/* * Copyright (C) 2012 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "RenderMultiColumnSet.h" #include "FrameView.h" #include "HitTestResult.h" #include "PaintInfo.h" #include "RenderLayer.h" #include "RenderMultiColumnFlowThread.h" #include "RenderMultiColumnSpannerPlaceholder.h" #include "RenderView.h" namespace WebCore { RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread& flowThread, Ref&& style) : RenderRegionSet(flowThread.document(), WTFMove(style), flowThread) , m_computedColumnCount(1) , m_computedColumnWidth(0) , m_computedColumnHeight(0) , m_availableColumnHeight(0) , m_columnHeightComputed(false) , m_maxColumnHeight(RenderFlowThread::maxLogicalHeight()) , m_minSpaceShortage(RenderFlowThread::maxLogicalHeight()) , m_minimumColumnHeight(0) { } RenderMultiColumnSet* RenderMultiColumnSet::nextSiblingMultiColumnSet() const { for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) { if (is(*sibling)) return downcast(sibling); } return nullptr; } RenderMultiColumnSet* RenderMultiColumnSet::previousSiblingMultiColumnSet() const { for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) { if (is(*sibling)) return downcast(sibling); } return nullptr; } RenderObject* RenderMultiColumnSet::firstRendererInFlowThread() const { if (RenderBox* sibling = RenderMultiColumnFlowThread::previousColumnSetOrSpannerSiblingOf(this)) { // Adjacent sets should not occur. Currently we would have no way of figuring out what each // of them contains then. ASSERT(!sibling->isRenderMultiColumnSet()); RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlowThread()->findColumnSpannerPlaceholder(sibling); return placeholder->nextInPreOrderAfterChildren(); } return flowThread()->firstChild(); } RenderObject* RenderMultiColumnSet::lastRendererInFlowThread() const { if (RenderBox* sibling = RenderMultiColumnFlowThread::nextColumnSetOrSpannerSiblingOf(this)) { // Adjacent sets should not occur. Currently we would have no way of figuring out what each // of them contains then. ASSERT(!sibling->isRenderMultiColumnSet()); RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlowThread()->findColumnSpannerPlaceholder(sibling); return placeholder->previousInPreOrder(); } return flowThread()->lastLeafChild(); } static bool precedesRenderer(RenderObject* renderer, RenderObject* boundary) { for (; renderer; renderer = renderer->nextInPreOrder()) { if (renderer == boundary) return true; } return false; } bool RenderMultiColumnSet::containsRendererInFlowThread(RenderObject* renderer) const { if (!previousSiblingMultiColumnSet() && !nextSiblingMultiColumnSet()) { // There is only one set. This is easy, then. return renderer->isDescendantOf(m_flowThread); } RenderObject* firstRenderer = firstRendererInFlowThread(); RenderObject* lastRenderer = lastRendererInFlowThread(); ASSERT(firstRenderer); ASSERT(lastRenderer); // This is SLOW! But luckily very uncommon. return precedesRenderer(firstRenderer, renderer) && precedesRenderer(renderer, lastRenderer); } void RenderMultiColumnSet::setLogicalTopInFlowThread(LayoutUnit logicalTop) { LayoutRect rect = flowThreadPortionRect(); if (isHorizontalWritingMode()) rect.setY(logicalTop); else rect.setX(logicalTop); setFlowThreadPortionRect(rect); } void RenderMultiColumnSet::setLogicalBottomInFlowThread(LayoutUnit logicalBottom) { LayoutRect rect = flowThreadPortionRect(); if (isHorizontalWritingMode()) rect.shiftMaxYEdgeTo(logicalBottom); else rect.shiftMaxXEdgeTo(logicalBottom); setFlowThreadPortionRect(rect); } LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const { RenderBlockFlow& multicolBlock = downcast(*parent()); LayoutUnit contentLogicalTop = logicalTop() - multicolBlock.borderAndPaddingBefore(); height -= contentLogicalTop; return std::max(height, LayoutUnit::fromPixel(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created. } LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const { unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns); return logicalTopInFlowThread() + columnIndex * computedColumnHeight(); } void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight) { m_computedColumnHeight = newHeight; if (m_computedColumnHeight > m_maxColumnHeight) m_computedColumnHeight = m_maxColumnHeight; // FIXME: The available column height is not the same as the constrained height specified // by the pagination API. The column set in this case is allowed to be bigger than the // height of a single column. We cache available column height in order to use it // in computeLogicalHeight later. This is pretty gross, and maybe there's a better way // to formalize the idea of clamped column heights without having a view dependency // here. m_availableColumnHeight = m_computedColumnHeight; if (multiColumnFlowThread() && !multiColumnFlowThread()->progressionIsInline() && parent()->isRenderView()) { int pageLength = view().frameView().pagination().pageLength; if (pageLength) m_computedColumnHeight = pageLength; } m_columnHeightComputed = true; // FIXME: the height may also be affected by the enclosing pagination context, if any. } unsigned RenderMultiColumnSet::findRunWithTallestColumns() const { unsigned indexWithLargestHeight = 0; LayoutUnit largestHeight; LayoutUnit previousOffset; size_t runCount = m_contentRuns.size(); ASSERT(runCount); for (size_t i = 0; i < runCount; i++) { const ContentRun& run = m_contentRuns[i]; LayoutUnit height = run.columnLogicalHeight(previousOffset); if (largestHeight < height) { largestHeight = height; indexWithLargestHeight = i; } previousOffset = run.breakOffset(); } return indexWithLargestHeight; } void RenderMultiColumnSet::distributeImplicitBreaks() { #ifndef NDEBUG // There should be no implicit breaks assumed at this point. for (unsigned i = 0; i < forcedBreaksCount(); i++) ASSERT(!m_contentRuns[i].assumedImplicitBreaks()); #endif // NDEBUG // Insert a final content run to encompass all content. This will include overflow if this is // the last set. addForcedBreak(logicalBottomInFlowThread()); unsigned breakCount = forcedBreaksCount(); // If there is room for more breaks (to reach the used value of column-count), imagine that we // insert implicit breaks at suitable locations. At any given time, the content run with the // currently tallest columns will get another implicit break "inserted", which will increase its // column count by one and shrink its columns' height. Repeat until we have the desired total // number of breaks. The largest column height among the runs will then be the initial column // height for the balancer to use. while (breakCount < m_computedColumnCount) { unsigned index = findRunWithTallestColumns(); m_contentRuns[index].assumeAnotherImplicitBreak(); breakCount++; } } LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const { if (initial) { // Start with the lowest imaginable column height. unsigned index = findRunWithTallestColumns(); LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : logicalTopInFlowThread(); return std::max(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight); } if (columnCount() <= computedColumnCount()) { // With the current column height, the content fits without creating overflowing columns. We're done. return m_computedColumnHeight; } if (forcedBreaksCount() > 1 && forcedBreaksCount() >= computedColumnCount()) { // Too many forced breaks to allow any implicit breaks. Initial balancing should already // have set a good height. There's nothing more we should do. return m_computedColumnHeight; } // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest // amount of space shortage found during layout. ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height! //ASSERT(m_minSpaceShortage != RenderFlowThread::maxLogicalHeight()); // If this happens, we probably have a bug. if (m_minSpaceShortage == RenderFlowThread::maxLogicalHeight()) return m_computedColumnHeight; // So bail out rather than looping infinitely. return m_computedColumnHeight + m_minSpaceShortage; } void RenderMultiColumnSet::clearForcedBreaks() { m_contentRuns.clear(); } void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage) { if (!requiresBalancing()) return; if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset()) return; // Append another item as long as we haven't exceeded used column count. What ends up in the // overflow area shouldn't affect column balancing. if (m_contentRuns.size() < m_computedColumnCount) m_contentRuns.append(ContentRun(offsetFromFirstPage)); } bool RenderMultiColumnSet::recalculateColumnHeight(bool initial) { LayoutUnit oldColumnHeight = m_computedColumnHeight; if (requiresBalancing()) { if (initial) distributeImplicitBreaks(); LayoutUnit newColumnHeight = calculateBalancedHeight(initial); setAndConstrainColumnHeight(newColumnHeight); // After having calculated an initial column height, the multicol container typically needs at // least one more layout pass with a new column height, but if a height was specified, we only // need to do this if we think that we need less space than specified. Conversely, if we // determined that the columns need to be as tall as the specified height of the container, we // have already laid it out correctly, and there's no need for another pass. } else { // The position of the column set may have changed, in which case height available for // columns may have changed as well. setAndConstrainColumnHeight(m_computedColumnHeight); } if (m_computedColumnHeight == oldColumnHeight) return false; // No change. We're done. m_minSpaceShortage = RenderFlowThread::maxLogicalHeight(); return true; // Need another pass. } void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage) { if (spaceShortage >= m_minSpaceShortage) return; // The space shortage is what we use as our stretch amount. We need a positive number here in // order to get anywhere. Some lines actually have zero height. Ignore them. if (spaceShortage > 0) m_minSpaceShortage = spaceShortage; } void RenderMultiColumnSet::updateLogicalWidth() { setComputedColumnWidthAndCount(multiColumnFlowThread()->columnWidth(), multiColumnFlowThread()->columnCount()); // FIXME: This will eventually vary if we are contained inside regions. // FIXME: When we add regions support, we'll start it off at the width of the multi-column // block in that particular region. setLogicalWidth(parentBox()->contentLogicalWidth()); } bool RenderMultiColumnSet::requiresBalancing() const { if (!multiColumnFlowThread()->progressionIsInline()) return false; if (RenderBox* next = RenderMultiColumnFlowThread::nextColumnSetOrSpannerSiblingOf(this)) { if (!next->isRenderMultiColumnSet()) { // If we're followed by a spanner, we need to balance. ASSERT(multiColumnFlowThread()->findColumnSpannerPlaceholder(next)); return true; } } RenderBlockFlow* container = multiColumnBlockFlow(); if (container->style().columnFill() == ColumnFillBalance) return true; return !multiColumnFlowThread()->columnHeightAvailable(); } void RenderMultiColumnSet::prepareForLayout(bool initial) { // Guess box logical top. This might eliminate the need for another layout pass. if (RenderBox* previous = RenderMultiColumnFlowThread::previousColumnSetOrSpannerSiblingOf(this)) setLogicalTop(previous->logicalBottom() + previous->marginAfter()); else setLogicalTop(multiColumnBlockFlow()->borderAndPaddingBefore()); if (initial) m_maxColumnHeight = calculateMaxColumnHeight(); if (requiresBalancing()) { if (initial) { m_computedColumnHeight = 0; m_availableColumnHeight = 0; m_columnHeightComputed = false; } } else setAndConstrainColumnHeight(heightAdjustedForSetOffset(multiColumnFlowThread()->columnHeightAvailable())); // Set box width. updateLogicalWidth(); // Any breaks will be re-inserted during layout, so get rid of what we already have. clearForcedBreaks(); // Nuke previously stored minimum column height. Contents may have changed for all we know. m_minimumColumnHeight = 0; // Start with "infinite" flow thread portion height until height is known. setLogicalBottomInFlowThread(RenderFlowThread::maxLogicalHeight()); setNeedsLayout(MarkOnlyThis); } void RenderMultiColumnSet::beginFlow(RenderBlock* container) { RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread(); // At this point layout is exactly at the beginning of this set. Store block offset from flow // thread start. LayoutUnit logicalTopInFlowThread = flowThread->offsetFromLogicalTopOfFirstRegion(container) + container->logicalHeight(); setLogicalTopInFlowThread(logicalTopInFlowThread); } void RenderMultiColumnSet::endFlow(RenderBlock* container, LayoutUnit bottomInContainer) { RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread(); // At this point layout is exactly at the end of this set. Store block offset from flow thread // start. Also note that a new column height may have affected the height used in the flow // thread (because of struts), which may affect the number of columns. So we also need to update // the flow thread portion height in order to be able to calculate actual column-count. LayoutUnit logicalBottomInFlowThread = flowThread->offsetFromLogicalTopOfFirstRegion(container) + bottomInContainer; setLogicalBottomInFlowThread(logicalBottomInFlowThread); container->setLogicalHeight(bottomInContainer); } void RenderMultiColumnSet::layout() { RenderBlockFlow::layout(); // At this point the logical top and bottom of the column set are known. Update maximum column // height (multicol height may be constrained). m_maxColumnHeight = calculateMaxColumnHeight(); if (!nextSiblingMultiColumnSet()) { // This is the last set, i.e. the last region. Seize the opportunity to validate them. multiColumnFlowThread()->validateRegions(); } } void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const { computedValues.m_extent = m_availableColumnHeight; computedValues.m_position = logicalTop; } LayoutUnit RenderMultiColumnSet::calculateMaxColumnHeight() const { RenderBlockFlow* multicolBlock = multiColumnBlockFlow(); const RenderStyle& multicolStyle = multicolBlock->style(); LayoutUnit availableHeight = multiColumnFlowThread()->columnHeightAvailable(); LayoutUnit maxColumnHeight = availableHeight ? availableHeight : RenderFlowThread::maxLogicalHeight(); if (!multicolStyle.logicalMaxHeight().isUndefined()) maxColumnHeight = std::min(maxColumnHeight, multicolBlock->computeContentLogicalHeight(MaxSize, multicolStyle.logicalMaxHeight(), Nullopt).valueOr(maxColumnHeight)); return heightAdjustedForSetOffset(maxColumnHeight); } LayoutUnit RenderMultiColumnSet::columnGap() const { // FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just // go to the parent block to get the gap. RenderBlockFlow& parentBlock = downcast(*parent()); if (parentBlock.style().hasNormalColumnGap()) return parentBlock.style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches

margins. return parentBlock.style().columnGap(); } unsigned RenderMultiColumnSet::columnCount() const { // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation, // and will confuse and cause problems in other parts of the code. if (!computedColumnHeight()) return 1; // Our portion rect determines our column count. We have as many columns as needed to fit all the content. LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width(); if (!logicalHeightInColumns) return 1; unsigned count = ceil(static_cast(logicalHeightInColumns) / computedColumnHeight()); ASSERT(count >= 1); return count; } LayoutUnit RenderMultiColumnSet::columnLogicalLeft(unsigned index) const { LayoutUnit colLogicalWidth = computedColumnWidth(); LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft(); LayoutUnit colGap = columnGap(); bool progressionReversed = multiColumnFlowThread()->progressionIsReversed(); bool progressionInline = multiColumnFlowThread()->progressionIsInline(); if (progressionInline) { if (style().isLeftToRightDirection() ^ progressionReversed) colLogicalLeft += index * (colLogicalWidth + colGap); else colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap); } return colLogicalLeft; } LayoutUnit RenderMultiColumnSet::columnLogicalTop(unsigned index) const { LayoutUnit colLogicalHeight = computedColumnHeight(); LayoutUnit colLogicalTop = borderAndPaddingBefore(); LayoutUnit colGap = columnGap(); bool progressionReversed = multiColumnFlowThread()->progressionIsReversed(); bool progressionInline = multiColumnFlowThread()->progressionIsInline(); if (!progressionInline) { if (!progressionReversed) colLogicalTop += index * (colLogicalHeight + colGap); else colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap); } return colLogicalTop; } LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const { LayoutUnit colLogicalWidth = computedColumnWidth(); LayoutUnit colLogicalHeight = computedColumnHeight(); if (isHorizontalWritingMode()) return LayoutRect(columnLogicalLeft(index), columnLogicalTop(index), colLogicalWidth, colLogicalHeight); return LayoutRect(columnLogicalTop(index), columnLogicalLeft(index), colLogicalHeight, colLogicalWidth); } unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const { LayoutRect portionRect(flowThreadPortionRect()); // Handle the offset being out of range. LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x(); if (offset < flowThreadLogicalTop) return 0; // If we're laying out right now, we cannot constrain against some logical bottom, since it // isn't known yet. Otherwise, just return the last column if we're past the logical bottom. if (mode == ClampToExistingColumns) { LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX(); if (offset >= flowThreadLogicalBottom) return columnCount() - 1; } // Sometimes computedColumnHeight() is 0 here: see https://bugs.webkit.org/show_bug.cgi?id=132884 if (!computedColumnHeight()) return 0; // Just divide by the column height to determine the correct column. return static_cast(offset - flowThreadLogicalTop) / computedColumnHeight(); } LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const { LayoutRect portionRect = flowThreadPortionRect(); if (isHorizontalWritingMode()) portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight()); else portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height()); return portionRect; } LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) { // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column // gap along interior edges. // // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of // the last column. This applies only to the true first column and last column across all column sets. // // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting // mode that understands not to paint contents from a previous column in the overflow area of a following column. // This problem applies to regions and pages as well and is not unique to columns. bool progressionReversed = multiColumnFlowThread()->progressionIsReversed(); bool isFirstColumn = !index; bool isLastColumn = index == colCount - 1; bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn; bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn; // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical // top/bottom unless it's the first/last column. LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion(), VisualOverflow); // Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column // gaps. Also make sure that we avoid rounding errors. if (isHorizontalWritingMode()) { if (!isLeftmostColumn) overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2); if (!isRightmostColumn) overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2); } else { if (!isLeftmostColumn) overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2); if (!isRightmostColumn) overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2); } return overflowRect; } void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset) { if (paintInfo.context().paintingDisabled()) return; RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread(); const RenderStyle& blockStyle = parent()->style(); const Color& ruleColor = blockStyle.visitedDependentColor(CSSPropertyColumnRuleColor); bool ruleTransparent = blockStyle.columnRuleIsTransparent(); EBorderStyle ruleStyle = collapsedBorderStyle(blockStyle.columnRuleStyle()); LayoutUnit ruleThickness = blockStyle.columnRuleWidth(); LayoutUnit colGap = columnGap(); bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent; if (!renderRule) return; unsigned colCount = columnCount(); if (colCount <= 1) return; bool antialias = shouldAntialiasLines(paintInfo.context()); if (flowThread->progressionIsInline()) { bool leftToRight = style().isLeftToRightDirection() ^ flowThread->progressionIsReversed(); LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth(); LayoutUnit ruleAdd = logicalLeftOffsetForContent(); LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth(); LayoutUnit inlineDirectionSize = computedColumnWidth(); BoxSide boxSide = isHorizontalWritingMode() ? leftToRight ? BSLeft : BSRight : leftToRight ? BSTop : BSBottom; for (unsigned i = 0; i < colCount; i++) { // Move to the next position. if (leftToRight) { ruleLogicalLeft += inlineDirectionSize + colGap / 2; currLogicalLeftOffset += inlineDirectionSize + colGap; } else { ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); currLogicalLeftOffset -= (inlineDirectionSize + colGap); } // Now paint the column rule. if (i < colCount - 1) { LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft(); LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth(); LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd; LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness; IntRect pixelSnappedRuleRect = snappedIntRect(ruleLeft, ruleTop, ruleRight - ruleLeft, ruleBottom - ruleTop); drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); } ruleLogicalLeft = currLogicalLeftOffset; } } else { bool topToBottom = !style().isFlippedBlocksWritingMode() ^ flowThread->progressionIsReversed(); LayoutUnit ruleLeft = isHorizontalWritingMode() ? LayoutUnit() : colGap / 2 - colGap - ruleThickness / 2; LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness; LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : LayoutUnit(); LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight(); LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight); if (!topToBottom) { if (isHorizontalWritingMode()) ruleRect.setY(height() - ruleRect.maxY()); else ruleRect.setX(width() - ruleRect.maxX()); } ruleRect.moveBy(paintOffset); BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight; LayoutSize step(0, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap)); if (!isHorizontalWritingMode()) step = step.transposedSize(); for (unsigned i = 1; i < colCount; i++) { ruleRect.move(step); IntRect pixelSnappedRuleRect = snappedIntRect(ruleRect); drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); } } } void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect) { // Figure out the start and end columns and only check within that range so that we don't walk the // entire column set. Put the repaint rect into flow thread coordinates by flipping it first. LayoutRect flowThreadRepaintRect(repaintRect); flowThread()->flipForWritingMode(flowThreadRepaintRect); // Now we can compare this rect with the flow thread portions owned by each column. First let's // just see if the repaint rect intersects our flow thread portion at all. LayoutRect clippedRect(flowThreadRepaintRect); clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect()); if (clippedRect.isEmpty()) return; // Now we know we intersect at least one column. Let's figure out the logical top and logical // bottom of the area we're repainting. LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x(); LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1; unsigned startColumn = columnIndexAtOffset(repaintLogicalTop); unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom); LayoutUnit colGap = columnGap(); unsigned colCount = columnCount(); for (unsigned i = startColumn; i <= endColumn; i++) { LayoutRect colRect = columnRectAt(i); // Get the portion of the flow thread that corresponds to this column. LayoutRect flowThreadPortion = flowThreadPortionRectAt(i); // Now get the overflow rect that corresponds to the column. LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap); // Do a repaint for this specific column. flipForWritingMode(colRect); repaintFlowThreadContentRectangle(repaintRect, flowThreadPortion, colRect.location(), &flowThreadOverflowPortion); } } LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const { bool progressionReversed = multiColumnFlowThread()->progressionIsReversed(); bool progressionIsInline = multiColumnFlowThread()->progressionIsInline(); LayoutUnit result = 0; if (!progressionIsInline && progressionReversed) { LayoutRect colRect = columnRectAt(0); result = isHorizontalWritingMode() ? colRect.y() : colRect.x(); } return result; } void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) { // Let's start by introducing the different coordinate systems involved here. They are different // in how they deal with writing modes and columns. RenderLayer rectangles tend to be more // physical than the rectangles used in RenderObject & co. // // The two rectangles passed to this method are physical, except that we pretend that there's // only one long column (that's the flow thread). They are relative to the top left corner of // the flow thread. All rectangles being compared to the dirty rect also need to be in this // coordinate system. // // Then there's the output from this method - the stuff we put into the list of fragments. The // translationOffset point is the actual physical translation required to get from a location in // the flow thread to a location in some column. The paginationClip rectangle is in the same // coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread // coordinates, pretending that there's only one long column). // // All other rectangles in this method are slightly less physical, when it comes to how they are // used with different writing modes, but they aren't really logical either. They are just like // RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction // coordinate is too, but the block direction coordinate is always "logical top". These // rectangles also pretend that there's only one long column, i.e. they are for the flow thread. // // To sum up: input and output from this method are "physical" RenderLayer-style rectangles and // points, while inside this method we mostly use the RenderObject-style rectangles (with the // block direction coordinate always being logical top). // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in // a renderer, most rectangles are represented this way. LayoutRect layerBoundsInFlowThread(layerBoundingBox); flowThread()->flipForWritingMode(layerBoundsInFlowThread); // Now we can compare with the flow thread portions owned by each column. First let's // see if the rect intersects our flow thread portion at all. LayoutRect clippedRect(layerBoundsInFlowThread); clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect()); if (clippedRect.isEmpty()) return; // Now we know we intersect at least one column. Let's figure out the logical top and logical // bottom of the area we're checking. LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x(); LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1; // Figure out the start and end columns and only check within that range so that we don't walk the // entire column set. unsigned startColumn = columnIndexAtOffset(layerLogicalTop); unsigned endColumn = columnIndexAtOffset(layerLogicalBottom); LayoutUnit colLogicalWidth = computedColumnWidth(); LayoutUnit colGap = columnGap(); unsigned colCount = columnCount(); bool progressionReversed = multiColumnFlowThread()->progressionIsReversed(); bool progressionIsInline = multiColumnFlowThread()->progressionIsInline(); LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); for (unsigned i = startColumn; i <= endColumn; i++) { // Get the portion of the flow thread that corresponds to this column. LayoutRect flowThreadPortion = flowThreadPortionRectAt(i); // Now get the overflow rect that corresponds to the column. LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap); // In order to create a fragment we must intersect the portion painted by this column. LayoutRect clippedRect(layerBoundsInFlowThread); clippedRect.intersect(flowThreadOverflowPortion); if (clippedRect.isEmpty()) continue; // We also need to intersect the dirty rect. We have to apply a translation and shift based off // our column index. LayoutSize translationOffset; LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : LayoutUnit(); bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed; if (!leftToRight) { inlineOffset = -inlineOffset; if (progressionReversed) inlineOffset += contentLogicalWidth() - colLogicalWidth; } translationOffset.setWidth(inlineOffset); LayoutUnit blockOffset = initialBlockOffset + logicalTop() - flowThread()->logicalTop() + (isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x()); if (!progressionIsInline) { if (!progressionReversed) blockOffset = i * colGap; else blockOffset -= i * (computedColumnHeight() + colGap); } if (isFlippedWritingMode(style().writingMode())) blockOffset = -blockOffset; translationOffset.setHeight(blockOffset); if (!isHorizontalWritingMode()) translationOffset = translationOffset.transposedSize(); // Shift the dirty rect to be in flow thread coordinates with this translation applied. LayoutRect translatedDirtyRect(dirtyRect); translatedDirtyRect.move(-translationOffset); // See if we intersect the dirty rect. clippedRect = layerBoundingBox; clippedRect.intersect(translatedDirtyRect); if (clippedRect.isEmpty()) continue; // Something does need to paint in this column. Make a fragment now and supply the physical translation // offset and the clip rect for the column with that offset applied. LayerFragment fragment; fragment.paginationOffset = translationOffset; LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion); // Flip it into more a physical (RenderLayer-style) rectangle. flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion); fragment.paginationClip = flippedFlowThreadOverflowPortion; fragments.append(fragment); } } LayoutPoint RenderMultiColumnSet::columnTranslationForOffset(const LayoutUnit& offset) const { unsigned startColumn = columnIndexAtOffset(offset); LayoutUnit colGap = columnGap(); LayoutRect flowThreadPortion = flowThreadPortionRectAt(startColumn); LayoutPoint translationOffset; bool progressionReversed = multiColumnFlowThread()->progressionIsReversed(); bool progressionIsInline = multiColumnFlowThread()->progressionIsInline(); LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); translationOffset.setX(columnLogicalLeft(startColumn)); LayoutUnit blockOffset = initialBlockOffset - (isHorizontalWritingMode() ? flowThreadPortion.y() : flowThreadPortion.x()); if (!progressionIsInline) { if (!progressionReversed) blockOffset = startColumn * colGap; else blockOffset -= startColumn * (computedColumnHeight() + colGap); } if (isFlippedWritingMode(style().writingMode())) blockOffset = -blockOffset; translationOffset.setY(blockOffset); if (!isHorizontalWritingMode()) translationOffset = translationOffset.transposedPoint(); return translationOffset; } void RenderMultiColumnSet::adjustRegionBoundsFromFlowThreadPortionRect(LayoutRect&) const { // This only fires for named flow thread compositing code, so let's make sure to ASSERT if this ever gets invoked. ASSERT_NOT_REACHED(); } void RenderMultiColumnSet::addOverflowFromChildren() { // FIXME: Need to do much better here. unsigned colCount = columnCount(); if (!colCount) return; LayoutRect lastRect = columnRectAt(colCount - 1); addLayoutOverflow(lastRect); if (!hasOverflowClip()) addVisualOverflow(lastRect); } VisiblePosition RenderMultiColumnSet::positionForPoint(const LayoutPoint& logicalPoint, const RenderRegion*) { return multiColumnFlowThread()->positionForPoint(translateRegionPointToFlowThread(logicalPoint, ClampHitTestTranslationToColumns), this); } LayoutPoint RenderMultiColumnSet::translateRegionPointToFlowThread(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode clampMode) const { // Determine which columns we intersect. LayoutUnit colGap = columnGap(); LayoutUnit halfColGap = colGap / 2; bool progressionIsInline = multiColumnFlowThread()->progressionIsInline(); LayoutPoint point = logicalPoint; for (unsigned i = 0; i < columnCount(); i++) { // Add in half the column gap to the left and right of the rect. LayoutRect colRect = columnRectAt(i); if (isHorizontalWritingMode() == progressionIsInline) { LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { if (clampMode == ClampHitTestTranslationToColumns) { if (progressionIsInline) { // FIXME: The clamping that follows is not completely right for right-to-left // content. // Clamp everything above the column to its top left. if (point.y() < gapAndColumnRect.y()) point = gapAndColumnRect.location(); // Clamp everything below the column to the next column's top left. If there is // no next column, this still maps to just after this column. else if (point.y() >= gapAndColumnRect.maxY()) { point = gapAndColumnRect.location(); point.move(0, gapAndColumnRect.height()); } } else { if (point.x() < colRect.x()) point.setX(colRect.x()); else if (point.x() >= colRect.maxX()) point.setX(colRect.maxX() - 1); } } LayoutSize offsetInColumn = point - colRect.location(); LayoutRect flowThreadPortion = flowThreadPortionRectAt(i); return flowThreadPortion.location() + offsetInColumn; } } else { LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { if (clampMode == ClampHitTestTranslationToColumns) { if (progressionIsInline) { // FIXME: The clamping that follows is not completely right for right-to-left // content. // Clamp everything above the column to its top left. if (point.x() < gapAndColumnRect.x()) point = gapAndColumnRect.location(); // Clamp everything below the column to the next column's top left. If there is // no next column, this still maps to just after this column. else if (point.x() >= gapAndColumnRect.maxX()) { point = gapAndColumnRect.location(); point.move(gapAndColumnRect.width(), 0); } } else { if (point.y() < colRect.y()) point.setY(colRect.y()); else if (point.y() >= colRect.maxY()) point.setY(colRect.maxY() - 1); } } LayoutSize offsetInColumn = point - colRect.location(); LayoutRect flowThreadPortion = flowThreadPortionRectAt(i); return flowThreadPortion.location() + offsetInColumn; } } } return logicalPoint; } void RenderMultiColumnSet::updateHitTestResult(HitTestResult& result, const LayoutPoint& point) { if (result.innerNode() || !parent()->isRenderView()) return; // Note this does not work with column spans, but once we implement RenderPageSet, we can move this code // over there instead (and spans of course won't be allowed on pages). Node* node = document().documentElement(); if (node) { result.setInnerNode(node); if (!result.innerNonSharedNode()) result.setInnerNonSharedNode(node); LayoutPoint adjustedPoint = translateRegionPointToFlowThread(point); view().offsetForContents(adjustedPoint); result.setLocalPoint(adjustedPoint); } } const char* RenderMultiColumnSet::renderName() const { return "RenderMultiColumnSet"; } }