == PaintPhaseBlockBackground) return; // Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div). LayoutPoint scrolledOffset = paintOffset; if (hasOverflowClip()) scrolledOffset.move(-scrolledContentOffset()); // 2. paint contents if (paintPhase != PaintPhaseSelfOutline) { if (hasColumns()) paintColumnContents(paintInfo, scrolledOffset); else paintContents(paintInfo, scrolledOffset); } // 3. paint selection // FIXME: Make this work with multi column layouts. For now don't fill gaps. bool isPrinting = document()->printing(); if (!isPrinting && !hasColumns()) paintSelection(paintInfo, scrolledOffset); // Fill in gaps in selection on lines and between blocks. // 4. paint floats. if (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip) { if (hasColumns()) paintColumnContents(paintInfo, scrolledOffset, true); else paintFloats(paintInfo, scrolledOffset, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip); } // 5. paint outline. if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE) paintOutline(paintInfo.context, LayoutRect(paintOffset, size())); // 6. paint continuation outlines. if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) { RenderInline* inlineCont = inlineElementContinuation(); if (inlineCont && inlineCont->hasOutline() && inlineCont->style()->visibility() == VISIBLE) { RenderInline* inlineRenderer = toRenderInline(inlineCont->node()->renderer()); RenderBlock* cb = containingBlock(); bool inlineEnclosedInSelfPaintingLayer = false; for (RenderBoxModelObject* box = inlineRenderer; box != cb; box = box->parent()->enclosingBoxModelObject()) { if (box->hasSelfPaintingLayer()) { inlineEnclosedInSelfPaintingLayer = true; break; } } if (!inlineEnclosedInSelfPaintingLayer) cb->addContinuationWithOutline(inlineRenderer); else if (!inlineRenderer->firstLineBox()) inlineRenderer->paintOutline(paintInfo.context, paintOffset - locationOffset() + inlineRenderer->containingBlock()->location()); } paintContinuationOutlines(paintInfo, paintOffset); } // 7. paint caret. // If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground, // then paint the caret. if (paintPhase == PaintPhaseForeground) { paintCaret(paintInfo, paintOffset, CursorCaret); paintCaret(paintInfo, paintOffset, DragCaret); } } LayoutPoint RenderBlock::flipFloatForWritingModeForChild(const FloatingObject* child, const LayoutPoint& point) const { if (!style()->isFlippedBlocksWritingMode()) return point; // This is similar to RenderBox::flipForWritingModeForChild. We have to subtract out our left/top offsets twice, since // it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped // case. if (isHorizontalWritingMode()) return LayoutPoint(point.x(), point.y() + height() - child->renderer()->height() - 2 * yPositionForFloatIncludingMargin(child)); return LayoutPoint(point.x() + width() - child->width() - 2 * xPositionForFloatIncludingMargin(child), point.y()); } void RenderBlock::paintFloats(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool preservePhase) { if (!m_floatingObjects) return; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; // Only paint the object if our m_shouldPaint flag is set. if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) { PaintInfo currentPaintInfo(paintInfo); currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground; LayoutPoint childPoint = flipFloatForWritingModeForChild(r, LayoutPoint(paintOffset.x() + xPositionForFloatIncludingMargin(r) - r->m_renderer->x(), paintOffset.y() + yPositionForFloatIncludingMargin(r) - r->m_renderer->y())); r->m_renderer->paint(currentPaintInfo, childPoint); if (!preservePhase) { currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds; r->m_renderer->paint(currentPaintInfo, childPoint); currentPaintInfo.phase = PaintPhaseFloat; r->m_renderer->paint(currentPaintInfo, childPoint); currentPaintInfo.phase = PaintPhaseForeground; r->m_renderer->paint(currentPaintInfo, childPoint); currentPaintInfo.phase = PaintPhaseOutline; r->m_renderer->paint(currentPaintInfo, childPoint); } } } } void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { if (!paintInfo.shouldPaintWithinRoot(this) || !firstLineBox()) return; if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) { // We can check the first box and last box and avoid painting if we don't // intersect. LayoutUnit yPos = paintOffset.y() + firstLineBox()->y(); LayoutUnit h = lastLineBox()->y() + lastLineBox()->logicalHeight() - firstLineBox()->y(); if (yPos >= paintInfo.rect.maxY() || yPos + h <= paintInfo.rect.y()) return; // See if our boxes intersect with the dirty rect. If so, then we paint // them. Note that boxes can easily overlap, so we can't make any assumptions // based off positions of our first line box or our last line box. for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { yPos = paintOffset.y() + curr->y(); h = curr->logicalHeight(); if (curr->ellipsisBox() && yPos < paintInfo.rect.maxY() && yPos + h > paintInfo.rect.y()) curr->paintEllipsisBox(paintInfo, paintOffset, curr->lineTop(), curr->lineBottom()); } } } RenderInline* RenderBlock::inlineElementContinuation() const { RenderBoxModelObject* continuation = this->continuation(); return continuation && continuation->isInline() ? toRenderInline(continuation) : 0; } RenderBlock* RenderBlock::blockElementContinuation() const { RenderBoxModelObject* currentContinuation = continuation(); if (!currentContinuation || currentContinuation->isInline()) return 0; RenderBlock* nextContinuation = toRenderBlock(currentContinuation); if (nextContinuation->isAnonymousBlock()) return nextContinuation->blockElementContinuation(); return nextContinuation; } static ContinuationOutlineTableMap* continuationOutlineTable() { DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ()); return &table; } void RenderBlock::addContinuationWithOutline(RenderInline* flow) { // We can't make this work if the inline is in a layer. We'll just rely on the broken // way of painting. ASSERT(!flow->layer() && !flow->isInlineElementContinuation()); ContinuationOutlineTableMap* table = continuationOutlineTable(); ListHashSet* continuations = table->get(this); if (!continuations) { continuations = new ListHashSet; table->set(this, continuations); } continuations->add(flow); } bool RenderBlock::paintsContinuationOutline(RenderInline* flow) { ContinuationOutlineTableMap* table = continuationOutlineTable(); if (table->isEmpty()) return false; ListHashSet* continuations = table->get(this); if (!continuations) return false; return continuations->contains(flow); } void RenderBlock::paintContinuationOutlines(PaintInfo& info, const LayoutPoint& paintOffset) { ContinuationOutlineTableMap* table = continuationOutlineTable(); if (table->isEmpty()) return; ListHashSet* continuations = table->get(this); if (!continuations) return; LayoutPoint accumulatedPaintOffset = paintOffset; // Paint each continuation outline. ListHashSet::iterator end = continuations->end(); for (ListHashSet::iterator it = continuations->begin(); it != end; ++it) { // Need to add in the coordinates of the intervening blocks. RenderInline* flow = *it; RenderBlock* block = flow->containingBlock(); for ( ; block && block != this; block = block->containingBlock()) accumulatedPaintOffset.moveBy(block->location()); ASSERT(block); flow->paintOutline(info.context, accumulatedPaintOffset); } // Delete delete continuations; table->remove(this); } bool RenderBlock::shouldPaintSelectionGaps() const { return selectionState() != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot(); } bool RenderBlock::isSelectionRoot() const { if (!node()) return false; // FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases. if (isTable()) return false; if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() || isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform() || hasReflection() || hasMask() || isWritingModeRoot()) return true; if (view() && view()->selectionStart()) { Node* startElement = view()->selectionStart()->node(); if (startElement && startElement->rootEditableElement() == node()) return true; } return false; } GapRects RenderBlock::selectionGapRectsForRepaint(RenderBoxModelObject* repaintContainer) { ASSERT(!needsLayout()); if (!shouldPaintSelectionGaps()) return GapRects(); // FIXME: this is broken with transforms TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint()); mapLocalToContainer(repaintContainer, false, false, transformState); LayoutPoint offsetFromRepaintContainer = roundedLayoutPoint(transformState.mappedPoint()); if (hasOverflowClip()) offsetFromRepaintContainer -= scrolledContentOffset(); LayoutUnit lastTop = 0; LayoutUnit lastLeft = logicalLeftSelectionOffset(this, lastTop); LayoutUnit lastRight = logicalRightSelectionOffset(this, lastTop); return selectionGaps(this, offsetFromRepaintContainer, IntSize(), lastTop, lastLeft, lastRight); } void RenderBlock::paintSelection(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) { LayoutUnit lastTop = 0; LayoutUnit lastLeft = logicalLeftSelectionOffset(this, lastTop); LayoutUnit lastRight = logicalRightSelectionOffset(this, lastTop); GraphicsContextStateSaver stateSaver(*paintInfo.context); LayoutRect gapRectsBounds = selectionGaps(this, paintOffset, LayoutSize(), lastTop, lastLeft, lastRight, &paintInfo); if (!gapRectsBounds.isEmpty()) { if (RenderLayer* layer = enclosingLayer()) { gapRectsBounds.moveBy(-paintOffset); if (!hasLayer()) { LayoutRect localBounds(gapRectsBounds); flipForWritingMode(localBounds); gapRectsBounds = localToContainerQuad(FloatRect(localBounds), layer->renderer()).enclosingBoundingBox(); if (layer->renderer()->hasOverflowClip()) gapRectsBounds.move(layer->renderBox()->scrolledContentOffset()); } layer->addBlockSelectionGapsBounds(gapRectsBounds); } } } } static void clipOutPositionedObjects(const PaintInfo* paintInfo, const LayoutPoint& offset, RenderBlock::PositionedObjectsListHashSet* positionedObjects) { if (!positionedObjects) return; RenderBlock::PositionedObjectsListHashSet::const_iterator end = positionedObjects->end(); for (RenderBlock::PositionedObjectsListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) { RenderBox* r = *it; paintInfo->context->clipOut(IntRect(offset.x() + r->x(), offset.y() + r->y(), r->width(), r->height())); } } static int blockDirectionOffset(RenderBlock* rootBlock, const LayoutSize& offsetFromRootBlock) { return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.height() : offsetFromRootBlock.width(); } static int inlineDirectionOffset(RenderBlock* rootBlock, const LayoutSize& offsetFromRootBlock) { return rootBlock->isHorizontalWritingMode() ? offsetFromRootBlock.width() : offsetFromRootBlock.height(); } LayoutRect RenderBlock::logicalRectToPhysicalRect(const LayoutPoint& rootBlockPhysicalPosition, const LayoutRect& logicalRect) { LayoutRect result; if (isHorizontalWritingMode()) result = logicalRect; else result = LayoutRect(logicalRect.y(), logicalRect.x(), logicalRect.height(), logicalRect.width()); flipForWritingMode(result); result.moveBy(rootBlockPhysicalPosition); return result; } GapRects RenderBlock::selectionGaps(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo) { // IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore. // Clip out floating and positioned objects when painting selection gaps. if (paintInfo) { // Note that we don't clip out overflow for positioned objects. We just stick to the border box. LayoutRect flippedBlockRect(offsetFromRootBlock.width(), offsetFromRootBlock.height(), width(), height()); rootBlock->flipForWritingMode(flippedBlockRect); flippedBlockRect.moveBy(rootBlockPhysicalPosition); clipOutPositionedObjects(paintInfo, flippedBlockRect.location(), m_positionedObjects.get()); if (isBody() || isRoot()) // The must make sure to examine its containingBlock's positioned objects. for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock()) clipOutPositionedObjects(paintInfo, LayoutPoint(cb->x(), cb->y()), cb->m_positionedObjects.get()); // FIXME: Not right for flipped writing modes. if (m_floatingObjects) { const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; LayoutRect floatBox(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(r), offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(r), r->m_renderer->width(), r->m_renderer->height()); rootBlock->flipForWritingMode(floatBox); floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y()); paintInfo->context->clipOut(pixelSnappedIntRect(floatBox)); } } } // FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is // fixed). GapRects result; if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday. return result; if (hasColumns() || hasTransform() || style()->columnSpan()) { // FIXME: We should learn how to gap fill multiple columns and transforms eventually. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight()); return result; } if (childrenInline()) result = inlineSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo); else result = blockSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo); // Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block. if (rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd)) result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, logicalHeight(), paintInfo)); return result; } GapRects RenderBlock::inlineSelectionGaps(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo) { GapRects result; bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth; if (!firstLineBox()) { if (containsStart) { // Go ahead and update our lastLogicalTop to be the bottom of the block.


s or empty blocks with height can trip this // case. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalHeight(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight()); } return result; } RootInlineBox* lastSelectedLine = 0; RootInlineBox* curr; for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { } // Now paint the gaps for the lines. for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) { LayoutUnit selTop = curr->selectionTop(); LayoutUnit selHeight = curr->selectionHeight(); if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, selTop, paintInfo)); LayoutRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight); logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : offsetFromRootBlock.transposedSize()); LayoutRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect); if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y()) || (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x())) result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo)); lastSelectedLine = curr; } if (containsStart && !lastSelectedLine) // VisibleSelection must start just after our last line. lastSelectedLine = lastRootBox(); if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) { // Go ahead and update our lastY to be the bottom of the last selected line. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + lastSelectedLine->selectionBottom(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); } return result; } GapRects RenderBlock::blockSelectionGaps(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo) { GapRects result; // Go ahead and jump right to the first block child that contains some selected objects. RenderBox* curr; for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { } for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) { SelectionState childState = curr->selectionState(); if (childState == SelectionBoth || childState == SelectionEnd) sawSelectionEnd = true; if (curr->isFloatingOrPositioned()) continue; // We must be a normal flow object in order to even be considered. if (curr->isRelPositioned() && curr->hasLayer()) { // If the relposition offset is anything other than 0, then treat this just like an absolute positioned element. // Just disregard it completely. LayoutSize relOffset = curr->layer()->relativePositionOffset(); if (relOffset.width() || relOffset.height()) continue; } bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this. bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone); if (fillBlockGaps) { // We need to fill the vertical gap above this object. if (childState == SelectionEnd || childState == SelectionInside) // Fill the gap above the object. result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, curr->logicalTop(), paintInfo)); // Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past* // our object. We know this if the selection did not end inside our object. if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd)) childState = SelectionNone; // Fill side gaps on this object based off its state. bool leftGap, rightGap; getSelectionGapInfo(childState, leftGap, rightGap); if (leftGap) result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalLeft(), curr->logicalTop(), curr->logicalHeight(), paintInfo)); if (rightGap) result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalRight(), curr->logicalTop(), curr->logicalHeight(), paintInfo)); // Update lastLogicalTop to be just underneath the object. lastLogicalLeft and lastLogicalRight extend as far as // they can without bumping into floating or positioned objects. Ideally they will go right up // to the border of the root selection block. lastLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + curr->logicalBottom(); lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, curr->logicalBottom()); lastLogicalRight = logicalRightSelectionOffset(rootBlock, curr->logicalBottom()); } else if (childState != SelectionNone) // We must be a block that has some selected object inside it. Go ahead and recur. result.unite(toRenderBlock(curr)->selectionGaps(rootBlock, rootBlockPhysicalPosition, LayoutSize(offsetFromRootBlock.width() + curr->x(), offsetFromRootBlock.height() + curr->y()), lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo)); } return result; } LayoutRect RenderBlock::blockSelectionGap(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, LayoutUnit lastLogicalTop, LayoutUnit lastLogicalLeft, LayoutUnit lastLogicalRight, LayoutUnit logicalBottom, const PaintInfo* paintInfo) { LayoutUnit logicalTop = lastLogicalTop; LayoutUnit logicalHeight = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalBottom - logicalTop; if (logicalHeight <= static_cast(0)) return LayoutRect(); // Get the selection offsets for the bottom of the gap LayoutUnit logicalLeft = max(lastLogicalLeft, logicalLeftSelectionOffset(rootBlock, logicalBottom)); LayoutUnit logicalRight = min(lastLogicalRight, logicalRightSelectionOffset(rootBlock, logicalBottom)); LayoutUnit logicalWidth = logicalRight - logicalLeft; if (logicalWidth <= static_cast(0)) return LayoutRect(); LayoutRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(logicalLeft, logicalTop, logicalWidth, logicalHeight)); if (paintInfo) paintInfo->context->fillRect(gapRect, selectionBackgroundColor(), style()->colorSpace()); return gapRect; } LayoutRect RenderBlock::logicalLeftSelectionGap(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, RenderObject* selObj, LayoutUnit logicalLeft, LayoutUnit logicalTop, LayoutUnit logicalHeight, const PaintInfo* paintInfo) { LayoutUnit rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop; LayoutUnit rootBlockLogicalLeft = max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight)); LayoutUnit rootBlockLogicalRight = min(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalLeft, min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight))); LayoutUnit rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft; if (rootBlockLogicalWidth <= static_cast(0)) return LayoutRect(); LayoutRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight)); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } LayoutRect RenderBlock::logicalRightSelectionGap(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock, RenderObject* selObj, LayoutUnit logicalRight, LayoutUnit logicalTop, LayoutUnit logicalHeight, const PaintInfo* paintInfo) { LayoutUnit rootBlockLogicalTop = blockDirectionOffset(rootBlock, offsetFromRootBlock) + logicalTop; LayoutUnit rootBlockLogicalLeft = max(inlineDirectionOffset(rootBlock, offsetFromRootBlock) + logicalRight, max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight))); LayoutUnit rootBlockLogicalRight = min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight)); LayoutUnit rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft; if (rootBlockLogicalWidth <= static_cast(0)) return LayoutRect(); LayoutRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight)); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } void RenderBlock::getSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) { bool ltr = style()->isLeftToRightDirection(); leftGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionEnd && ltr) || (state == RenderObject::SelectionStart && !ltr); rightGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionStart && ltr) || (state == RenderObject::SelectionEnd && !ltr); } LayoutUnit RenderBlock::logicalLeftSelectionOffset(RenderBlock* rootBlock, LayoutUnit position) { LayoutUnit logicalLeft = logicalLeftOffsetForLine(position, false); if (logicalLeft == logicalLeftOffsetForContent()) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->logicalLeftSelectionOffset(rootBlock, position + logicalTop()); return logicalLeft; } else { RenderBlock* cb = this; while (cb != rootBlock) { logicalLeft += cb->logicalLeft(); cb = cb->containingBlock(); } } return logicalLeft; } LayoutUnit RenderBlock::logicalRightSelectionOffset(RenderBlock* rootBlock, LayoutUnit position) { LayoutUnit logicalRight = logicalRightOffsetForLine(position, false); if (logicalRight == logicalRightOffsetForContent()) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->logicalRightSelectionOffset(rootBlock, position + logicalTop()); return logicalRight; } else { RenderBlock* cb = this; while (cb != rootBlock) { logicalRight += cb->logicalLeft(); cb = cb->containingBlock(); } } return logicalRight; } void RenderBlock::insertPositionedObject(RenderBox* o) { ASSERT(!isAnonymousBlock()); if (o->isRenderFlowThread()) return; // Create the list of special objects if we don't aleady have one if (!m_positionedObjects) m_positionedObjects = adoptPtr(new PositionedObjectsListHashSet); m_positionedObjects->add(o); } void RenderBlock::removePositionedObject(RenderBox* o) { if (m_positionedObjects) m_positionedObjects->remove(o); } void RenderBlock::removePositionedObjects(RenderBlock* o) { if (!m_positionedObjects) return; RenderBox* r; Iterator end = m_positionedObjects->end(); Vector deadObjects; for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; if (!o || r->isDescendantOf(o)) { if (o) r->setChildNeedsLayout(true, false); // It is parent blocks job to add positioned child to positioned objects list of its containing block // Parent layout needs to be invalidated to ensure this happens. RenderObject* p = r->parent(); while (p && !p->isRenderBlock()) p = p->parent(); if (p) p->setChildNeedsLayout(true); deadObjects.append(r); } } for (unsigned i = 0; i < deadObjects.size(); i++) m_positionedObjects->remove(deadObjects.at(i)); } RenderBlock::FloatingObject* RenderBlock::insertFloatingObject(RenderBox* o) { ASSERT(o->isFloating()); // Create the list of special objects if we don't aleady have one if (!m_floatingObjects) m_floatingObjects = adoptPtr(new FloatingObjects(this, isHorizontalWritingMode())); else { // Don't insert the object again if it's already in the list const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.find(o); if (it != floatingObjectSet.end()) return *it; } // Create the special object entry & append it to the list FloatingObject* newObj = new FloatingObject(o->style()->floating()); // Our location is irrelevant if we're unsplittable or no pagination is in effect. // Just go ahead and lay out the float. if (!o->isPositioned()) { bool isChildRenderBlock = o->isRenderBlock(); if (isChildRenderBlock && !o->needsLayout() && view()->layoutState()->pageLogicalHeightChanged()) o->setChildNeedsLayout(true, false); bool needsBlockDirectionLocationSetBeforeLayout = isChildRenderBlock && view()->layoutState()->needsBlockDirectionLocationSetBeforeLayout(); if (!needsBlockDirectionLocationSetBeforeLayout || isWritingModeRoot()) // We are unsplittable if we're a block flow root. o->layoutIfNeeded(); else { o->computeLogicalWidth(); o->computeBlockDirectionMargins(this); } } setLogicalWidthForFloat(newObj, logicalWidthForChild(o) + marginStartForChild(o) + marginEndForChild(o)); newObj->m_shouldPaint = !o->hasSelfPaintingLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will. newObj->m_isDescendant = true; newObj->m_renderer = o; m_floatingObjects->add(newObj); return newObj; } void RenderBlock::removeFloatingObject(RenderBox* o) { if (m_floatingObjects) { const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.find(o); if (it != floatingObjectSet.end()) { FloatingObject* r = *it; if (childrenInline()) { LayoutUnit logicalTop = logicalTopForFloat(r); LayoutUnit logicalBottom = logicalBottomForFloat(r); // Fix for https://bugs.webkit.org/show_bug.cgi?id=54995. if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == numeric_limits::max()) logicalBottom = numeric_limits::max(); else { // Special-case zero- and less-than-zero-height floats: those don't touch // the line that they're on, but it still needs to be dirtied. This is // accomplished by pretending they have a height of 1. logicalBottom = max(logicalBottom, logicalTop + 1); } if (r->m_originatingLine) { if (!selfNeedsLayout()) { ASSERT(r->m_originatingLine->renderer() == this); r->m_originatingLine->markDirty(); } #if !ASSERT_DISABLED r->m_originatingLine = 0; #endif } markLinesDirtyInBlockRange(0, logicalBottom); } m_floatingObjects->remove(r); ASSERT(!r->m_originatingLine); delete r; } } } void RenderBlock::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset) { if (!m_floatingObjects) return; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObject* curr = floatingObjectSet.last(); while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) { m_floatingObjects->remove(curr); ASSERT(!curr->m_originatingLine); delete curr; if (floatingObjectSet.isEmpty()) break; curr = floatingObjectSet.last(); } } LayoutPoint RenderBlock::computeLogicalLocationForFloat(const FloatingObject* floatingObject, LayoutUnit logicalTopOffset) const { RenderBox* childBox = floatingObject->renderer(); LayoutUnit logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset. LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset. LayoutUnit floatLogicalWidth = min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); // The width we look for. LayoutUnit floatLogicalLeft; if (childBox->style()->floating() == LeftFloat) { LayoutUnit heightRemainingLeft = 1; LayoutUnit heightRemainingRight = 1; floatLogicalLeft = logicalLeftOffsetForLine(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft); while (logicalRightOffsetForLine(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) { logicalTopOffset += min(heightRemainingLeft, heightRemainingRight); floatLogicalLeft = logicalLeftOffsetForLine(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft); if (inRenderFlowThread()) { // Have to re-evaluate all of our offsets, since they may have changed. logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset. logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset. floatLogicalWidth = min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); } } floatLogicalLeft = max(logicalLeftOffset - borderAndPaddingLogicalLeft(), floatLogicalLeft); } else { LayoutUnit heightRemainingLeft = 1; LayoutUnit heightRemainingRight = 1; floatLogicalLeft = logicalRightOffsetForLine(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight); while (floatLogicalLeft - logicalLeftOffsetForLine(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft) < floatLogicalWidth) { logicalTopOffset += min(heightRemainingLeft, heightRemainingRight); floatLogicalLeft = logicalRightOffsetForLine(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight); if (inRenderFlowThread()) { // Have to re-evaluate all of our offsets, since they may have changed. logicalRightOffset = logicalRightOffsetForContent(logicalTopOffset); // Constant part of right offset. logicalLeftOffset = logicalLeftOffsetForContent(logicalTopOffset); // Constant part of left offset. floatLogicalWidth = min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); } } floatLogicalLeft -= logicalWidthForFloat(floatingObject); // Use the original width of the float here, since the local variable // |floatLogicalWidth| was capped to the available line width. // See fast/block/float/clamped-right-float.html. } return LayoutPoint(floatLogicalLeft, logicalTopOffset); } bool RenderBlock::positionNewFloats() { if (!m_floatingObjects) return false; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); if (floatingObjectSet.isEmpty()) return false; // If all floats have already been positioned, then we have no work to do. if (floatingObjectSet.last()->isPlaced()) return false; // Move backwards through our floating object list until we find a float that has // already been positioned. Then we'll be able to move forward, positioning all of // the new floats that need it. FloatingObjectSetIterator it = floatingObjectSet.end(); --it; // Go to last item. FloatingObjectSetIterator begin = floatingObjectSet.begin(); FloatingObject* lastPlacedFloatingObject = 0; while (it != begin) { --it; if ((*it)->isPlaced()) { lastPlacedFloatingObject = *it; ++it; break; } } LayoutUnit logicalTop = logicalHeight(); // The float cannot start above the top position of the last positioned float. if (lastPlacedFloatingObject) logicalTop = max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop); FloatingObjectSetIterator end = floatingObjectSet.end(); // Now walk through the set of unpositioned floats and place them. for (; it != end; ++it) { FloatingObject* floatingObject = *it; // The containing block is responsible for positioning floats, so if we have floats in our // list that come from somewhere else, do not attempt to position them. Also don't attempt to handle // positioned floats, since the positioning layout code handles those. if (floatingObject->renderer()->containingBlock() != this || floatingObject->renderer()->isPositioned()) continue; RenderBox* childBox = floatingObject->renderer(); LayoutUnit childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox); LayoutRect oldRect(childBox->x(), childBox->y() , childBox->width(), childBox->height()); if (childBox->style()->clear() & CLEFT) logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop); if (childBox->style()->clear() & CRIGHT) logicalTop = max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop); LayoutPoint floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, logicalTop); setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x()); setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin); setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox)); LayoutState* layoutState = view()->layoutState(); bool isPaginated = layoutState->isPaginated(); if (isPaginated && !childBox->needsLayout()) childBox->markForPaginationRelayoutIfNeeded(); childBox->layoutIfNeeded(); if (isPaginated) { // If we are unsplittable and don't fit, then we need to move down. // We include our margins as part of the unsplittable area. LayoutUnit newLogicalTop = adjustForUnsplittableChild(childBox, floatLogicalLocation.y(), true); // See if we have a pagination strut that is making us move down further. // Note that an unsplittable child can't also have a pagination strut, so this is // exclusive with the case above. RenderBlock* childBlock = childBox->isRenderBlock() ? toRenderBlock(childBox) : 0; if (childBlock && childBlock->paginationStrut()) { newLogicalTop += childBlock->paginationStrut(); childBlock->setPaginationStrut(0); } if (newLogicalTop != floatLogicalLocation.y()) { floatingObject->m_paginationStrut = newLogicalTop - floatLogicalLocation.y(); floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, newLogicalTop); setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x()); setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin); setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox)); if (childBlock) childBlock->setChildNeedsLayout(true, false); childBox->layoutIfNeeded(); } } setLogicalTopForFloat(floatingObject, floatLogicalLocation.y()); setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox)); m_floatingObjects->addPlacedObject(floatingObject); // If the child moved, we have to repaint it. if (childBox->checkForRepaintDuringLayout()) childBox->repaintDuringLayoutIfMoved(oldRect); } return true; } void RenderBlock::newLine(EClear clear) { positionNewFloats(); // set y position int newY = 0; switch (clear) { case CLEFT: newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft); break; case CRIGHT: newY = lowestFloatLogicalBottom(FloatingObject::FloatRight); break; case CBOTH: newY = lowestFloatLogicalBottom(); default: break; } if (height() < newY) setLogicalHeight(newY); } void RenderBlock::addPercentHeightDescendant(RenderBox* descendant) { if (!gPercentHeightDescendantsMap) { gPercentHeightDescendantsMap = new PercentHeightDescendantsMap; gPercentHeightContainerMap = new PercentHeightContainerMap; } HashSet* descendantSet = gPercentHeightDescendantsMap->get(this); if (!descendantSet) { descendantSet = new HashSet; gPercentHeightDescendantsMap->set(this, descendantSet); } bool added = descendantSet->add(descendant).second; if (!added) { ASSERT(gPercentHeightContainerMap->get(descendant)); ASSERT(gPercentHeightContainerMap->get(descendant)->contains(this)); return; } HashSet* containerSet = gPercentHeightContainerMap->get(descendant); if (!containerSet) { containerSet = new HashSet; gPercentHeightContainerMap->set(descendant, containerSet); } ASSERT(!containerSet->contains(this)); containerSet->add(this); } void RenderBlock::removePercentHeightDescendant(RenderBox* descendant) { if (!gPercentHeightContainerMap) return; HashSet* containerSet = gPercentHeightContainerMap->take(descendant); if (!containerSet) return; HashSet::iterator end = containerSet->end(); for (HashSet::iterator it = containerSet->begin(); it != end; ++it) { RenderBlock* container = *it; HashSet* descendantSet = gPercentHeightDescendantsMap->get(container); ASSERT(descendantSet); if (!descendantSet) continue; ASSERT(descendantSet->contains(descendant)); descendantSet->remove(descendant); if (descendantSet->isEmpty()) { gPercentHeightDescendantsMap->remove(container); delete descendantSet; } } delete containerSet; } HashSet* RenderBlock::percentHeightDescendants() const { return gPercentHeightDescendantsMap ? gPercentHeightDescendantsMap->get(this) : 0; } #if !ASSERT_DISABLED bool RenderBlock::hasPercentHeightDescendant(RenderBox* descendant) { ASSERT(descendant); if (!gPercentHeightContainerMap) return false; HashSet* containerSet = gPercentHeightContainerMap->take(descendant); return containerSet && containerSet->size(); } #endif template inline void RenderBlock::FloatIntervalSearchAdapter::collectIfNeeded(const IntervalType& interval) const { const FloatingObject* r = interval.data(); if (r->type() == FloatTypeValue && interval.low() <= m_value && m_value < interval.high()) { // All the objects returned from the tree should be already placed. ASSERT(r->isPlaced() && m_renderer->pixelSnappedLogicalTopForFloat(r) <= m_value && m_renderer->pixelSnappedLogicalBottomForFloat(r) > m_value); if (FloatTypeValue == FloatingObject::FloatLeft && m_renderer->logicalRightForFloat(r) > m_offset) { m_offset = m_renderer->logicalRightForFloat(r); if (m_heightRemaining) *m_heightRemaining = m_renderer->logicalBottomForFloat(r) - m_value; } if (FloatTypeValue == FloatingObject::FloatRight && m_renderer->logicalLeftForFloat(r) < m_offset) { m_offset = m_renderer->logicalLeftForFloat(r); if (m_heightRemaining) *m_heightRemaining = m_renderer->logicalBottomForFloat(r) - m_value; } } } LayoutUnit RenderBlock::textIndentOffset() const { LayoutUnit cw = 0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableLogicalWidth(); return style()->textIndent().calcMinValue(cw); } LayoutUnit RenderBlock::logicalLeftOffsetForContent(RenderRegion* region, LayoutUnit offsetFromLogicalTopOfFirstPage) const { LayoutUnit logicalLeftOffset = style()->isHorizontalWritingMode() ? borderLeft() + paddingLeft() : borderTop() + paddingTop(); if (!inRenderFlowThread()) return logicalLeftOffset; LayoutRect boxRect = borderBoxRectInRegion(region, offsetFromLogicalTopOfFirstPage); return logicalLeftOffset + (isHorizontalWritingMode() ? boxRect.x() : boxRect.y()); } LayoutUnit RenderBlock::logicalRightOffsetForContent(RenderRegion* region, LayoutUnit offsetFromLogicalTopOfFirstPage) const { LayoutUnit logicalRightOffset = style()->isHorizontalWritingMode() ? borderLeft() + paddingLeft() : borderTop() + paddingTop(); logicalRightOffset += availableLogicalWidth(); if (!inRenderFlowThread()) return logicalRightOffset; LayoutRect boxRect = borderBoxRectInRegion(region, offsetFromLogicalTopOfFirstPage); return logicalRightOffset - (logicalWidth() - (isHorizontalWritingMode() ? boxRect.maxX() : boxRect.maxY())); } LayoutUnit RenderBlock::logicalLeftOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const { LayoutUnit left = fixedOffset; if (m_floatingObjects && m_floatingObjects->hasLeftObjects()) { if (heightRemaining) *heightRemaining = 1; FloatIntervalSearchAdapter adapter(this, logicalTop, left, heightRemaining); m_floatingObjects->placedFloatsTree().allOverlapsWithAdapter(adapter); } if (applyTextIndent && style()->isLeftToRightDirection()) left += textIndentOffset(); if (style()->lineAlign() == LineAlignNone) return left; // Push in our left offset so that it is aligned with the character grid. LayoutState* layoutState = view()->layoutState(); if (!layoutState) return left; RenderBlock* lineGrid = layoutState->lineGrid(); if (!lineGrid || lineGrid->style()->writingMode() != style()->writingMode()) return left; // FIXME: Should letter-spacing apply? This is complicated since it doesn't apply at the edge? float maxCharWidth = lineGrid->style()->font().primaryFont()->maxCharWidth(); if (!maxCharWidth) return left; LayoutUnit lineGridOffset = lineGrid->isHorizontalWritingMode() ? layoutState->lineGridOffset().width(): layoutState->lineGridOffset().height(); LayoutUnit layoutOffset = lineGrid->isHorizontalWritingMode() ? layoutState->layoutOffset().width() : layoutState->layoutOffset().height(); // Push in to the nearest character width (truncated so that we pixel snap left). // FIXME: Should be patched when subpixel layout lands, since this calculation doesn't have to pixel snap // any more (https://bugs.webkit.org/show_bug.cgi?id=79946). // FIXME: This is wrong for RTL (https://bugs.webkit.org/show_bug.cgi?id=79945). // FIXME: This doesn't work with columns or regions (https://bugs.webkit.org/show_bug.cgi?id=79942). // FIXME: This doesn't work when the inline position of the object isn't set ahead of time. // FIXME: Dynamic changes to the font or to the inline position need to result in a deep relayout. // (https://bugs.webkit.org/show_bug.cgi?id=79944) float remainder = fmodf(maxCharWidth - fmodf(left + layoutOffset - lineGridOffset, maxCharWidth), maxCharWidth); left += remainder; return left; } LayoutUnit RenderBlock::logicalRightOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const { LayoutUnit right = fixedOffset; if (m_floatingObjects && m_floatingObjects->hasRightObjects()) { if (heightRemaining) *heightRemaining = 1; LayoutUnit rightFloatOffset = fixedOffset; FloatIntervalSearchAdapter adapter(this, logicalTop, rightFloatOffset, heightRemaining); m_floatingObjects->placedFloatsTree().allOverlapsWithAdapter(adapter); right = min(right, rightFloatOffset); } if (applyTextIndent && !style()->isLeftToRightDirection()) right -= textIndentOffset(); if (style()->lineAlign() == LineAlignNone) return right; // Push in our right offset so that it is aligned with the character grid. LayoutState* layoutState = view()->layoutState(); if (!layoutState) return right; RenderBlock* lineGrid = layoutState->lineGrid(); if (!lineGrid || lineGrid->style()->writingMode() != style()->writingMode()) return right; // FIXME: Should letter-spacing apply? This is complicated since it doesn't apply at the edge? float maxCharWidth = lineGrid->style()->font().primaryFont()->maxCharWidth(); if (!maxCharWidth) return right; LayoutUnit lineGridOffset = lineGrid->isHorizontalWritingMode() ? layoutState->lineGridOffset().width(): layoutState->lineGridOffset().height(); LayoutUnit layoutOffset = lineGrid->isHorizontalWritingMode() ? layoutState->layoutOffset().width() : layoutState->layoutOffset().height(); // Push in to the nearest character width (truncated so that we pixel snap right). // FIXME: Should be patched when subpixel layout lands, since this calculation doesn't have to pixel snap // any more (https://bugs.webkit.org/show_bug.cgi?id=79946). // FIXME: This is wrong for RTL (https://bugs.webkit.org/show_bug.cgi?id=79945). // FIXME: This doesn't work with columns or regions (https://bugs.webkit.org/show_bug.cgi?id=79942). // FIXME: This doesn't work when the inline position of the object isn't set ahead of time. // FIXME: Dynamic changes to the font or to the inline position need to result in a deep relayout. // (https://bugs.webkit.org/show_bug.cgi?id=79944) float remainder = fmodf(fmodf(right + layoutOffset - lineGridOffset, maxCharWidth), maxCharWidth); right -= ceilf(remainder); return right; } LayoutUnit RenderBlock::nextFloatLogicalBottomBelow(LayoutUnit logicalHeight) const { if (!m_floatingObjects) return logicalHeight; LayoutUnit bottom = numeric_limits::max(); const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; LayoutUnit floatBottom = logicalBottomForFloat(r); if (floatBottom > logicalHeight) bottom = min(floatBottom, bottom); } return bottom == numeric_limits::max() ? zeroLayoutUnit : bottom; } LayoutUnit RenderBlock::lowestFloatLogicalBottom(FloatingObject::Type floatType) const { if (!m_floatingObjects) return 0; LayoutUnit lowestFloatBottom = 0; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; if (r->isPlaced() && r->type() & floatType) lowestFloatBottom = max(lowestFloatBottom, logicalBottomForFloat(r)); } return lowestFloatBottom; } void RenderBlock::markLinesDirtyInBlockRange(LayoutUnit logicalTop, LayoutUnit logicalBottom, RootInlineBox* highest) { if (logicalTop >= logicalBottom) return; RootInlineBox* lowestDirtyLine = lastRootBox(); RootInlineBox* afterLowest = lowestDirtyLine; while (lowestDirtyLine && lowestDirtyLine->lineBottomWithLeading() >= logicalBottom && logicalBottom < numeric_limits::max()) { afterLowest = lowestDirtyLine; lowestDirtyLine = lowestDirtyLine->prevRootBox(); } while (afterLowest && afterLowest != highest && (afterLowest->lineBottomWithLeading() >= logicalTop || afterLowest->lineBottomWithLeading() < 0)) { afterLowest->markDirty(); afterLowest = afterLowest->prevRootBox(); } } void RenderBlock::addPositionedFloats() { if (!m_positionedObjects) return; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { RenderBox* positionedObject = *it; if (!positionedObject->isFloating()) continue; ASSERT(!positionedObject->needsLayout()); // If we're a positioned float, then we need to insert ourselves as a floating object also. We only do // this after the positioned object has received a layout, since otherwise the dimensions and placement // won't be correct. FloatingObject* floatingObject = insertFloatingObject(positionedObject); setLogicalLeftForFloat(floatingObject, logicalLeftForChild(positionedObject) - marginLogicalLeftForChild(positionedObject)); setLogicalTopForFloat(floatingObject, logicalTopForChild(positionedObject) - marginBeforeForChild(positionedObject)); setLogicalHeightForFloat(floatingObject, logicalHeightForChild(positionedObject) + marginBeforeForChild(positionedObject) + marginAfterForChild(positionedObject)); m_floatingObjects->addPlacedObject(floatingObject); m_hasPositionedFloats = true; } } void RenderBlock::clearFloats(BlockLayoutPass layoutPass) { if (m_floatingObjects) m_floatingObjects->setHorizontalWritingMode(isHorizontalWritingMode()); // Clear our positioned floats boolean. m_hasPositionedFloats = false; // Inline blocks are covered by the isReplaced() check in the avoidFloats method. if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) { if (m_floatingObjects) { deleteAllValues(m_floatingObjects->set()); m_floatingObjects->clear(); } if (layoutPass == PositionedFloatLayoutPass) addPositionedFloats(); return; } typedef HashMap RendererToFloatInfoMap; RendererToFloatInfoMap floatMap; if (m_floatingObjects) { const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); if (childrenInline()) { FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* f = *it; floatMap.add(f->m_renderer, f); } } else deleteAllValues(floatingObjectSet); m_floatingObjects->clear(); } if (layoutPass == PositionedFloatLayoutPass) addPositionedFloats(); // We should not process floats if the parent node is not a RenderBlock. Otherwise, we will add // floats in an invalid context. This will cause a crash arising from a bad cast on the parent. // See , where float property is applied on a text node in a SVG. if (!parent() || !parent()->isRenderBlock()) return; // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted // to avoid floats. RenderBlock* parentBlock = toRenderBlock(parent()); bool parentHasFloats = parentBlock->hasPositionedFloats(); RenderObject* prev = previousSibling(); while (prev && (prev->isFloatingOrPositioned() || !prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats())) { if (prev->isFloating()) parentHasFloats = true; prev = prev->previousSibling(); } // First add in floats from the parent. LayoutUnit logicalTopOffset = logicalTop(); if (parentHasFloats) addIntrudingFloats(parentBlock, parentBlock->logicalLeftOffsetForContent(), logicalTopOffset); LayoutUnit logicalLeftOffset = 0; if (prev) logicalTopOffset -= toRenderBox(prev)->logicalTop(); else if (!parentHasFloats) { prev = parentBlock; logicalLeftOffset += parentBlock->logicalLeftOffsetForContent(); } // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. RenderBlock* block = toRenderBlock(prev); if (block && block->m_floatingObjects && block->lowestFloatLogicalBottomIncludingPositionedFloats() > logicalTopOffset) addIntrudingFloats(block, logicalLeftOffset, logicalTopOffset); if (childrenInline()) { LayoutUnit changeLogicalTop = numeric_limits::max(); LayoutUnit changeLogicalBottom = numeric_limits::min(); if (m_floatingObjects) { const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* f = *it; FloatingObject* oldFloatingObject = floatMap.get(f->m_renderer); LayoutUnit logicalBottom = logicalBottomForFloat(f); if (oldFloatingObject) { LayoutUnit oldLogicalBottom = logicalBottomForFloat(oldFloatingObject); if (logicalWidthForFloat(f) != logicalWidthForFloat(oldFloatingObject) || logicalLeftForFloat(f) != logicalLeftForFloat(oldFloatingObject)) { changeLogicalTop = 0; changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom)); } else { if (logicalBottom != oldLogicalBottom) { changeLogicalTop = min(changeLogicalTop, min(logicalBottom, oldLogicalBottom)); changeLogicalBottom = max(changeLogicalBottom, max(logicalBottom, oldLogicalBottom)); } LayoutUnit logicalTop = logicalTopForFloat(f); LayoutUnit oldLogicalTop = logicalTopForFloat(oldFloatingObject); if (logicalTop != oldLogicalTop) { changeLogicalTop = min(changeLogicalTop, min(logicalTop, oldLogicalTop)); changeLogicalBottom = max(changeLogicalBottom, max(logicalTop, oldLogicalTop)); } } floatMap.remove(f->m_renderer); if (oldFloatingObject->m_originatingLine && !selfNeedsLayout()) { ASSERT(oldFloatingObject->m_originatingLine->renderer() == this); oldFloatingObject->m_originatingLine->markDirty(); } delete oldFloatingObject; } else { changeLogicalTop = 0; changeLogicalBottom = max(changeLogicalBottom, logicalBottom); } } } RendererToFloatInfoMap::iterator end = floatMap.end(); for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) { FloatingObject* floatingObject = (*it).second; if (!floatingObject->m_isDescendant) { changeLogicalTop = 0; changeLogicalBottom = max(changeLogicalBottom, logicalBottomForFloat(floatingObject)); } } deleteAllValues(floatMap); markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom); } } LayoutUnit RenderBlock::addOverhangingFloats(RenderBlock* child, bool makeChildPaintOtherFloats) { // Prevent floats from being added to the canvas by the root element, e.g., . if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot() || child->hasColumns() || child->isWritingModeRoot()) return 0; LayoutUnit childLogicalTop = child->logicalTop(); LayoutUnit childLogicalLeft = child->logicalLeft(); LayoutUnit lowestFloatLogicalBottom = 0; // Floats that will remain the child's responsibility to paint should factor into its // overflow. FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end(); for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) { FloatingObject* r = *childIt; LayoutUnit logicalBottomForFloat = min(this->logicalBottomForFloat(r), numeric_limits::max() - childLogicalTop); LayoutUnit logicalBottom = childLogicalTop + logicalBottomForFloat; lowestFloatLogicalBottom = max(lowestFloatLogicalBottom, logicalBottom); if (logicalBottom > logicalHeight()) { // If the object is not in the list, we add it now. if (!containsFloat(r->m_renderer)) { LayoutUnit leftOffset = isHorizontalWritingMode() ? -childLogicalLeft : -childLogicalTop; LayoutUnit topOffset = isHorizontalWritingMode() ? -childLogicalTop : -childLogicalLeft; FloatingObject* floatingObj = new FloatingObject(r->type(), LayoutRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height())); floatingObj->m_renderer = r->m_renderer; // The nearest enclosing layer always paints the float (so that zindex and stacking // behaves properly). We always want to propagate the desire to paint the float as // far out as we can, to the outermost block that overlaps the float, stopping only // if we hit a self-painting layer boundary. if (r->m_renderer->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) r->m_shouldPaint = false; else floatingObj->m_shouldPaint = false; floatingObj->m_isDescendant = true; // We create the floating object list lazily. if (!m_floatingObjects) m_floatingObjects = adoptPtr(new FloatingObjects(this, isHorizontalWritingMode())); m_floatingObjects->add(floatingObj); } } else { if (makeChildPaintOtherFloats && !r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer() && r->m_renderer->isDescendantOf(child) && r->m_renderer->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) { // The float is not overhanging from this block, so if it is a descendant of the child, the child should // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing // layer. // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats // it should paint. r->m_shouldPaint = true; } // Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the // child now. if (r->m_isDescendant) child->addOverflowFromChild(r->m_renderer, LayoutSize(xPositionForFloatIncludingMargin(r), yPositionForFloatIncludingMargin(r))); } } return lowestFloatLogicalBottom; } bool RenderBlock::hasOverhangingFloat(RenderBox* renderer) { if (!m_floatingObjects || hasColumns() || !parent()) return false; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator it = floatingObjectSet.find(renderer); if (it == floatingObjectSet.end()) return false; return logicalBottomForFloat(*it) > logicalHeight(); } void RenderBlock::addIntrudingFloats(RenderBlock* prev, LayoutUnit logicalLeftOffset, LayoutUnit logicalTopOffset) { // If the parent or previous sibling doesn't have any floats to add, don't bother. if (!prev->m_floatingObjects) return; logicalLeftOffset += (isHorizontalWritingMode() ? marginLeft() : marginTop()); const FloatingObjectSet& prevSet = prev->m_floatingObjects->set(); FloatingObjectSetIterator prevEnd = prevSet.end(); for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) { FloatingObject* r = *prevIt; if (logicalBottomForFloat(r) > logicalTopOffset) { if (!m_floatingObjects || !m_floatingObjects->set().contains(r)) { LayoutUnit leftOffset = isHorizontalWritingMode() ? logicalLeftOffset : logicalTopOffset; LayoutUnit topOffset = isHorizontalWritingMode() ? logicalTopOffset : logicalLeftOffset; FloatingObject* floatingObj = new FloatingObject(r->type(), LayoutRect(r->x() - leftOffset, r->y() - topOffset, r->width(), r->height())); // Applying the child's margin makes no sense in the case where the child was passed in. // since this margin was added already through the modification of the |logicalLeftOffset| variable // above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken // into account. Only apply this code if prev is the parent, since otherwise the left margin // will get applied twice. if (prev != parent()) { if (isHorizontalWritingMode()) floatingObj->setX(floatingObj->x() + prev->marginLeft()); else floatingObj->setY(floatingObj->y() + prev->marginTop()); } floatingObj->m_shouldPaint = false; // We are not in the direct inheritance chain for this float. We will never paint it. floatingObj->m_renderer = r->m_renderer; // We create the floating object list lazily. if (!m_floatingObjects) m_floatingObjects = adoptPtr(new FloatingObjects(this, isHorizontalWritingMode())); m_floatingObjects->add(floatingObj); } } } } bool RenderBlock::avoidsFloats() const { // Floats can't intrude into our box if we have a non-auto column count or width. return RenderBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth(); } bool RenderBlock::containsFloat(RenderBox* renderer) const { return m_floatingObjects && m_floatingObjects->set().contains(renderer); } void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout) { if (!everHadLayout()) return; setChildNeedsLayout(true, !inLayout); if (floatToRemove) removeFloatingObject(floatToRemove); // Iterate over our children and mark them as needed. if (!childrenInline()) { for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if ((!floatToRemove && child->isFloatingOrPositioned()) || !child->isRenderBlock()) continue; RenderBlock* childBlock = toRenderBlock(child); if ((floatToRemove ? childBlock->containsFloat(floatToRemove) : childBlock->containsFloats()) || childBlock->shrinkToAvoidFloats()) childBlock->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout); } } } void RenderBlock::markSiblingsWithFloatsForLayout(RenderBox* floatToRemove) { if (!m_floatingObjects) return; const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { if (logicalBottomForFloat(*it) > logicalHeight()) { RenderBox* floatingBox = (*it)->renderer(); if (floatToRemove && floatingBox != floatToRemove) continue; RenderObject* next = nextSibling(); while (next) { if (next->isRenderBlock() && !next->isFloatingOrPositioned() && !toRenderBlock(next)->avoidsFloats()) { RenderBlock* nextBlock = toRenderBlock(next); if (nextBlock->containsFloat(floatingBox)) nextBlock->markAllDescendantsWithFloatsForLayout(floatingBox); else break; } next = next->nextSibling(); } } } } LayoutUnit RenderBlock::getClearDelta(RenderBox* child, LayoutUnit logicalTop) { // There is no need to compute clearance if we have no floats. if (!containsFloats()) return 0; // At least one float is present. We need to perform the clearance computation. bool clearSet = child->style()->clear() != CNONE; LayoutUnit logicalBottom = 0; switch (child->style()->clear()) { case CNONE: break; case CLEFT: logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft); break; case CRIGHT: logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatRight); break; case CBOTH: logicalBottom = lowestFloatLogicalBottom(); break; } // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). LayoutUnit result = clearSet ? max(0, logicalBottom - logicalTop) : zeroLayoutUnit; if (!result && child->avoidsFloats()) { LayoutUnit newLogicalTop = logicalTop; while (true) { LayoutUnit availableLogicalWidthAtNewLogicalTopOffset = availableLogicalWidthForLine(newLogicalTop, false); if (availableLogicalWidthAtNewLogicalTopOffset == availableLogicalWidthForContent(newLogicalTop)) return newLogicalTop - logicalTop; // FIXME: None of this is right for perpendicular writing-mode children. LayoutUnit childOldLogicalWidth = child->logicalWidth(); LayoutUnit childOldMarginLeft = child->marginLeft(); LayoutUnit childOldMarginRight = child->marginRight(); LayoutUnit childOldLogicalTop = child->logicalTop(); child->setLogicalTop(newLogicalTop); child->computeLogicalWidth(); RenderRegion* region = regionAtBlockOffset(logicalTopForChild(child)); LayoutRect borderBox = child->borderBoxRectInRegion(region, offsetFromLogicalTopOfFirstPage() + logicalTopForChild(child), DoNotCacheRenderBoxRegionInfo); LayoutUnit childLogicalWidthAtNewLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height(); child->setLogicalTop(childOldLogicalTop); child->setLogicalWidth(childOldLogicalWidth); child->setMarginLeft(childOldMarginLeft); child->setMarginRight(childOldMarginRight); if (childLogicalWidthAtNewLogicalTopOffset <= availableLogicalWidthAtNewLogicalTopOffset) return newLogicalTop - logicalTop; newLogicalTop = nextFloatLogicalBottomBelow(newLogicalTop); ASSERT(newLogicalTop >= logicalTop); if (newLogicalTop < logicalTop) break; } ASSERT_NOT_REACHED(); } return result; } bool RenderBlock::isPointInOverflowControl(HitTestResult& result, const LayoutPoint& pointInContainer, const LayoutPoint& accumulatedOffset) { if (!scrollsOverflow() || !hasLayer()) return false; return layer()->hitTestOverflowControls(result, pointInContainer - toLayoutSize(accumulatedOffset)); } bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const LayoutPoint& pointInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction) { LayoutPoint adjustedLocation(accumulatedOffset + location()); LayoutSize localOffset = toLayoutSize(adjustedLocation); if (!isRenderView()) { // Check if we need to do anything at all. LayoutRect overflowBox = visualOverflowRect(); flipForWritingMode(overflowBox); overflowBox.moveBy(adjustedLocation); if (!overflowBox.intersects(result.rectForPoint(pointInContainer))) return false; } if ((hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) && isPointInOverflowControl(result, pointInContainer, adjustedLocation)) { updateHitTestResult(result, pointInContainer - localOffset); // FIXME: isPointInOverflowControl() doesn't handle rect-based tests yet. if (!result.addNodeToRectBasedTestResult(node(), pointInContainer)) return true; } // If we have clipping, then we can't have any spillout. bool useOverflowClip = hasOverflowClip() && !hasSelfPaintingLayer(); bool useClip = (hasControlClip() || useOverflowClip); LayoutRect hitTestArea(result.rectForPoint(pointInContainer)); bool checkChildren = !useClip || (hasControlClip() ? controlClipRect(adjustedLocation).intersects(hitTestArea) : overflowClipRect(adjustedLocation, result.region(), IncludeOverlayScrollbarSize).intersects(hitTestArea)); if (checkChildren) { // Hit test descendants first. LayoutSize scrolledOffset(localOffset); if (hasOverflowClip()) scrolledOffset -= scrolledContentOffset(); // Hit test contents if we don't have columns. if (!hasColumns()) { if (hitTestContents(request, result, pointInContainer, toLayoutPoint(scrolledOffset), hitTestAction)) { updateHitTestResult(result, pointInContainer - localOffset); return true; } if (hitTestAction == HitTestFloat && hitTestFloats(request, result, pointInContainer, toLayoutPoint(scrolledOffset))) return true; } else if (hitTestColumns(request, result, pointInContainer, toLayoutPoint(scrolledOffset), hitTestAction)) { updateHitTestResult(result, flipForWritingMode(pointInContainer - localOffset)); return true; } } // Now hit test our background if (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) { LayoutRect boundsRect(adjustedLocation, size()); if (visibleToHitTesting() && boundsRect.intersects(result.rectForPoint(pointInContainer))) { updateHitTestResult(result, flipForWritingMode(pointInContainer - localOffset)); if (!result.addNodeToRectBasedTestResult(node(), pointInContainer, boundsRect)) return true; } } return false; } bool RenderBlock::hitTestFloats(const HitTestRequest& request, HitTestResult& result, const LayoutPoint& pointInContainer, const LayoutPoint& accumulatedOffset) { if (!m_floatingObjects) return false; LayoutPoint adjustedLocation = accumulatedOffset; if (isRenderView()) { adjustedLocation += toLayoutSize(toRenderView(this)->frameView()->scrollPosition()); } const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator begin = floatingObjectSet.begin(); for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) { --it; FloatingObject* floatingObject = *it; if (floatingObject->m_shouldPaint && !floatingObject->m_renderer->hasSelfPaintingLayer()) { LayoutUnit xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->x(); LayoutUnit yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->m_renderer->y(); LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, adjustedLocation + LayoutSize(xOffset, yOffset)); if (floatingObject->m_renderer->hitTest(request, result, pointInContainer, childPoint)) { updateHitTestResult(result, pointInContainer - toLayoutSize(childPoint)); return true; } } } return false; } class ColumnRectIterator { WTF_MAKE_NONCOPYABLE(ColumnRectIterator); public: ColumnRectIterator(const RenderBlock& block) : m_block(block) , m_colInfo(block.columnInfo()) , m_direction(m_block.style()->isFlippedBlocksWritingMode() ? 1 : -1) , m_isHorizontal(block.isHorizontalWritingMode()) , m_logicalLeft(block.logicalLeftOffsetForContent()) { int colCount = m_colInfo->columnCount(); m_colIndex = colCount - 1; m_currLogicalTopOffset = colCount * m_colInfo->columnHeight() * m_direction; update(); } void advance() { ASSERT(hasMore()); m_colIndex--; update(); } LayoutRect columnRect() const { return m_colRect; } bool hasMore() const { return m_colIndex >= 0; } void adjust(LayoutSize& offset) const { LayoutUnit currLogicalLeftOffset = (m_isHorizontal ? m_colRect.x() : m_colRect.y()) - m_logicalLeft; offset += m_isHorizontal ? LayoutSize(currLogicalLeftOffset, m_currLogicalTopOffset) : LayoutSize(m_currLogicalTopOffset, currLogicalLeftOffset); if (m_colInfo->progressionAxis() == ColumnInfo::BlockAxis) { if (m_isHorizontal) offset.expand(0, m_colRect.y() - m_block.borderTop() - m_block.paddingTop()); else offset.expand(m_colRect.x() - m_block.borderLeft() - m_block.paddingLeft(), 0); } } private: void update() { if (m_colIndex < 0) return; m_colRect = m_block.columnRectAt(const_cast(m_colInfo), m_colIndex); m_block.flipForWritingMode(m_colRect); m_currLogicalTopOffset -= (m_isHorizontal ? m_colRect.height() : m_colRect.width()) * m_direction; } const RenderBlock& m_block; const ColumnInfo* const m_colInfo; const int m_direction; const bool m_isHorizontal; const LayoutUnit m_logicalLeft; int m_colIndex; LayoutUnit m_currLogicalTopOffset; LayoutRect m_colRect; }; bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, const LayoutPoint& pointInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction) { // We need to do multiple passes, breaking up our hit testing into strips. if (!hasColumns()) return false; for (ColumnRectIterator it(*this); it.hasMore(); it.advance()) { LayoutRect hitRect = result.rectForPoint(pointInContainer); LayoutRect colRect = it.columnRect(); colRect.moveBy(accumulatedOffset); if (colRect.intersects(hitRect)) { // The point is inside this column. // Adjust accumulatedOffset to change where we hit test. LayoutSize offset; it.adjust(offset); LayoutPoint finalLocation = accumulatedOffset + offset; if (!result.isRectBasedTest() || colRect.contains(hitRect)) return hitTestContents(request, result, pointInContainer, finalLocation, hitTestAction) || (hitTestAction == HitTestFloat && hitTestFloats(request, result, pointInContainer, finalLocation)); hitTestContents(request, result, pointInContainer, finalLocation, hitTestAction); } } return false; } void RenderBlock::adjustForColumnRect(LayoutSize& offset, const LayoutPoint& pointInContainer) const { for (ColumnRectIterator it(*this); it.hasMore(); it.advance()) { LayoutRect colRect = it.columnRect(); if (colRect.contains(pointInContainer)) { it.adjust(offset); return; } } } bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, const LayoutPoint& pointInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction) { if (childrenInline() && !isTable()) { // We have to hit-test our line boxes. if (m_lineBoxes.hitTest(this, request, result, pointInContainer, accumulatedOffset, hitTestAction)) return true; } else { // Hit test our children. HitTestAction childHitTest = hitTestAction; if (hitTestAction == HitTestChildBlockBackgrounds) childHitTest = HitTestChildBlockBackground; for (RenderBox* child = lastChildBox(); child; child = child->previousSiblingBox()) { LayoutPoint childPoint = flipForWritingModeForChild(child, accumulatedOffset); if (!child->hasSelfPaintingLayer() && !child->isFloating() && child->nodeAtPoint(request, result, pointInContainer, childPoint, childHitTest)) return true; } } return false; } Position RenderBlock::positionForBox(InlineBox *box, bool start) const { if (!box) return Position(); if (!box->renderer()->node()) return createLegacyEditingPosition(node(), start ? caretMinOffset() : caretMaxOffset()); if (!box->isInlineTextBox()) return createLegacyEditingPosition(box->renderer()->node(), start ? box->renderer()->caretMinOffset() : box->renderer()->caretMaxOffset()); InlineTextBox* textBox = toInlineTextBox(box); return createLegacyEditingPosition(box->renderer()->node(), start ? textBox->start() : textBox->start() + textBox->len()); } static inline bool isEditingBoundary(RenderObject* ancestor, RenderObject* child) { ASSERT(!ancestor || ancestor->node()); ASSERT(child && child->node()); return !ancestor || !ancestor->parent() || (ancestor->hasLayer() && ancestor->parent()->isRenderView()) || ancestor->node()->rendererIsEditable() == child->node()->rendererIsEditable(); } // FIXME: This function should go on RenderObject as an instance method. Then // all cases in which positionForPoint recurs could call this instead to // prevent crossing editable boundaries. This would require many tests. static VisiblePosition positionForPointRespectingEditingBoundaries(RenderBlock* parent, RenderBox* child, const LayoutPoint& pointInParentCoordinates) { LayoutPoint childLocation = child->location(); if (child->isRelPositioned()) childLocation += child->relativePositionOffset(); // FIXME: This is wrong if the child's writing-mode is different from the parent's. LayoutPoint pointInChildCoordinates(toLayoutPoint(pointInParentCoordinates - childLocation)); // If this is an anonymous renderer, we just recur normally Node* childNode = child->node(); if (!childNode) return child->positionForPoint(pointInChildCoordinates); // Otherwise, first make sure that the editability of the parent and child agree. // If they don't agree, then we return a visible position just before or after the child RenderObject* ancestor = parent; while (ancestor && !ancestor->node()) ancestor = ancestor->parent(); // If we can't find an ancestor to check editability on, or editability is unchanged, we recur like normal if (isEditingBoundary(ancestor, child)) return child->positionForPoint(pointInChildCoordinates); // Otherwise return before or after the child, depending on if the click was to the logical left or logical right of the child LayoutUnit childMiddle = parent->logicalWidthForChild(child) / 2; LayoutUnit logicalLeft = parent->isHorizontalWritingMode() ? pointInChildCoordinates.x() : pointInChildCoordinates.y(); if (logicalLeft < childMiddle) return ancestor->createVisiblePosition(childNode->nodeIndex(), DOWNSTREAM); return ancestor->createVisiblePosition(childNode->nodeIndex() + 1, UPSTREAM); } VisiblePosition RenderBlock::positionForPointWithInlineChildren(const LayoutPoint& pointInLogicalContents) { ASSERT(childrenInline()); if (!firstRootBox()) return createVisiblePosition(0, DOWNSTREAM); // look for the closest line box in the root box which is at the passed-in y coordinate InlineBox* closestBox = 0; RootInlineBox* firstRootBoxWithChildren = 0; RootInlineBox* lastRootBoxWithChildren = 0; for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { if (!root->firstLeafChild()) continue; if (!firstRootBoxWithChildren) firstRootBoxWithChildren = root; lastRootBoxWithChildren = root; // check if this root line box is located at this y coordinate if (pointInLogicalContents.y() < root->selectionBottom()) { closestBox = root->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x()); if (closestBox) break; } } bool moveCaretToBoundary = document()->frame()->editor()->behavior().shouldMoveCaretToHorizontalBoundaryWhenPastTopOrBottom(); if (!moveCaretToBoundary && !closestBox && lastRootBoxWithChildren) { // y coordinate is below last root line box, pretend we hit it closestBox = lastRootBoxWithChildren->closestLeafChildForLogicalLeftPosition(pointInLogicalContents.x()); } if (closestBox) { if (moveCaretToBoundary && pointInLogicalContents.y() < firstRootBoxWithChildren->selectionTop() && pointInLogicalContents.y() < firstRootBoxWithChildren->logicalTop()) { InlineBox* box = firstRootBoxWithChildren->firstLeafChild(); if (box->isLineBreak()) { if (InlineBox* newBox = box->nextLeafChildIgnoringLineBreak()) box = newBox; } // y coordinate is above first root line box, so return the start of the first return VisiblePosition(positionForBox(box, true), DOWNSTREAM); } // pass the box a top position that is inside it LayoutPoint point(pointInLogicalContents.x(), max(closestBox->root()->lineTop(), closestBox->root()->selectionTop())); if (!isHorizontalWritingMode()) point = point.transposedPoint(); if (closestBox->renderer()->isReplaced()) return positionForPointRespectingEditingBoundaries(this, toRenderBox(closestBox->renderer()), point); return closestBox->renderer()->positionForPoint(point); } if (lastRootBoxWithChildren) { // We hit this case for Mac behavior when the Y coordinate is below the last box. ASSERT(moveCaretToBoundary); InlineBox* logicallyLastBox; if (lastRootBoxWithChildren->getLogicalEndBoxWithNode(logicallyLastBox)) return VisiblePosition(positionForBox(logicallyLastBox, false), DOWNSTREAM); } // Can't reach this. We have a root line box, but it has no kids. // FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text // seems to hit this code path. return createVisiblePosition(0, DOWNSTREAM); } static inline bool isChildHitTestCandidate(RenderBox* box) { return box->height() && box->style()->visibility() == VISIBLE && !box->isFloatingOrPositioned(); } VisiblePosition RenderBlock::positionForPoint(const LayoutPoint& point) { if (isTable()) return RenderBox::positionForPoint(point); if (isReplaced()) { // FIXME: This seems wrong when the object's writing-mode doesn't match the line's writing-mode. LayoutUnit pointLogicalLeft = isHorizontalWritingMode() ? point.x() : point.y(); LayoutUnit pointLogicalTop = isHorizontalWritingMode() ? point.y() : point.x(); if (pointLogicalTop < 0 || (pointLogicalTop < logicalHeight() && pointLogicalLeft < 0)) return createVisiblePosition(caretMinOffset(), DOWNSTREAM); if (pointLogicalTop >= logicalHeight() || (pointLogicalTop >= 0 && pointLogicalLeft >= logicalWidth())) return createVisiblePosition(caretMaxOffset(), DOWNSTREAM); } LayoutPoint pointInContents = point; offsetForContents(pointInContents); LayoutPoint pointInLogicalContents(pointInContents); if (!isHorizontalWritingMode()) pointInLogicalContents = pointInLogicalContents.transposedPoint(); if (childrenInline()) return positionForPointWithInlineChildren(pointInLogicalContents); RenderBox* lastCandidateBox = lastChildBox(); while (lastCandidateBox && !isChildHitTestCandidate(lastCandidateBox)) lastCandidateBox = lastCandidateBox->previousSiblingBox(); if (lastCandidateBox) { if (pointInContents.y() > lastCandidateBox->logicalTop()) return positionForPointRespectingEditingBoundaries(this, lastCandidateBox, pointInContents); for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) { // We hit child if our click is above the bottom of its padding box (like IE6/7 and FF3). if (isChildHitTestCandidate(childBox) && pointInContents.y() < childBox->logicalBottom()) return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); } } // We only get here if there are no hit test candidate children below the click. return RenderBox::positionForPoint(point); } void RenderBlock::offsetForContents(LayoutPoint& offset) const { if (hasOverflowClip()) offset += scrolledContentOffset(); if (hasColumns()) adjustPointToColumnContents(offset); } LayoutUnit RenderBlock::availableLogicalWidth() const { // If we have multiple columns, then the available logical width is reduced to our column width. if (hasColumns()) return desiredColumnWidth(); return RenderBox::availableLogicalWidth(); } int RenderBlock::columnGap() const { if (style()->hasNormalColumnGap()) return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches

margins. return static_cast(style()->columnGap()); } void RenderBlock::calcColumnWidth() { // Calculate our column width and column count. // FIXME: Can overflow on fast/block/float/float-not-removed-from-next-sibling4.html, see https://bugs.webkit.org/show_bug.cgi?id=68744 unsigned desiredColumnCount = 1; LayoutUnit desiredColumnWidth = contentLogicalWidth(); // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. if (document()->paginated() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth()) || !style()->hasInlineColumnAxis()) { setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); return; } LayoutUnit availWidth = desiredColumnWidth; LayoutUnit colGap = columnGap(); LayoutUnit colWidth = max(1, LayoutUnit(style()->columnWidth())); int colCount = max(1, style()->columnCount()); if (style()->hasAutoColumnWidth() && !style()->hasAutoColumnCount()) { desiredColumnCount = colCount; desiredColumnWidth = max(0, (availWidth - ((desiredColumnCount - 1) * colGap)) / desiredColumnCount); } else if (!style()->hasAutoColumnWidth() && style()->hasAutoColumnCount()) { desiredColumnCount = max(1, (availWidth + colGap) / (colWidth + colGap)); desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap; } else { desiredColumnCount = max(min(colCount, (availWidth + colGap) / (colWidth + colGap)), 1); desiredColumnWidth = ((availWidth + colGap) / desiredColumnCount) - colGap; } setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); } bool RenderBlock::requiresColumns(int desiredColumnCount) const { return firstChild() && (desiredColumnCount != 1 || !style()->hasAutoColumnWidth() || !style()->hasInlineColumnAxis()) && !firstChild()->isAnonymousColumnsBlock() && !firstChild()->isAnonymousColumnSpanBlock(); } void RenderBlock::setDesiredColumnCountAndWidth(int count, LayoutUnit width) { bool destroyColumns = !requiresColumns(count); if (destroyColumns) { if (hasColumns()) { delete gColumnInfoMap->take(this); setHasColumns(false); } } else { ColumnInfo* info; if (hasColumns()) info = gColumnInfoMap->get(this); else { if (!gColumnInfoMap) gColumnInfoMap = new ColumnInfoMap; info = new ColumnInfo; gColumnInfoMap->add(this, info); setHasColumns(true); } info->setDesiredColumnCount(count); info->setDesiredColumnWidth(width); info->setProgressionAxis(style()->hasInlineColumnAxis() ? ColumnInfo::InlineAxis : ColumnInfo::BlockAxis); } } LayoutUnit RenderBlock::desiredColumnWidth() const { if (!hasColumns()) return contentLogicalWidth(); return gColumnInfoMap->get(this)->desiredColumnWidth(); } unsigned RenderBlock::desiredColumnCount() const { if (!hasColumns()) return 1; return gColumnInfoMap->get(this)->desiredColumnCount(); } ColumnInfo* RenderBlock::columnInfo() const { if (!hasColumns()) return 0; return gColumnInfoMap->get(this); } unsigned RenderBlock::columnCount(ColumnInfo* colInfo) const { ASSERT(hasColumns()); ASSERT(gColumnInfoMap->get(this) == colInfo); return colInfo->columnCount(); } LayoutRect RenderBlock::columnRectAt(ColumnInfo* colInfo, unsigned index) const { ASSERT(hasColumns() && gColumnInfoMap->get(this) == colInfo); // Compute the appropriate rect based off our information. LayoutUnit colLogicalWidth = colInfo->desiredColumnWidth(); LayoutUnit colLogicalHeight = colInfo->columnHeight(); LayoutUnit colLogicalTop = borderBefore() + paddingBefore(); LayoutUnit colLogicalLeft = logicalLeftOffsetForContent(); int colGap = columnGap(); if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) { if (style()->isLeftToRightDirection()) colLogicalLeft += index * (colLogicalWidth + colGap); else colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap); } else colLogicalTop += index * (colLogicalHeight + colGap); if (isHorizontalWritingMode()) return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight); return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth); } bool RenderBlock::layoutColumns(bool hasSpecifiedPageLogicalHeight, LayoutUnit pageLogicalHeight, LayoutStateMaintainer& statePusher) { if (!hasColumns()) return false; // FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what // the distance between forced page breaks is so that we can avoid making the minimum column height too tall. ColumnInfo* colInfo = columnInfo(); if (!hasSpecifiedPageLogicalHeight) { LayoutUnit columnHeight = pageLogicalHeight; int minColumnCount = colInfo->forcedBreaks() + 1; int desiredColumnCount = colInfo->desiredColumnCount(); if (minColumnCount >= desiredColumnCount) { // The forced page breaks are in control of the balancing. Just set the column height to the // maximum page break distance. if (!pageLogicalHeight) { LayoutUnit distanceBetweenBreaks = max(colInfo->maximumDistanceBetweenForcedBreaks(), view()->layoutState()->pageLogicalOffset(borderBefore() + paddingBefore() + contentLogicalHeight()) - colInfo->forcedBreakOffset()); columnHeight = max(colInfo->minimumColumnHeight(), distanceBetweenBreaks); } } else if (contentLogicalHeight() > pageLogicalHeight * desiredColumnCount) { // Now that we know the intrinsic height of the columns, we have to rebalance them. columnHeight = max(colInfo->minimumColumnHeight(), ceilf((float)contentLogicalHeight() / desiredColumnCount)); } if (columnHeight && columnHeight != pageLogicalHeight) { statePusher.pop(); setEverHadLayout(true); layoutBlock(false, columnHeight); return true; } } if (pageLogicalHeight) colInfo->setColumnCountAndHeight(ceilf((float)contentLogicalHeight() / pageLogicalHeight), pageLogicalHeight); if (columnCount(colInfo)) { setLogicalHeight(borderBefore() + paddingBefore() + colInfo->columnHeight() + borderAfter() + paddingAfter() + scrollbarLogicalHeight()); m_overflow.clear(); } return false; } void RenderBlock::adjustPointToColumnContents(LayoutPoint& point) const { // Just bail if we have no columns. if (!hasColumns()) return; ColumnInfo* colInfo = columnInfo(); if (!columnCount(colInfo)) return; // Determine which columns we intersect. LayoutUnit colGap = columnGap(); LayoutUnit halfColGap = colGap / 2; LayoutPoint columnPoint(columnRectAt(colInfo, 0).location()); LayoutUnit logicalOffset = 0; for (unsigned i = 0; i < colInfo->columnCount(); i++) { // Add in half the column gap to the left and right of the rect. LayoutRect colRect = columnRectAt(colInfo, i); flipForWritingMode(colRect); if (isHorizontalWritingMode() == (colInfo->progressionAxis() == ColumnInfo::InlineAxis)) { LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { // FIXME: The clamping that follows is not completely right for right-to-left // content. // Clamp everything above the column to its top left. if (point.y() < gapAndColumnRect.y()) point = gapAndColumnRect.location(); // Clamp everything below the column to the next column's top left. If there is // no next column, this still maps to just after this column. else if (point.y() >= gapAndColumnRect.maxY()) { point = gapAndColumnRect.location(); point.move(0, gapAndColumnRect.height()); } // We're inside the column. Translate the x and y into our column coordinate space. if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) point.move(columnPoint.x() - colRect.x(), logicalOffset); else point.move((!style()->isFlippedBlocksWritingMode() ? logicalOffset : -logicalOffset) - colRect.x() + borderLeft() + paddingLeft(), 0); return; } // Move to the next position. logicalOffset += colInfo->progressionAxis() == ColumnInfo::InlineAxis ? colRect.height() : colRect.width(); } else { LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { // FIXME: The clamping that follows is not completely right for right-to-left // content. // Clamp everything above the column to its top left. if (point.x() < gapAndColumnRect.x()) point = gapAndColumnRect.location(); // Clamp everything below the column to the next column's top left. If there is // no next column, this still maps to just after this column. else if (point.x() >= gapAndColumnRect.maxX()) { point = gapAndColumnRect.location(); point.move(gapAndColumnRect.width(), 0); } // We're inside the column. Translate the x and y into our column coordinate space. if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) point.move(logicalOffset, columnPoint.y() - colRect.y()); else point.move(0, (!style()->isFlippedBlocksWritingMode() ? logicalOffset : -logicalOffset) - colRect.y() + borderTop() + paddingTop()); return; } // Move to the next position. logicalOffset += colInfo->progressionAxis() == ColumnInfo::InlineAxis ? colRect.width() : colRect.height(); } } } void RenderBlock::adjustRectForColumns(LayoutRect& r) const { // Just bail if we have no columns. if (!hasColumns()) return; ColumnInfo* colInfo = columnInfo(); // Determine which columns we intersect. unsigned colCount = columnCount(colInfo); if (!colCount) return; // Begin with a result rect that is empty. LayoutRect result; bool isHorizontal = isHorizontalWritingMode(); LayoutUnit beforeBorderPadding = borderBefore() + paddingBefore(); LayoutUnit colHeight = colInfo->columnHeight(); if (!colHeight) return; LayoutUnit startOffset = max(isHorizontal ? r.y() : r.x(), beforeBorderPadding); LayoutUnit endOffset = min(isHorizontal ? r.maxY() : r.maxX(), beforeBorderPadding + colCount * colHeight); // FIXME: Can overflow on fast/block/float/float-not-removed-from-next-sibling4.html, see https://bugs.webkit.org/show_bug.cgi?id=68744 unsigned startColumn = (startOffset - beforeBorderPadding) / colHeight; unsigned endColumn = (endOffset - beforeBorderPadding) / colHeight; if (startColumn == endColumn) { // The rect is fully contained within one column. Adjust for our offsets // and repaint only that portion. LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(); LayoutRect colRect = columnRectAt(colInfo, startColumn); LayoutRect repaintRect = r; if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) { if (isHorizontal) repaintRect.move(colRect.x() - logicalLeftOffset, - static_cast(startColumn) * colHeight); else repaintRect.move(- static_cast(startColumn) * colHeight, colRect.y() - logicalLeftOffset); } else { if (isHorizontal) repaintRect.move(0, colRect.y() - startColumn * colHeight - beforeBorderPadding); else repaintRect.move(colRect.x() - startColumn * colHeight - beforeBorderPadding, 0); } repaintRect.intersect(colRect); result.unite(repaintRect); } else { // We span multiple columns. We can just unite the start and end column to get the final // repaint rect. result.unite(columnRectAt(colInfo, startColumn)); result.unite(columnRectAt(colInfo, endColumn)); } r = result; } LayoutPoint RenderBlock::flipForWritingModeIncludingColumns(const LayoutPoint& point) const { ASSERT(hasColumns()); if (!hasColumns() || !style()->isFlippedBlocksWritingMode()) return point; ColumnInfo* colInfo = columnInfo(); LayoutUnit columnLogicalHeight = colInfo->columnHeight(); LayoutUnit expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight(); if (isHorizontalWritingMode()) return LayoutPoint(point.x(), expandedLogicalHeight - point.y()); return LayoutPoint(expandedLogicalHeight - point.x(), point.y()); } void RenderBlock::adjustStartEdgeForWritingModeIncludingColumns(LayoutRect& rect) const { ASSERT(hasColumns()); if (!hasColumns() || !style()->isFlippedBlocksWritingMode()) return; ColumnInfo* colInfo = columnInfo(); LayoutUnit columnLogicalHeight = colInfo->columnHeight(); LayoutUnit expandedLogicalHeight = borderBefore() + paddingBefore() + columnCount(colInfo) * columnLogicalHeight + borderAfter() + paddingAfter() + scrollbarLogicalHeight(); if (isHorizontalWritingMode()) rect.setY(expandedLogicalHeight - rect.maxY()); else rect.setX(expandedLogicalHeight - rect.maxX()); } void RenderBlock::adjustForColumns(LayoutSize& offset, const LayoutPoint& point) const { if (!hasColumns()) return; ColumnInfo* colInfo = columnInfo(); LayoutUnit logicalLeft = logicalLeftOffsetForContent(); size_t colCount = columnCount(colInfo); LayoutUnit colLogicalWidth = colInfo->desiredColumnWidth(); LayoutUnit colLogicalHeight = colInfo->columnHeight(); for (size_t i = 0; i < colCount; ++i) { // Compute the edges for a given column in the block progression direction. LayoutRect sliceRect = LayoutRect(logicalLeft, borderBefore() + paddingBefore() + i * colLogicalHeight, colLogicalWidth, colLogicalHeight); if (!isHorizontalWritingMode()) sliceRect = sliceRect.transposedRect(); LayoutUnit logicalOffset = i * colLogicalHeight; // Now we're in the same coordinate space as the point. See if it is inside the rectangle. if (isHorizontalWritingMode()) { if (point.y() >= sliceRect.y() && point.y() < sliceRect.maxY()) { if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) offset.expand(columnRectAt(colInfo, i).x() - logicalLeft, -logicalOffset); else offset.expand(0, columnRectAt(colInfo, i).y() - logicalOffset - borderBefore() - paddingBefore()); return; } } else { if (point.x() >= sliceRect.x() && point.x() < sliceRect.maxX()) { if (colInfo->progressionAxis() == ColumnInfo::InlineAxis) offset.expand(-logicalOffset, columnRectAt(colInfo, i).y() - logicalLeft); else offset.expand(columnRectAt(colInfo, i).x() - logicalOffset - borderBefore() - paddingBefore(), 0); return; } } } } void RenderBlock::computePreferredLogicalWidths() { ASSERT(preferredLogicalWidthsDirty()); updateFirstLetter(); RenderStyle* styleToUse = style(); if (!isTableCell() && styleToUse->logicalWidth().isFixed() && styleToUse->logicalWidth().value() > 0 && style()->marqueeBehavior() != MALTERNATE) m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = computeContentBoxLogicalWidth(styleToUse->logicalWidth().value()); else { m_minPreferredLogicalWidth = 0; m_maxPreferredLogicalWidth = 0; if (childrenInline()) computeInlinePreferredLogicalWidths(); else computeBlockPreferredLogicalWidths(); m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth); if (!styleToUse->autoWrap() && childrenInline()) { m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth; // A horizontal marquee with inline children has no minimum width. if (layer() && layer()->marquee() && layer()->marquee()->isHorizontal()) m_minPreferredLogicalWidth = 0; } int scrollbarWidth = 0; // FIXME: This should only be done for horizontal writing mode. // For vertical writing mode, this should check overflowX and use the horizontalScrollbarHeight. if (hasOverflowClip() && styleToUse->overflowY() == OSCROLL) { layer()->setHasVerticalScrollbar(true); scrollbarWidth = verticalScrollbarWidth(); m_maxPreferredLogicalWidth += scrollbarWidth; } if (isTableCell()) { Length w = toRenderTableCell(this)->styleOrColLogicalWidth(); if (w.isFixed() && w.value() > 0) { m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(w.value())); scrollbarWidth = 0; } } m_minPreferredLogicalWidth += scrollbarWidth; } if (styleToUse->logicalMinWidth().isFixed() && styleToUse->logicalMinWidth().value() > 0) { m_maxPreferredLogicalWidth = max(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(styleToUse->logicalMinWidth().value())); m_minPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(styleToUse->logicalMinWidth().value())); } if (styleToUse->logicalMaxWidth().isFixed()) { m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(styleToUse->logicalMaxWidth().value())); m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(styleToUse->logicalMaxWidth().value())); } LayoutUnit borderAndPadding = borderAndPaddingLogicalWidth(); m_minPreferredLogicalWidth += borderAndPadding; m_maxPreferredLogicalWidth += borderAndPadding; setPreferredLogicalWidthsDirty(false); } struct InlineMinMaxIterator { /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to inline min/max width calculations. Note the following about the way it walks: (1) Positioned content is skipped (since it does not contribute to min/max width of a block) (2) We do not drill into the children of floats or replaced elements, since you can't break in the middle of such an element. (3) Inline flows (e.g., , , ) are walked twice, since each side can have distinct borders/margin/padding that contribute to the min/max width. */ RenderObject* parent; RenderObject* current; bool endOfInline; InlineMinMaxIterator(RenderObject* p, bool end = false) :parent(p), current(p), endOfInline(end) {} RenderObject* next(); }; RenderObject* InlineMinMaxIterator::next() { RenderObject* result = 0; bool oldEndOfInline = endOfInline; endOfInline = false; while (current || current == parent) { if (!oldEndOfInline && (current == parent || (!current->isFloating() && !current->isReplaced() && !current->isPositioned()))) result = current->firstChild(); if (!result) { // We hit the end of our inline. (It was empty, e.g., .) if (!oldEndOfInline && current->isRenderInline()) { result = current; endOfInline = true; break; } while (current && current != parent) { result = current->nextSibling(); if (result) break; current = current->parent(); if (current && current != parent && current->isRenderInline()) { result = current; endOfInline = true; break; } } } if (!result) break; if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isRenderInline())) break; current = result; result = 0; } // Update our position. current = result; return current; } static int getBPMWidth(int childValue, Length cssUnit) { if (cssUnit.type() != Auto) return (cssUnit.isFixed() ? cssUnit.value() : childValue); return 0; } static int getBorderPaddingMargin(const RenderBoxModelObject* child, bool endOfInline) { RenderStyle* childStyle = child->style(); if (endOfInline) return getBPMWidth(child->marginEnd(), childStyle->marginEnd()) + getBPMWidth(child->paddingEnd(), childStyle->paddingEnd()) + child->borderEnd(); return getBPMWidth(child->marginStart(), childStyle->marginStart()) + getBPMWidth(child->paddingStart(), childStyle->paddingStart()) + child->borderStart(); } static inline void stripTrailingSpace(float& inlineMax, float& inlineMin, RenderObject* trailingSpaceChild) { if (trailingSpaceChild && trailingSpaceChild->isText()) { // Collapse away the trailing space at the end of a block. RenderText* t = toRenderText(trailingSpaceChild); const UChar space = ' '; const Font& font = t->style()->font(); // FIXME: This ignores first-line. float spaceWidth = font.width(RenderBlock::constructTextRun(t, font, &space, 1, t->style())); inlineMax -= spaceWidth + font.wordSpacing(); if (inlineMin > inlineMax) inlineMin = inlineMax; } } static inline void updatePreferredWidth(LayoutUnit& preferredWidth, float& result) { LayoutUnit snappedResult = ceiledLayoutUnit(result); preferredWidth = max(snappedResult, preferredWidth); } void RenderBlock::computeInlinePreferredLogicalWidths() { float inlineMax = 0; float inlineMin = 0; RenderStyle* styleToUse = style(); RenderBlock* containingBlock = this->containingBlock(); LayoutUnit cw = containingBlock ? containingBlock->contentLogicalWidth() : zeroLayoutUnit; // If we are at the start of a line, we want to ignore all white-space. // Also strip spaces if we previously had text that ended in a trailing space. bool stripFrontSpaces = true; RenderObject* trailingSpaceChild = 0; // Firefox and Opera will allow a table cell to grow to fit an image inside it under // very specific cirucumstances (in order to match common WinIE renderings). // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) bool allowImagesToBreak = !document()->inQuirksMode() || !isTableCell() || !styleToUse->logicalWidth().isIntrinsicOrAuto(); bool autoWrap, oldAutoWrap; autoWrap = oldAutoWrap = styleToUse->autoWrap(); InlineMinMaxIterator childIterator(this); bool addedTextIndent = false; // Only gets added in once. RenderObject* prevFloat = 0; while (RenderObject* child = childIterator.next()) { autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() : child->style()->autoWrap(); if (!child->isBR()) { // Step One: determine whether or not we need to go ahead and // terminate our current line. Each discrete chunk can become // the new min-width, if it is the widest chunk seen so far, and // it can also become the max-width. // Children fall into three categories: // (1) An inline flow object. These objects always have a min/max of 0, // and are included in the iteration solely so that their margins can // be added in. // // (2) An inline non-text non-flow object, e.g., an inline replaced element. // These objects can always be on a line by themselves, so in this situation // we need to go ahead and break the current line, and then add in our own // margins and min/max width on its own line, and then terminate the line. // // (3) A text object. Text runs can have breakable characters at the start, // the middle or the end. They may also lose whitespace off the front if // we're already ignoring whitespace. In order to compute accurate min-width // information, we need three pieces of information. // (a) the min-width of the first non-breakable run. Should be 0 if the text string // starts with whitespace. // (b) the min-width of the last non-breakable run. Should be 0 if the text string // ends with whitespace. // (c) the min/max width of the string (trimmed for whitespace). // // If the text string starts with whitespace, then we need to go ahead and // terminate our current line (unless we're already in a whitespace stripping // mode. // // If the text string has a breakable character in the middle, but didn't start // with whitespace, then we add the width of the first non-breakable run and // then end the current line. We then need to use the intermediate min/max width // values (if any of them are larger than our current min/max). We then look at // the width of the last non-breakable run and use that to start a new line // (unless we end in whitespace). RenderStyle* childStyle = child->style(); float childMin = 0; float childMax = 0; if (!child->isText()) { // Case (1) and (2). Inline replaced and inline flow elements. if (child->isRenderInline()) { // Add in padding/border/margin from the appropriate side of // the element. float bpm = getBorderPaddingMargin(toRenderInline(child), childIterator.endOfInline); childMin += bpm; childMax += bpm; inlineMin += childMin; inlineMax += childMax; child->setPreferredLogicalWidthsDirty(false); } else { // Inline replaced elts add in their margins to their min/max values. float margins = 0; Length startMargin = childStyle->marginStart(); Length endMargin = childStyle->marginEnd(); if (startMargin.isFixed()) margins += startMargin.value(); if (endMargin.isFixed()) margins += endMargin.value(); childMin += margins; childMax += margins; } } if (!child->isRenderInline() && !child->isText()) { // Case (2). Inline replaced elements and floats. // Go ahead and terminate the current line as far as // minwidth is concerned. childMin += child->minPreferredLogicalWidth(); childMax += child->maxPreferredLogicalWidth(); bool clearPreviousFloat; if (child->isFloating()) { clearPreviousFloat = (prevFloat && ((prevFloat->style()->floating() == LeftFloat && (childStyle->clear() & CLEFT)) || (prevFloat->style()->floating() == RightFloat && (childStyle->clear() & CRIGHT)))); prevFloat = child; } else clearPreviousFloat = false; bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; if ((canBreakReplacedElement && (autoWrap || oldAutoWrap)) || clearPreviousFloat) { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; } // If we're supposed to clear the previous float, then terminate maxwidth as well. if (clearPreviousFloat) { updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); inlineMax = 0; } // Add in text-indent. This is added in only once. LayoutUnit ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = styleToUse->textIndent().calcMinValue(cw); childMin += ti; childMax += ti; } // Add our width to the max. inlineMax += childMax; if (!autoWrap || !canBreakReplacedElement) { if (child->isFloating()) updatePreferredWidth(m_minPreferredLogicalWidth, childMin); else inlineMin += childMin; } else { // Now check our line. updatePreferredWidth(m_minPreferredLogicalWidth, childMin); // Now start a new line. inlineMin = 0; } // We are no longer stripping whitespace at the start of // a line. if (!child->isFloating()) { stripFrontSpaces = false; trailingSpaceChild = 0; } } else if (child->isText()) { // Case (3). Text. RenderText* t = toRenderText(child); if (t->isWordBreak()) { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; continue; } if (t->style()->hasTextCombine() && t->isCombineText()) toRenderCombineText(t)->combineText(); // Determine if we have a breakable character. Pass in // whether or not we should ignore any spaces at the front // of the string. If those are going to be stripped out, // then they shouldn't be considered in the breakable char // check. bool hasBreakableChar, hasBreak; float beginMin, endMin; bool beginWS, endWS; float beginMax, endMax; t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS, hasBreakableChar, hasBreak, beginMax, endMax, childMin, childMax, stripFrontSpaces); // This text object will not be rendered, but it may still provide a breaking opportunity. if (!hasBreak && childMax == 0) { if (autoWrap && (beginWS || endWS)) { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; } continue; } if (stripFrontSpaces) trailingSpaceChild = child; else trailingSpaceChild = 0; // Add in text-indent. This is added in only once. LayoutUnit ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = styleToUse->textIndent().calcMinValue(cw); childMin+=ti; beginMin += ti; childMax+=ti; beginMax += ti; } // If we have no breakable characters at all, // then this is the easy case. We add ourselves to the current // min and max and continue. if (!hasBreakableChar) { inlineMin += childMin; } else { // We have a breakable character. Now we need to know if // we start and end with whitespace. if (beginWS) // Go ahead and end the current line. updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); else { inlineMin += beginMin; updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); childMin -= ti; } inlineMin = childMin; if (endWS) { // We end in whitespace, which means we can go ahead // and end our current line. updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = 0; } else { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); inlineMin = endMin; } } if (hasBreak) { inlineMax += beginMax; updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); updatePreferredWidth(m_maxPreferredLogicalWidth, childMax); inlineMax = endMax; } else inlineMax += childMax; } // Ignore spaces after a list marker. if (child->isListMarker()) stripFrontSpaces = true; } else { updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); inlineMin = inlineMax = 0; stripFrontSpaces = true; trailingSpaceChild = 0; } oldAutoWrap = autoWrap; } if (styleToUse->collapseWhiteSpace()) stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); updatePreferredWidth(m_minPreferredLogicalWidth, inlineMin); updatePreferredWidth(m_maxPreferredLogicalWidth, inlineMax); } // Use a very large value (in effect infinite). #define BLOCK_MAX_WIDTH 15000 void RenderBlock::computeBlockPreferredLogicalWidths() { RenderStyle* styleToUse = style(); bool nowrap = styleToUse->whiteSpace() == NOWRAP; RenderObject* child = firstChild(); RenderBlock* containingBlock = this->containingBlock(); LayoutUnit floatLeftWidth = 0, floatRightWidth = 0; while (child) { // Positioned children don't affect the min/max width if (child->isPositioned()) { child = child->nextSibling(); continue; } RenderStyle* childStyle = child->style(); if (child->isFloating() || (child->isBox() && toRenderBox(child)->avoidsFloats())) { LayoutUnit floatTotalWidth = floatLeftWidth + floatRightWidth; if (childStyle->clear() & CLEFT) { m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth); floatLeftWidth = 0; } if (childStyle->clear() & CRIGHT) { m_maxPreferredLogicalWidth = max(floatTotalWidth, m_maxPreferredLogicalWidth); floatRightWidth = 0; } } // A margin basically has three types: fixed, percentage, and auto (variable). // Auto and percentage margins simply become 0 when computing min/max width. // Fixed margins can be added in as is. Length startMarginLength = childStyle->marginStartUsing(styleToUse); Length endMarginLength = childStyle->marginEndUsing(styleToUse); LayoutUnit margin = 0; LayoutUnit marginStart = 0; LayoutUnit marginEnd = 0; if (startMarginLength.isFixed()) marginStart += startMarginLength.value(); if (endMarginLength.isFixed()) marginEnd += endMarginLength.value(); margin = marginStart + marginEnd; LayoutUnit childMinPreferredLogicalWidth, childMaxPreferredLogicalWidth; if (child->isBox() && child->isHorizontalWritingMode() != isHorizontalWritingMode()) { RenderBox* childBox = toRenderBox(child); LayoutUnit oldHeight = childBox->logicalHeight(); childBox->setLogicalHeight(childBox->borderAndPaddingLogicalHeight()); childBox->computeLogicalHeight(); childMinPreferredLogicalWidth = childMaxPreferredLogicalWidth = childBox->logicalHeight(); childBox->setLogicalHeight(oldHeight); } else { childMinPreferredLogicalWidth = child->minPreferredLogicalWidth(); childMaxPreferredLogicalWidth = child->maxPreferredLogicalWidth(); } LayoutUnit w = childMinPreferredLogicalWidth + margin; m_minPreferredLogicalWidth = max(w, m_minPreferredLogicalWidth); // IE ignores tables for calculation of nowrap. Makes some sense. if (nowrap && !child->isTable()) m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth); w = childMaxPreferredLogicalWidth + margin; if (!child->isFloating()) { if (child->isBox() && toRenderBox(child)->avoidsFloats()) { // Determine a left and right max value based off whether or not the floats can fit in the // margins of the object. For negative margins, we will attempt to overlap the float if the negative margin // is smaller than the float width. bool ltr = containingBlock ? containingBlock->style()->isLeftToRightDirection() : styleToUse->isLeftToRightDirection(); LayoutUnit marginLogicalLeft = ltr ? marginStart : marginEnd; LayoutUnit marginLogicalRight = ltr ? marginEnd : marginStart; LayoutUnit maxLeft = marginLogicalLeft > 0 ? max(floatLeftWidth, marginLogicalLeft) : floatLeftWidth + marginLogicalLeft; LayoutUnit maxRight = marginLogicalRight > 0 ? max(floatRightWidth, marginLogicalRight) : floatRightWidth + marginLogicalRight; w = childMaxPreferredLogicalWidth + maxLeft + maxRight; w = max(w, floatLeftWidth + floatRightWidth); } else m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth); floatLeftWidth = floatRightWidth = 0; } if (child->isFloating()) { if (styleToUse->floating() == LeftFloat) floatLeftWidth += w; else floatRightWidth += w; } else m_maxPreferredLogicalWidth = max(w, m_maxPreferredLogicalWidth); child = child->nextSibling(); } // Always make sure these values are non-negative. m_minPreferredLogicalWidth = max(0, m_minPreferredLogicalWidth); m_maxPreferredLogicalWidth = max(0, m_maxPreferredLogicalWidth); m_maxPreferredLogicalWidth = max(floatLeftWidth + floatRightWidth, m_maxPreferredLogicalWidth); } bool RenderBlock::hasLineIfEmpty() const { if (!node()) return false; if (node()->rendererIsEditable() && node()->rootEditableElement() == node()) return true; if (node()->isShadowRoot() && (node()->shadowHost()->hasTagName(inputTag))) return true; return false; } LayoutUnit RenderBlock::lineHeight(bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && linePositionMode == PositionOnContainingLine) return RenderBox::lineHeight(firstLine, direction, linePositionMode); if (firstLine && document()->usesFirstLineRules()) { RenderStyle* s = style(firstLine); if (s != style()) return s->computedLineHeight(); } if (m_lineHeight == -1) m_lineHeight = style()->computedLineHeight(); return m_lineHeight; } LayoutUnit RenderBlock::baselinePosition(FontBaseline baselineType, bool firstLine, LineDirectionMode direction, LinePositionMode linePositionMode) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && linePositionMode == PositionOnContainingLine) { // For "leaf" theme objects, let the theme decide what the baseline position is. // FIXME: Might be better to have a custom CSS property instead, so that if the theme // is turned off, checkboxes/radios will still have decent baselines. // FIXME: Need to patch form controls to deal with vertical lines. if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance())) return theme()->baselinePosition(this); // CSS2.1 states that the baseline of an inline block is the baseline of the last line box in // the normal flow. We make an exception for marquees, since their baselines are meaningless // (the content inside them moves). This matches WinIE as well, which just bottom-aligns them. // We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled // vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside // of our content box. bool ignoreBaseline = (layer() && (layer()->marquee() || (direction == HorizontalLine ? (layer()->verticalScrollbar() || layer()->scrollYOffset() != 0) : (layer()->horizontalScrollbar() || layer()->scrollXOffset() != 0)))) || (isWritingModeRoot() && !isRubyRun()); int baselinePos = ignoreBaseline ? LayoutUnit(-1) : lastLineBoxBaseline(); int bottomOfContent = direction == HorizontalLine ? borderTop() + paddingTop() + contentHeight() : borderRight() + paddingRight() + contentWidth(); if (baselinePos != -1 && baselinePos <= bottomOfContent) return direction == HorizontalLine ? marginTop() + baselinePos : marginRight() + baselinePos; return RenderBox::baselinePosition(baselineType, firstLine, direction, linePositionMode); } const FontMetrics& fontMetrics = style(firstLine)->fontMetrics(); return fontMetrics.ascent(baselineType) + (lineHeight(firstLine, direction, linePositionMode) - fontMetrics.height()) / 2; } LayoutUnit RenderBlock::firstLineBoxBaseline() const { if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun())) return -1; if (childrenInline()) { if (firstLineBox()) return firstLineBox()->logicalTop() + style(true)->fontMetrics().ascent(firstRootBox()->baselineType()); else return -1; } else { for (RenderBox* curr = firstChildBox(); curr; curr = curr->nextSiblingBox()) { if (!curr->isFloatingOrPositioned()) { LayoutUnit result = curr->firstLineBoxBaseline(); if (result != -1) return curr->logicalTop() + result; // Translate to our coordinate space. } } } return -1; } LayoutUnit RenderBlock::lastLineBoxBaseline() const { if (!isBlockFlow() || (isWritingModeRoot() && !isRubyRun())) return -1; LineDirectionMode lineDirection = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; if (childrenInline()) { if (!firstLineBox() && hasLineIfEmpty()) { const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics(); return fontMetrics.ascent() + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight()); } if (lastLineBox()) return lastLineBox()->logicalTop() + style(lastLineBox() == firstLineBox())->fontMetrics().ascent(lastRootBox()->baselineType()); return -1; } else { bool haveNormalFlowChild = false; for (RenderBox* curr = lastChildBox(); curr; curr = curr->previousSiblingBox()) { if (!curr->isFloatingOrPositioned()) { haveNormalFlowChild = true; LayoutUnit result = curr->lastLineBoxBaseline(); if (result != -1) return curr->logicalTop() + result; // Translate to our coordinate space. } } if (!haveNormalFlowChild && hasLineIfEmpty()) { const FontMetrics& fontMetrics = firstLineStyle()->fontMetrics(); return fontMetrics.ascent() + (lineHeight(true, lineDirection, PositionOfInteriorLineBoxes) - fontMetrics.height()) / 2 + (lineDirection == HorizontalLine ? borderTop() + paddingTop() : borderRight() + paddingRight()); } } return -1; } bool RenderBlock::containsNonZeroBidiLevel() const { for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { for (InlineBox* box = root->firstLeafChild(); box; box = box->nextLeafChild()) { if (box->bidiLevel()) return true; } } return false; } RenderBlock* RenderBlock::firstLineBlock() const { RenderBlock* firstLineBlock = const_cast(this); bool hasPseudo = false; while (true) { hasPseudo = firstLineBlock->style()->hasPseudoStyle(FIRST_LINE); if (hasPseudo) break; RenderObject* parentBlock = firstLineBlock->parent(); if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() || !parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow()) break; ASSERT(parentBlock->isRenderBlock()); firstLineBlock = toRenderBlock(parentBlock); } if (!hasPseudo) return 0; return firstLineBlock; } static RenderStyle* styleForFirstLetter(RenderObject* firstLetterBlock, RenderObject* firstLetterContainer) { RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, firstLetterContainer->firstLineStyle()); // Force inline display (except for floating first-letters). pseudoStyle->setDisplay(pseudoStyle->isFloating() ? BLOCK : INLINE); // CSS2 says first-letter can't be positioned. pseudoStyle->setPosition(StaticPosition); return pseudoStyle; } // CSS 2.1 http://www.w3.org/TR/CSS21/selector.html#first-letter // "Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps), "close" (Pe), // "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or follows the first letter should be included" static inline bool isPunctuationForFirstLetter(UChar c) { CharCategory charCategory = category(c); return charCategory == Punctuation_Open || charCategory == Punctuation_Close || charCategory == Punctuation_InitialQuote || charCategory == Punctuation_FinalQuote || charCategory == Punctuation_Other; } static inline bool shouldSkipForFirstLetter(UChar c) { return isSpaceOrNewline(c) || c == noBreakSpace || isPunctuationForFirstLetter(c); } static inline RenderObject* findFirstLetterBlock(RenderBlock* start) { RenderObject* firstLetterBlock = start; while (true) { bool canHaveFirstLetterRenderer = firstLetterBlock->style()->hasPseudoStyle(FIRST_LETTER) && canHaveGeneratedChildren(firstLetterBlock); if (canHaveFirstLetterRenderer) return firstLetterBlock; RenderObject* parentBlock = firstLetterBlock->parent(); if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock || !parentBlock->isBlockFlow()) return 0; firstLetterBlock = parentBlock; } return 0; } void RenderBlock::updateFirstLetter() { if (!document()->usesFirstLetterRules()) return; // Don't recur if (style()->styleType() == FIRST_LETTER) return; // FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find // an efficient way to check for that situation though before implementing anything. RenderObject* firstLetterBlock = findFirstLetterBlock(this); if (!firstLetterBlock) return; // Drill into inlines looking for our first text child. RenderObject* currChild = firstLetterBlock->firstChild(); while (currChild) { if (currChild->isText()) break; if (currChild->isListMarker()) currChild = currChild->nextSibling(); else if (currChild->isFloatingOrPositioned()) { if (currChild->style()->styleType() == FIRST_LETTER) { currChild = currChild->firstChild(); break; } currChild = currChild->nextSibling(); } else if (currChild->isReplaced() || currChild->isRenderButton() || currChild->isMenuList()) break; else if (currChild->style()->hasPseudoStyle(FIRST_LETTER) && canHaveGeneratedChildren(currChild)) { // We found a lower-level node with first-letter, which supersedes the higher-level style firstLetterBlock = currChild; currChild = currChild->firstChild(); } else currChild = currChild->firstChild(); } if (!currChild) return; // If the child already has style, then it has already been created, so we just want // to update it. if (currChild->parent()->style()->styleType() == FIRST_LETTER) { RenderObject* firstLetter = currChild->parent(); RenderObject* firstLetterContainer = firstLetter->parent(); RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer); ASSERT(firstLetter->isFloating() || firstLetter->isInline()); if (Node::diff(firstLetter->style(), pseudoStyle) == Node::Detach) { // The first-letter renderer needs to be replaced. Create a new renderer of the right type. RenderObject* newFirstLetter; if (pseudoStyle->display() == INLINE) newFirstLetter = new (renderArena()) RenderInline(document()); else newFirstLetter = new (renderArena()) RenderBlock(document()); newFirstLetter->setStyle(pseudoStyle); // Move the first letter into the new renderer. LayoutStateDisabler layoutStateDisabler(view()); while (RenderObject* child = firstLetter->firstChild()) { if (child->isText()) toRenderText(child)->removeAndDestroyTextBoxes(); firstLetter->removeChild(child); newFirstLetter->addChild(child, 0); } RenderTextFragment* remainingText = 0; RenderObject* nextSibling = firstLetter->nextSibling(); RenderObject* remainingTextObject = toRenderBoxModelObject(firstLetter)->firstLetterRemainingText(); if (remainingTextObject && remainingTextObject->isText() && toRenderText(remainingTextObject)->isTextFragment()) remainingText = toRenderTextFragment(remainingTextObject); if (remainingText) { ASSERT(remainingText->isAnonymous() || remainingText->node()->renderer() == remainingText); // Replace the old renderer with the new one. remainingText->setFirstLetter(newFirstLetter); toRenderBoxModelObject(newFirstLetter)->setFirstLetterRemainingText(remainingText); } firstLetter->destroy(); firstLetter = newFirstLetter; firstLetterContainer->addChild(firstLetter, nextSibling); } else firstLetter->setStyle(pseudoStyle); for (RenderObject* genChild = firstLetter->firstChild(); genChild; genChild = genChild->nextSibling()) { if (genChild->isText()) genChild->setStyle(pseudoStyle); } return; } if (!currChild->isText() || currChild->isBR()) return; // If the child does not already have style, we create it here. RenderObject* firstLetterContainer = currChild->parent(); // Our layout state is not valid for the repaints we are going to trigger by // adding and removing children of firstLetterContainer. LayoutStateDisabler layoutStateDisabler(view()); RenderText* textObj = toRenderText(currChild); // Create our pseudo style now that we have our firstLetterContainer determined. RenderStyle* pseudoStyle = styleForFirstLetter(firstLetterBlock, firstLetterContainer); RenderObject* firstLetter = 0; if (pseudoStyle->display() == INLINE) firstLetter = new (renderArena()) RenderInline(document()); else firstLetter = new (renderArena()) RenderBlock(document()); firstLetter->setStyle(pseudoStyle); firstLetterContainer->addChild(firstLetter, currChild); // The original string is going to be either a generated content string or a DOM node's // string. We want the original string before it got transformed in case first-letter has // no text-transform or a different text-transform applied to it. RefPtr oldText = textObj->originalText(); ASSERT(oldText); if (oldText && oldText->length() > 0) { unsigned length = 0; // Account for leading spaces and punctuation. while (length < oldText->length() && shouldSkipForFirstLetter((*oldText)[length])) length++; // Account for first letter. length++; // Keep looking for whitespace and allowed punctuation, but avoid // accumulating just whitespace into the :first-letter. for (unsigned scanLength = length; scanLength < oldText->length(); ++scanLength) { UChar c = (*oldText)[scanLength]; if (!shouldSkipForFirstLetter(c)) break; if (isPunctuationForFirstLetter(c)) length = scanLength + 1; } // Construct a text fragment for the text after the first letter. // This text fragment might be empty. RenderTextFragment* remainingText = new (renderArena()) RenderTextFragment(textObj->node() ? textObj->node() : textObj->document(), oldText.get(), length, oldText->length() - length); remainingText->setStyle(textObj->style()); if (remainingText->node()) remainingText->node()->setRenderer(remainingText); firstLetterContainer->addChild(remainingText, textObj); firstLetterContainer->removeChild(textObj); remainingText->setFirstLetter(firstLetter); toRenderBoxModelObject(firstLetter)->setFirstLetterRemainingText(remainingText); // construct text fragment for the first letter RenderTextFragment* letter = new (renderArena()) RenderTextFragment(remainingText->node() ? remainingText->node() : remainingText->document(), oldText.get(), 0, length); letter->setStyle(pseudoStyle); firstLetter->addChild(letter); textObj->destroy(); } } // Helper methods for obtaining the last line, computing line counts and heights for line counts // (crawling into blocks). static bool shouldCheckLines(RenderObject* obj) { return !obj->isFloatingOrPositioned() && !obj->isRunIn() && obj->isBlockFlow() && obj->style()->height().isAuto() && (!obj->isDeprecatedFlexibleBox() || obj->style()->boxOrient() == VERTICAL); } static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (count++ == i) return box; } } else { for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { if (shouldCheckLines(obj)) { RootInlineBox *box = getLineAtIndex(toRenderBlock(obj), i, count); if (box) return box; } } } } return 0; } static int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (++count == l) return box->lineBottom() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : zeroLayoutUnit); } } else { RenderBox* normalFlowChildWithoutLines = 0; for (RenderBox* obj = block->firstChildBox(); obj; obj = obj->nextSiblingBox()) { if (shouldCheckLines(obj)) { int result = getHeightForLineCount(toRenderBlock(obj), l, false, count); if (result != -1) return result + obj->y() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : zeroLayoutUnit); } else if (!obj->isFloatingOrPositioned() && !obj->isRunIn()) normalFlowChildWithoutLines = obj; } if (normalFlowChildWithoutLines && l == 0) return normalFlowChildWithoutLines->y() + normalFlowChildWithoutLines->height(); } } return -1; } RootInlineBox* RenderBlock::lineAtIndex(int i) { int count = 0; return getLineAtIndex(this, i, count); } int RenderBlock::lineCount() { int count = 0; if (style()->visibility() == VISIBLE) { if (childrenInline()) for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) count++; else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) count += toRenderBlock(obj)->lineCount(); } return count; } int RenderBlock::heightForLineCount(int l) { int count = 0; return getHeightForLineCount(this, l, true, count); } void RenderBlock::adjustForBorderFit(LayoutUnit x, LayoutUnit& left, LayoutUnit& right) const { // We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting // for either overflow or translations via relative positioning. if (style()->visibility() == VISIBLE) { if (childrenInline()) { for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) { if (box->firstChild()) left = min(left, x + static_cast(box->firstChild()->x())); if (box->lastChild()) right = max(right, x + static_cast(ceilf(box->lastChild()->logicalRight()))); } } else { for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) { if (!obj->isFloatingOrPositioned()) { if (obj->isBlockFlow() && !obj->hasOverflowClip()) toRenderBlock(obj)->adjustForBorderFit(x + obj->x(), left, right); else if (obj->style()->visibility() == VISIBLE) { // We are a replaced element or some kind of non-block-flow object. left = min(left, x + obj->x()); right = max(right, x + obj->x() + obj->width()); } } } } if (m_floatingObjects) { const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set(); FloatingObjectSetIterator end = floatingObjectSet.end(); for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) { FloatingObject* r = *it; // Only examine the object if our m_shouldPaint flag is set. if (r->m_shouldPaint) { LayoutUnit floatLeft = xPositionForFloatIncludingMargin(r) - r->m_renderer->x(); LayoutUnit floatRight = floatLeft + r->m_renderer->width(); left = min(left, floatLeft); right = max(right, floatRight); } } } } } void RenderBlock::borderFitAdjust(LayoutRect& rect) const { if (style()->borderFit() == BorderFitBorder) return; // Walk any normal flow lines to snugly fit. LayoutUnit left = numeric_limits::max(); LayoutUnit right = numeric_limits::min(); LayoutUnit oldWidth = rect.width(); adjustForBorderFit(0, left, right); if (left != numeric_limits::max()) { left = min(left, oldWidth - (borderRight() + paddingRight())); left -= (borderLeft() + paddingLeft()); if (left > 0) { rect.move(left, 0); rect.expand(-left, 0); } } if (right != numeric_limits::min()) { right = max(right, borderLeft() + paddingLeft()); right += (borderRight() + paddingRight()); if (right < oldWidth) rect.expand(-(oldWidth - right), 0); } } void RenderBlock::clearTruncation() { if (style()->visibility() == VISIBLE) { if (childrenInline() && hasMarkupTruncation()) { setHasMarkupTruncation(false); for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) box->clearTruncation(); } else { for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) { if (shouldCheckLines(obj)) toRenderBlock(obj)->clearTruncation(); } } } } void RenderBlock::setMaxMarginBeforeValues(LayoutUnit pos, LayoutUnit neg) { if (!m_rareData) { if (pos == RenderBlockRareData::positiveMarginBeforeDefault(this) && neg == RenderBlockRareData::negativeMarginBeforeDefault(this)) return; m_rareData = adoptPtr(new RenderBlockRareData(this)); } m_rareData->m_margins.setPositiveMarginBefore(pos); m_rareData->m_margins.setNegativeMarginBefore(neg); } void RenderBlock::setMaxMarginAfterValues(LayoutUnit pos, LayoutUnit neg) { if (!m_rareData) { if (pos == RenderBlockRareData::positiveMarginAfterDefault(this) && neg == RenderBlockRareData::negativeMarginAfterDefault(this)) return; m_rareData = adoptPtr(new RenderBlockRareData(this)); } m_rareData->m_margins.setPositiveMarginAfter(pos); m_rareData->m_margins.setNegativeMarginAfter(neg); } void RenderBlock::setPaginationStrut(LayoutUnit strut) { if (!m_rareData) { if (!strut) return; m_rareData = adoptPtr(new RenderBlockRareData(this)); } m_rareData->m_paginationStrut = strut; } void RenderBlock::setPageLogicalOffset(int logicalOffset) { if (!m_rareData) { if (!logicalOffset) return; m_rareData = adoptPtr(new RenderBlockRareData(this)); } m_rareData->m_pageLogicalOffset = logicalOffset; } void RenderBlock::absoluteRects(Vector& rects, const LayoutPoint& accumulatedOffset) const { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (isAnonymousBlockContinuation()) { // FIXME: This is wrong for block-flows that are horizontal. // https://bugs.webkit.org/show_bug.cgi?id=46781 rects.append(pixelSnappedIntRect(accumulatedOffset.x(), accumulatedOffset.y() - collapsedMarginBefore(), width(), height() + collapsedMarginBefore() + collapsedMarginAfter())); continuation()->absoluteRects(rects, accumulatedOffset - toLayoutSize(location() + inlineElementContinuation()->containingBlock()->location())); } else rects.append(pixelSnappedIntRect(accumulatedOffset, size())); } void RenderBlock::absoluteQuads(Vector& quads, bool* wasFixed) const { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (isAnonymousBlockContinuation()) { // FIXME: This is wrong for block-flows that are horizontal. // https://bugs.webkit.org/show_bug.cgi?id=46781 FloatRect localRect(0, -collapsedMarginBefore(), width(), height() + collapsedMarginBefore() + collapsedMarginAfter()); quads.append(localToAbsoluteQuad(localRect, false, wasFixed)); continuation()->absoluteQuads(quads, wasFixed); } else quads.append(RenderBox::localToAbsoluteQuad(FloatRect(0, 0, width(), height()), false, wasFixed)); } LayoutRect RenderBlock::rectWithOutlineForRepaint(RenderBoxModelObject* repaintContainer, LayoutUnit outlineWidth) const { LayoutRect r(RenderBox::rectWithOutlineForRepaint(repaintContainer, outlineWidth)); if (isAnonymousBlockContinuation()) r.inflateY(collapsedMarginBefore()); // FIXME: This is wrong for block-flows that are horizontal. return r; } RenderObject* RenderBlock::hoverAncestor() const { return isAnonymousBlockContinuation() ? continuation() : RenderBox::hoverAncestor(); } void RenderBlock::updateDragState(bool dragOn) { RenderBox::updateDragState(dragOn); if (continuation()) continuation()->updateDragState(dragOn); } RenderStyle* RenderBlock::outlineStyleForRepaint() const { return isAnonymousBlockContinuation() ? continuation()->style() : style(); } void RenderBlock::childBecameNonInline(RenderObject*) { makeChildrenNonInline(); if (isAnonymousBlock() && parent() && parent()->isRenderBlock()) toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); // |this| may be dead here } void RenderBlock::updateHitTestResult(HitTestResult& result, const LayoutPoint& point) { if (result.innerNode()) return; Node* n = node(); if (isAnonymousBlockContinuation()) // We are in the margins of block elements that are part of a continuation. In // this case we're actually still inside the enclosing element that was // split. Go ahead and set our inner node accordingly. n = continuation()->node(); if (n) { result.setInnerNode(n); if (!result.innerNonSharedNode()) result.setInnerNonSharedNode(n); result.setLocalPoint(point); } } LayoutRect RenderBlock::localCaretRect(InlineBox* inlineBox, int caretOffset, LayoutUnit* extraWidthToEndOfLine) { // Do the normal calculation in most cases. if (firstChild()) return RenderBox::localCaretRect(inlineBox, caretOffset, extraWidthToEndOfLine); // This is a special case: // The element is not an inline element, and it's empty. So we have to // calculate a fake position to indicate where objects are to be inserted. // FIXME: This does not take into account either :first-line or :first-letter // However, as soon as some content is entered, the line boxes will be // constructed and this kludge is not called any more. So only the caret size // of an empty :first-line'd block is wrong. I think we can live with that. RenderStyle* currentStyle = firstLineStyle(); LayoutUnit height = lineHeight(true, currentStyle->isHorizontalWritingMode() ? HorizontalLine : VerticalLine); enum CaretAlignment { alignLeft, alignRight, alignCenter }; CaretAlignment alignment = alignLeft; switch (currentStyle->textAlign()) { case TAAUTO: case JUSTIFY: if (!currentStyle->isLeftToRightDirection()) alignment = alignRight; break; case LEFT: case WEBKIT_LEFT: break; case CENTER: case WEBKIT_CENTER: alignment = alignCenter; break; case RIGHT: case WEBKIT_RIGHT: alignment = alignRight; break; case TASTART: if (!currentStyle->isLeftToRightDirection()) alignment = alignRight; break; case TAEND: if (currentStyle->isLeftToRightDirection()) alignment = alignRight; break; } LayoutUnit x = borderLeft() + paddingLeft(); LayoutUnit w = width(); switch (alignment) { case alignLeft: break; case alignCenter: x = (x + w - (borderRight() + paddingRight())) / 2; break; case alignRight: x = w - (borderRight() + paddingRight()) - caretWidth; break; } if (extraWidthToEndOfLine) { if (isRenderBlock()) { *extraWidthToEndOfLine = w - (x + caretWidth); } else { // FIXME: This code looks wrong. // myRight and containerRight are set up, but then clobbered. // So *extraWidthToEndOfLine will always be 0 here. LayoutUnit myRight = x + caretWidth; // FIXME: why call localToAbsoluteForContent() twice here, too? FloatPoint absRightPoint = localToAbsolute(FloatPoint(myRight, 0)); LayoutUnit containerRight = containingBlock()->x() + containingBlockLogicalWidthForContent(); FloatPoint absContainerPoint = localToAbsolute(FloatPoint(containerRight, 0)); *extraWidthToEndOfLine = absContainerPoint.x() - absRightPoint.x(); } } LayoutUnit y = paddingTop() + borderTop(); return LayoutRect(x, y, caretWidth, height); } void RenderBlock::addFocusRingRects(Vector& rects, const LayoutPoint& additionalOffset) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (inlineElementContinuation()) { // FIXME: This check really isn't accurate. bool nextInlineHasLineBox = inlineElementContinuation()->firstLineBox(); // FIXME: This is wrong. The principal renderer may not be the continuation preceding this block. // FIXME: This is wrong for block-flows that are horizontal. // https://bugs.webkit.org/show_bug.cgi?id=46781 bool prevInlineHasLineBox = toRenderInline(inlineElementContinuation()->node()->renderer())->firstLineBox(); float topMargin = prevInlineHasLineBox ? collapsedMarginBefore() : static_cast(0); float bottomMargin = nextInlineHasLineBox ? collapsedMarginAfter() : static_cast(0); LayoutRect rect(additionalOffset.x(), additionalOffset.y() - topMargin, width(), height() + topMargin + bottomMargin); if (!rect.isEmpty()) rects.append(pixelSnappedIntRect(rect)); } else if (width() && height()) rects.append(pixelSnappedIntRect(additionalOffset, size())); if (!hasOverflowClip() && !hasControlClip()) { for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { LayoutUnit top = max(curr->lineTop(), curr->top()); LayoutUnit bottom = min(curr->lineBottom(), curr->top() + curr->height()); LayoutRect rect(additionalOffset.x() + curr->x(), additionalOffset.y() + top, curr->width(), bottom - top); if (!rect.isEmpty()) rects.append(pixelSnappedIntRect(rect)); } for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) { if (!curr->isText() && !curr->isListMarker() && curr->isBox()) { RenderBox* box = toRenderBox(curr); FloatPoint pos; // FIXME: This doesn't work correctly with transforms. if (box->layer()) pos = curr->localToAbsolute(); else pos = FloatPoint(additionalOffset.x() + box->x(), additionalOffset.y() + box->y()); box->addFocusRingRects(rects, flooredLayoutPoint(pos)); } } } if (inlineElementContinuation()) inlineElementContinuation()->addFocusRingRects(rects, flooredLayoutPoint(additionalOffset + inlineElementContinuation()->containingBlock()->location() - location())); } RenderBlock* RenderBlock::createAnonymousBlock(bool isFlexibleBox) const { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); RenderBlock* newBox = 0; if (isFlexibleBox) { newStyle->setDisplay(BOX); newBox = new (renderArena()) RenderDeprecatedFlexibleBox(document() /* anonymous box */); } else { newStyle->setDisplay(BLOCK); newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); } newBox->setStyle(newStyle.release()); return newBox; } RenderBlock* RenderBlock::createAnonymousBlockWithSameTypeAs(RenderBlock* otherAnonymousBlock) const { if (otherAnonymousBlock->isAnonymousColumnsBlock()) return createAnonymousColumnsBlock(); if (otherAnonymousBlock->isAnonymousColumnSpanBlock()) return createAnonymousColumnSpanBlock(); return createAnonymousBlock(otherAnonymousBlock->style()->display() == BOX); } RenderBlock* RenderBlock::createAnonymousColumnsBlock() const { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); newStyle->inheritColumnPropertiesFrom(style()); newStyle->setDisplay(BLOCK); RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); newBox->setStyle(newStyle.release()); return newBox; } RenderBlock* RenderBlock::createAnonymousColumnSpanBlock() const { RefPtr newStyle = RenderStyle::createAnonymousStyle(style()); newStyle->setColumnSpan(ColumnSpanAll); newStyle->setDisplay(BLOCK); RenderBlock* newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); newBox->setStyle(newStyle.release()); return newBox; } bool RenderBlock::hasNextPage(LayoutUnit logicalOffset, PageBoundaryRule pageBoundaryRule) const { ASSERT(view()->layoutState() && view()->layoutState()->isPaginated()); if (!inRenderFlowThread()) return true; // Printing and multi-column both make new pages to accommodate content. // See if we're in the last region. LayoutUnit pageOffset = offsetFromLogicalTopOfFirstPage() + logicalOffset; RenderRegion* region = enclosingRenderFlowThread()->renderRegionForLine(pageOffset, this); if (!region) return false; if (region->isLastRegion()) return region->style()->regionOverflow() == BreakRegionOverflow || (pageBoundaryRule == IncludePageBoundary && pageOffset == region->offsetFromLogicalTopOfFirstPage()); return true; } LayoutUnit RenderBlock::nextPageLogicalTop(LayoutUnit logicalOffset, PageBoundaryRule pageBoundaryRule) const { LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); if (!pageLogicalHeight) return logicalOffset; // The logicalOffset is in our coordinate space. We can add in our pushed offset. LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset); if (pageBoundaryRule == ExcludePageBoundary) return logicalOffset + (remainingLogicalHeight ? remainingLogicalHeight : pageLogicalHeight); return logicalOffset + remainingLogicalHeight; } static bool inNormalFlow(RenderBox* child) { RenderBlock* curr = child->containingBlock(); RenderView* renderView = child->view(); while (curr && curr != renderView) { if (curr->hasColumns() || curr->isRenderFlowThread()) return true; if (curr->isFloatingOrPositioned()) return false; curr = curr->containingBlock(); } return true; } ColumnInfo::PaginationUnit RenderBlock::paginationUnit() const { return ColumnInfo::Column; } LayoutUnit RenderBlock::applyBeforeBreak(RenderBox* child, LayoutUnit logicalOffset) { // FIXME: Add page break checking here when we support printing. bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this. bool checkRegionBreaks = inRenderFlowThread(); bool checkBeforeAlways = (checkColumnBreaks && child->style()->columnBreakBefore() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakBefore() == PBALWAYS) || (checkRegionBreaks && child->style()->regionBreakBefore() == PBALWAYS); if (checkBeforeAlways && inNormalFlow(child) && hasNextPage(logicalOffset, IncludePageBoundary)) { if (checkColumnBreaks) view()->layoutState()->addForcedColumnBreak(logicalOffset); return nextPageLogicalTop(logicalOffset, IncludePageBoundary); } return logicalOffset; } LayoutUnit RenderBlock::applyAfterBreak(RenderBox* child, LayoutUnit logicalOffset, MarginInfo& marginInfo) { // FIXME: Add page break checking here when we support printing. bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; // FIXME: Once columns can print we have to check this. bool checkRegionBreaks = inRenderFlowThread(); bool checkAfterAlways = (checkColumnBreaks && child->style()->columnBreakAfter() == PBALWAYS) || (checkPageBreaks && child->style()->pageBreakAfter() == PBALWAYS) || (checkRegionBreaks && child->style()->regionBreakAfter() == PBALWAYS); if (checkAfterAlways && inNormalFlow(child) && hasNextPage(logicalOffset, IncludePageBoundary)) { marginInfo.setMarginAfterQuirk(true); // Cause margins to be discarded for any following content. if (checkColumnBreaks) view()->layoutState()->addForcedColumnBreak(logicalOffset); return nextPageLogicalTop(logicalOffset, IncludePageBoundary); } return logicalOffset; } LayoutUnit RenderBlock::pageLogicalTopForOffset(LayoutUnit offset) const { RenderView* renderView = view(); LayoutUnit firstPageLogicalTop = isHorizontalWritingMode() ? renderView->layoutState()->m_pageOffset.height() : renderView->layoutState()->m_pageOffset.width(); LayoutUnit blockLogicalTop = isHorizontalWritingMode() ? renderView->layoutState()->m_layoutOffset.height() : renderView->layoutState()->m_layoutOffset.width(); LayoutUnit cumulativeOffset = offset + blockLogicalTop; if (!inRenderFlowThread()) { LayoutUnit pageLogicalHeight = renderView->layoutState()->pageLogicalHeight(); if (!pageLogicalHeight) return 0; return cumulativeOffset - roundToInt(cumulativeOffset - firstPageLogicalTop) % roundToInt(pageLogicalHeight); } return enclosingRenderFlowThread()->regionLogicalTopForLine(cumulativeOffset); } LayoutUnit RenderBlock::pageLogicalHeightForOffset(LayoutUnit offset) const { RenderView* renderView = view(); if (!inRenderFlowThread()) return renderView->layoutState()->m_pageLogicalHeight; return enclosingRenderFlowThread()->regionLogicalHeightForLine(offset + offsetFromLogicalTopOfFirstPage()); } LayoutUnit RenderBlock::pageRemainingLogicalHeightForOffset(LayoutUnit offset, PageBoundaryRule pageBoundaryRule) const { RenderView* renderView = view(); offset += offsetFromLogicalTopOfFirstPage(); if (!inRenderFlowThread()) { LayoutUnit pageLogicalHeight = renderView->layoutState()->m_pageLogicalHeight; LayoutUnit remainingHeight = pageLogicalHeight - layoutMod(offset, pageLogicalHeight); if (pageBoundaryRule == IncludePageBoundary) { // If includeBoundaryPoint is true the line exactly on the top edge of a // column will act as being part of the previous column. remainingHeight = layoutMod(remainingHeight, pageLogicalHeight); } return remainingHeight; } return enclosingRenderFlowThread()->regionRemainingLogicalHeightForLine(offset, pageBoundaryRule); } LayoutUnit RenderBlock::adjustForUnsplittableChild(RenderBox* child, LayoutUnit logicalOffset, bool includeMargins) { bool checkColumnBreaks = view()->layoutState()->isPaginatingColumns(); bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->m_pageLogicalHeight; bool checkRegionBreaks = inRenderFlowThread(); bool isUnsplittable = child->isUnsplittableForPagination() || (checkColumnBreaks && child->style()->columnBreakInside() == PBAVOID) || (checkPageBreaks && child->style()->pageBreakInside() == PBAVOID) || (checkRegionBreaks && child->style()->regionBreakInside() == PBAVOID); if (!isUnsplittable) return logicalOffset; LayoutUnit childLogicalHeight = logicalHeightForChild(child) + (includeMargins ? marginBeforeForChild(child) + marginAfterForChild(child) : zeroLayoutUnit); LayoutState* layoutState = view()->layoutState(); if (layoutState->m_columnInfo) layoutState->m_columnInfo->updateMinimumColumnHeight(childLogicalHeight); LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); bool hasUniformPageLogicalHeight = !inRenderFlowThread() || enclosingRenderFlowThread()->regionsHaveUniformLogicalHeight(); if (!pageLogicalHeight || (hasUniformPageLogicalHeight && childLogicalHeight > pageLogicalHeight) || !hasNextPage(logicalOffset)) return logicalOffset; LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary); if (remainingLogicalHeight < childLogicalHeight) { if (!hasUniformPageLogicalHeight && !pushToNextPageWithMinimumLogicalHeight(remainingLogicalHeight, logicalOffset, childLogicalHeight)) return logicalOffset; return logicalOffset + remainingLogicalHeight; } return logicalOffset; } bool RenderBlock::pushToNextPageWithMinimumLogicalHeight(LayoutUnit& adjustment, LayoutUnit logicalOffset, LayoutUnit minimumLogicalHeight) const { bool checkRegion = false; for (LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset + adjustment); pageLogicalHeight; pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset + adjustment)) { if (minimumLogicalHeight <= pageLogicalHeight) return true; if (!hasNextPage(logicalOffset + adjustment)) return false; adjustment += pageLogicalHeight; checkRegion = true; } return !checkRegion; } void RenderBlock::adjustLinePositionForPagination(RootInlineBox* lineBox, LayoutUnit& delta) { // FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we // put a strut between them for pagination purposes. However, this really isn't the desired rendering, since // the line on the top of the next page will appear too far down relative to the same kind of line at the top // of the first column. // // The rendering we would like to see is one where the lineTopWithLeading is at the top of the column, and any line overflow // simply spills out above the top of the column. This effect would match what happens at the top of the first column. // We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing // for overflow to occur), and then cache visible overflow for each column rect. // // Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude // content that paints in a previous column (and content that paints in the following column). // // For now we'll at least honor the lineTopWithLeading when paginating if it is above the logical top overflow. This will // at least make positive leading work in typical cases. // // FIXME: Another problem with simply moving lines is that the available line width may change (because of floats). // Technically if the location we move the line to has a different line width than our old position, then we need to dirty the // line and all following lines. LayoutRect logicalVisualOverflow = lineBox->logicalVisualOverflowRect(lineBox->lineTop(), lineBox->lineBottom()); LayoutUnit logicalOffset = min(lineBox->lineTopWithLeading(), logicalVisualOverflow.y()); LayoutUnit lineHeight = max(lineBox->lineBottomWithLeading(), logicalVisualOverflow.maxY()) - logicalOffset; RenderView* renderView = view(); LayoutState* layoutState = renderView->layoutState(); if (layoutState->m_columnInfo) layoutState->m_columnInfo->updateMinimumColumnHeight(lineHeight); logicalOffset += delta; lineBox->setPaginationStrut(0); LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset); bool hasUniformPageLogicalHeight = !inRenderFlowThread() || enclosingRenderFlowThread()->regionsHaveUniformLogicalHeight(); if (!pageLogicalHeight || (hasUniformPageLogicalHeight && lineHeight > pageLogicalHeight) || !hasNextPage(logicalOffset)) return; LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary); if (remainingLogicalHeight < lineHeight) { // If we have a non-uniform page height, then we have to shift further possibly. if (!hasUniformPageLogicalHeight && !pushToNextPageWithMinimumLogicalHeight(remainingLogicalHeight, logicalOffset, lineHeight)) return; LayoutUnit totalLogicalHeight = lineHeight + max(0, logicalOffset); LayoutUnit pageLogicalHeightAtNewOffset = hasUniformPageLogicalHeight ? pageLogicalHeight : pageLogicalHeightForOffset(logicalOffset + remainingLogicalHeight); if (lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeightAtNewOffset && !isPositioned() && !isTableCell()) setPaginationStrut(remainingLogicalHeight + max(0, logicalOffset)); else { delta += remainingLogicalHeight; lineBox->setPaginationStrut(remainingLogicalHeight); } } } LayoutUnit RenderBlock::adjustBlockChildForPagination(LayoutUnit logicalTopAfterClear, LayoutUnit estimateWithoutPagination, RenderBox* child, bool atBeforeSideOfBlock) { RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; if (estimateWithoutPagination != logicalTopAfterClear) { // Our guess prior to pagination movement was wrong. Before we attempt to paginate, let's try again at the new // position. setLogicalHeight(logicalTopAfterClear); setLogicalTopForChild(child, logicalTopAfterClear, ApplyLayoutDelta); if (child->shrinkToAvoidFloats()) { // The child's width depends on the line width. // When the child shifts to clear an item, its width can // change (because it has more available line width). // So go ahead and mark the item as dirty. child->setChildNeedsLayout(true, false); } if (childRenderBlock) { if (!child->avoidsFloats() && childRenderBlock->containsFloats()) childRenderBlock->markAllDescendantsWithFloatsForLayout(); if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); } // Our guess was wrong. Make the child lay itself out again. child->layoutIfNeeded(); } LayoutUnit oldTop = logicalTopAfterClear; // If the object has a page or column break value of "before", then we should shift to the top of the next page. LayoutUnit result = applyBeforeBreak(child, logicalTopAfterClear); // For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one. LayoutUnit logicalTopBeforeUnsplittableAdjustment = result; LayoutUnit logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, result); LayoutUnit paginationStrut = 0; LayoutUnit unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment; if (unsplittableAdjustmentDelta) paginationStrut = unsplittableAdjustmentDelta; else if (childRenderBlock && childRenderBlock->paginationStrut()) paginationStrut = childRenderBlock->paginationStrut(); if (paginationStrut) { // We are willing to propagate out to our parent block as long as we were at the top of the block prior // to collapsing our margins, and as long as we didn't clear or move as a result of other pagination. if (atBeforeSideOfBlock && oldTop == result && !isPositioned() && !isTableCell()) { // FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't // have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too // and pushes to the next page anyway, so not too concerned about it. setPaginationStrut(result + paginationStrut); if (childRenderBlock) childRenderBlock->setPaginationStrut(0); } else result += paginationStrut; } // Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child. setLogicalHeight(logicalHeight() + (result - oldTop)); // Return the final adjusted logical top. return result; } bool RenderBlock::lineWidthForPaginatedLineChanged(RootInlineBox* rootBox, LayoutUnit lineDelta) const { if (!inRenderFlowThread()) return false; return rootBox->paginatedLineWidth() != availableLogicalWidthForContent(rootBox->lineTopWithLeading() + lineDelta); } LayoutUnit RenderBlock::offsetFromLogicalTopOfFirstPage() const { // FIXME: This function needs to work without layout state. It's fine to use the layout state as a cache // for speed, but we need a slow implementation that will walk up the containing block chain and figure // out our offset from the top of the page. LayoutState* layoutState = view()->layoutState(); if (!layoutState || !layoutState->isPaginated()) return 0; // FIXME: Sanity check that the renderer in the layout state is ours, since otherwise the computation will be off. // Right now this assert gets hit inside computeLogicalHeight for percentage margins, since they're computed using // widths which can vary in each region. Until we patch that, we can't have this assert. // ASSERT(layoutState->m_renderer == this); LayoutSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset; return isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width(); } RenderRegion* RenderBlock::regionAtBlockOffset(LayoutUnit blockOffset) const { if (!inRenderFlowThread()) return 0; RenderFlowThread* flowThread = enclosingRenderFlowThread(); if (!flowThread || !flowThread->hasValidRegionInfo()) return 0; return flowThread->renderRegionForLine(offsetFromLogicalTopOfFirstPage() + blockOffset, true); } void RenderBlock::setStaticInlinePositionForChild(RenderBox* child, LayoutUnit blockOffset, LayoutUnit inlinePosition) { if (inRenderFlowThread()) { // Shift the inline position to exclude the region offset. inlinePosition += startOffsetForContent() - startOffsetForContent(blockOffset); } child->layer()->setStaticInlinePosition(inlinePosition); } bool RenderBlock::logicalWidthChangedInRegions() const { if (!inRenderFlowThread()) return false; RenderFlowThread* flowThread = enclosingRenderFlowThread(); if (!flowThread || !flowThread->hasValidRegionInfo()) return 0; return flowThread->logicalWidthChangedInRegions(this, offsetFromLogicalTopOfFirstPage()); } RenderRegion* RenderBlock::clampToStartAndEndRegions(RenderRegion* region) const { ASSERT(region && inRenderFlowThread()); // We need to clamp to the block, since we want any lines or blocks that overflow out of the // logical top or logical bottom of the block to size as though the border box in the first and // last regions extended infinitely. Otherwise the lines are going to size according to the regions // they overflow into, which makes no sense when this block doesn't exist in |region| at all. RenderRegion* startRegion; RenderRegion* endRegion; enclosingRenderFlowThread()->getRegionRangeForBox(this, startRegion, endRegion); if (startRegion && region->offsetFromLogicalTopOfFirstPage() < startRegion->offsetFromLogicalTopOfFirstPage()) return startRegion; if (endRegion && region->offsetFromLogicalTopOfFirstPage() > endRegion->offsetFromLogicalTopOfFirstPage()) return endRegion; return region; } LayoutUnit RenderBlock::collapsedMarginBeforeForChild(const RenderBox* child) const { // If the child has the same directionality as we do, then we can just return its // collapsed margin. if (!child->isWritingModeRoot()) return child->collapsedMarginBefore(); // The child has a different directionality. If the child is parallel, then it's just // flipped relative to us. We can use the collapsed margin for the opposite edge. if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) return child->collapsedMarginAfter(); // The child is perpendicular to us, which means its margins don't collapse but are on the // "logical left/right" sides of the child box. We can just return the raw margin in this case. return marginBeforeForChild(child); } LayoutUnit RenderBlock::collapsedMarginAfterForChild(const RenderBox* child) const { // If the child has the same directionality as we do, then we can just return its // collapsed margin. if (!child->isWritingModeRoot()) return child->collapsedMarginAfter(); // The child has a different directionality. If the child is parallel, then it's just // flipped relative to us. We can use the collapsed margin for the opposite edge. if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) return child->collapsedMarginBefore(); // The child is perpendicular to us, which means its margins don't collapse but are on the // "logical left/right" side of the child box. We can just return the raw margin in this case. return marginAfterForChild(child); } LayoutUnit RenderBlock::marginBeforeForChild(const RenderBoxModelObject* child) const { switch (style()->writingMode()) { case TopToBottomWritingMode: return child->marginTop(); case BottomToTopWritingMode: return child->marginBottom(); case LeftToRightWritingMode: return child->marginLeft(); case RightToLeftWritingMode: return child->marginRight(); } ASSERT_NOT_REACHED(); return child->marginTop(); } LayoutUnit RenderBlock::marginAfterForChild(const RenderBoxModelObject* child) const { switch (style()->writingMode()) { case TopToBottomWritingMode: return child->marginBottom(); case BottomToTopWritingMode: return child->marginTop(); case LeftToRightWritingMode: return child->marginRight(); case RightToLeftWritingMode: return child->marginLeft(); } ASSERT_NOT_REACHED(); return child->marginBottom(); } LayoutUnit RenderBlock::marginLogicalLeftForChild(const RenderBoxModelObject* child) const { if (isHorizontalWritingMode()) return child->marginLeft(); return child->marginTop(); } LayoutUnit RenderBlock::marginLogicalRightForChild(const RenderBoxModelObject* child) const { if (isHorizontalWritingMode()) return child->marginRight(); return child->marginBottom(); } LayoutUnit RenderBlock::marginStartForChild(const RenderBoxModelObject* child) const { if (isHorizontalWritingMode()) return style()->isLeftToRightDirection() ? child->marginLeft() : child->marginRight(); return style()->isLeftToRightDirection() ? child->marginTop() : child->marginBottom(); } LayoutUnit RenderBlock::marginEndForChild(const RenderBoxModelObject* child) const { if (isHorizontalWritingMode()) return style()->isLeftToRightDirection() ? child->marginRight() : child->marginLeft(); return style()->isLeftToRightDirection() ? child->marginBottom() : child->marginTop(); } void RenderBlock::setMarginStartForChild(RenderBox* child, LayoutUnit margin) { if (isHorizontalWritingMode()) { if (style()->isLeftToRightDirection()) child->setMarginLeft(margin); else child->setMarginRight(margin); } else { if (style()->isLeftToRightDirection()) child->setMarginTop(margin); else child->setMarginBottom(margin); } } void RenderBlock::setMarginEndForChild(RenderBox* child, LayoutUnit margin) { if (isHorizontalWritingMode()) { if (style()->isLeftToRightDirection()) child->setMarginRight(margin); else child->setMarginLeft(margin); } else { if (style()->isLeftToRightDirection()) child->setMarginBottom(margin); else child->setMarginTop(margin); } } void RenderBlock::setMarginBeforeForChild(RenderBox* child, LayoutUnit margin) { switch (style()->writingMode()) { case TopToBottomWritingMode: child->setMarginTop(margin); break; case BottomToTopWritingMode: child->setMarginBottom(margin); break; case LeftToRightWritingMode: child->setMarginLeft(margin); break; case RightToLeftWritingMode: child->setMarginRight(margin); break; } } void RenderBlock::setMarginAfterForChild(RenderBox* child, LayoutUnit margin) { switch (style()->writingMode()) { case TopToBottomWritingMode: child->setMarginBottom(margin); break; case BottomToTopWritingMode: child->setMarginTop(margin); break; case LeftToRightWritingMode: child->setMarginRight(margin); break; case RightToLeftWritingMode: child->setMarginLeft(margin); break; } } RenderBlock::MarginValues RenderBlock::marginValuesForChild(RenderBox* child) { int childBeforePositive = 0; int childBeforeNegative = 0; int childAfterPositive = 0; int childAfterNegative = 0; int beforeMargin = 0; int afterMargin = 0; RenderBlock* childRenderBlock = child->isRenderBlock() ? toRenderBlock(child) : 0; // If the child has the same directionality as we do, then we can just return its // margins in the same direction. if (!child->isWritingModeRoot()) { if (childRenderBlock) { childBeforePositive = childRenderBlock->maxPositiveMarginBefore(); childBeforeNegative = childRenderBlock->maxNegativeMarginBefore(); childAfterPositive = childRenderBlock->maxPositiveMarginAfter(); childAfterNegative = childRenderBlock->maxNegativeMarginAfter(); } else { beforeMargin = child->marginBefore(); afterMargin = child->marginAfter(); } } else if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) { // The child has a different directionality. If the child is parallel, then it's just // flipped relative to us. We can use the margins for the opposite edges. if (childRenderBlock) { childBeforePositive = childRenderBlock->maxPositiveMarginAfter(); childBeforeNegative = childRenderBlock->maxNegativeMarginAfter(); childAfterPositive = childRenderBlock->maxPositiveMarginBefore(); childAfterNegative = childRenderBlock->maxNegativeMarginBefore(); } else { beforeMargin = child->marginAfter(); afterMargin = child->marginBefore(); } } else { // The child is perpendicular to us, which means its margins don't collapse but are on the // "logical left/right" sides of the child box. We can just return the raw margin in this case. beforeMargin = marginBeforeForChild(child); afterMargin = marginAfterForChild(child); } // Resolve uncollapsing margins into their positive/negative buckets. if (beforeMargin) { if (beforeMargin > 0) childBeforePositive = beforeMargin; else childBeforeNegative = -beforeMargin; } if (afterMargin) { if (afterMargin > 0) childAfterPositive = afterMargin; else childAfterNegative = -afterMargin; } return MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative); } const char* RenderBlock::renderName() const { if (isBody()) return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass. if (isFloating()) return "RenderBlock (floating)"; if (isPositioned()) return "RenderBlock (positioned)"; if (isAnonymousColumnsBlock()) return "RenderBlock (anonymous multi-column)"; if (isAnonymousColumnSpanBlock()) return "RenderBlock (anonymous multi-column span)"; if (isAnonymousBlock()) return "RenderBlock (anonymous)"; else if (isAnonymous()) return "RenderBlock (generated)"; if (isRelPositioned()) return "RenderBlock (relative positioned)"; if (isRunIn()) return "RenderBlock (run-in)"; return "RenderBlock"; } inline void RenderBlock::FloatingObjects::clear() { m_set.clear(); m_placedFloatsTree.clear(); m_leftObjectsCount = 0; m_rightObjectsCount = 0; m_positionedObjectsCount = 0; } inline void RenderBlock::FloatingObjects::increaseObjectsCount(FloatingObject::Type type) { if (type == FloatingObject::FloatLeft) m_leftObjectsCount++; else if (type == FloatingObject::FloatRight) m_rightObjectsCount++; else m_positionedObjectsCount++; } inline void RenderBlock::FloatingObjects::decreaseObjectsCount(FloatingObject::Type type) { if (type == FloatingObject::FloatLeft) m_leftObjectsCount--; else if (type == FloatingObject::FloatRight) m_rightObjectsCount--; else m_positionedObjectsCount--; } inline RenderBlock::FloatingObjectInterval RenderBlock::FloatingObjects::intervalForFloatingObject(FloatingObject* floatingObject) { if (m_horizontalWritingMode) return RenderBlock::FloatingObjectInterval(floatingObject->y(), floatingObject->maxY(), floatingObject); return RenderBlock::FloatingObjectInterval(floatingObject->x(), floatingObject->maxX(), floatingObject); } void RenderBlock::FloatingObjects::addPlacedObject(FloatingObject* floatingObject) { ASSERT(!floatingObject->isInPlacedTree()); floatingObject->setIsPlaced(true); if (m_placedFloatsTree.isInitialized()) m_placedFloatsTree.add(intervalForFloatingObject(floatingObject)); #ifndef NDEBUG floatingObject->setIsInPlacedTree(true); #endif } void RenderBlock::FloatingObjects::removePlacedObject(FloatingObject* floatingObject) { ASSERT(floatingObject->isPlaced() && floatingObject->isInPlacedTree()); if (m_placedFloatsTree.isInitialized()) { bool removed = m_placedFloatsTree.remove(intervalForFloatingObject(floatingObject)); ASSERT_UNUSED(removed, removed); } floatingObject->setIsPlaced(false); #ifndef NDEBUG floatingObject->setIsInPlacedTree(false); #endif } inline void RenderBlock::FloatingObjects::add(FloatingObject* floatingObject) { increaseObjectsCount(floatingObject->type()); m_set.add(floatingObject); if (floatingObject->isPlaced()) addPlacedObject(floatingObject); } inline void RenderBlock::FloatingObjects::remove(FloatingObject* floatingObject) { decreaseObjectsCount(floatingObject->type()); m_set.remove(floatingObject); ASSERT(floatingObject->isPlaced() || !floatingObject->isInPlacedTree()); if (floatingObject->isPlaced()) removePlacedObject(floatingObject); } void RenderBlock::FloatingObjects::computePlacedFloatsTree() { ASSERT(!m_placedFloatsTree.isInitialized()); if (m_set.isEmpty()) return; m_placedFloatsTree.initIfNeeded(m_renderer->view()->intervalArena()); FloatingObjectSetIterator it = m_set.begin(); FloatingObjectSetIterator end = m_set.end(); for (; it != end; ++it) { FloatingObject* floatingObject = *it; if (floatingObject->isPlaced()) m_placedFloatsTree.add(intervalForFloatingObject(floatingObject)); } } TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const UChar* characters, int length, RenderStyle* style, TextRun::ExpansionBehavior expansion, TextRunFlags flags) { ASSERT(style); TextDirection textDirection = LTR; bool directionalOverride = style->rtlOrdering() == VisualOrder; if (flags != DefaultTextRunFlags) { if (flags & RespectDirection) textDirection = style->direction(); if (flags & RespectDirectionOverride) directionalOverride |= isOverride(style->unicodeBidi()); } TextRun run(characters, length, false, 0, 0, expansion, textDirection, directionalOverride); if (textRunNeedsRenderingContext(font)) run.setRenderingContext(SVGTextRunRenderingContext::create(context)); return run; } TextRun RenderBlock::constructTextRun(RenderObject* context, const Font& font, const String& string, RenderStyle* style, TextRun::ExpansionBehavior expansion, TextRunFlags flags) { return constructTextRun(context, font, string.characters(), string.length(), style, expansion, flags); } #ifndef NDEBUG void RenderBlock::showLineTreeAndMark(const InlineBox* markedBox1, const char* markedLabel1, const InlineBox* markedBox2, const char* markedLabel2, const RenderObject* obj) const { showRenderObject(); for (const RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) root->showLineTreeAndMark(markedBox1, markedLabel1, markedBox2, markedLabel2, obj, 1); } // These helpers are only used by the PODIntervalTree for debugging purposes. String ValueToString::string(const int value) { return String::number(value); } String ValueToString::string(const RenderBlock::FloatingObject* floatingObject) { return String::format("%p (%dx%d %dx%d)", floatingObject, floatingObject->x(), floatingObject->y(), floatingObject->maxX(), floatingObject->maxY()); } #endif } // namespace WebCore