/* * Copyright (C) 2005 Frerich Raabe * Copyright (C) 2006, 2009 Apple Inc. All rights reserved. * Copyright (C) 2007 Alexey Proskuryakov * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "XPathStep.h" #include "Attr.h" #include "Document.h" #include "HTMLDocument.h" #include "HTMLElement.h" #include "NodeTraversal.h" #include "XMLNSNames.h" #include "XPathParser.h" #include "XPathUtil.h" namespace WebCore { namespace XPath { Step::Step(Axis axis, NodeTest nodeTest) : m_axis(axis) , m_nodeTest(WTFMove(nodeTest)) { } Step::Step(Axis axis, NodeTest nodeTest, Vector> predicates) : m_axis(axis) , m_nodeTest(WTFMove(nodeTest)) , m_predicates(WTFMove(predicates)) { } Step::~Step() { } void Step::optimize() { // Evaluate predicates as part of node test if possible to avoid building unnecessary NodeSets. // E.g., there is no need to build a set of all "foo" nodes to evaluate "foo[@bar]", we can check the predicate while enumerating. // This optimization can be applied to predicates that are not context node list sensitive, or to first predicate that is only context position sensitive, e.g. foo[position() mod 2 = 0]. Vector> remainingPredicates; for (auto& predicate : m_predicates) { if ((!predicateIsContextPositionSensitive(*predicate) || m_nodeTest.m_mergedPredicates.isEmpty()) && !predicate->isContextSizeSensitive() && remainingPredicates.isEmpty()) m_nodeTest.m_mergedPredicates.append(WTFMove(predicate)); else remainingPredicates.append(WTFMove(predicate)); } m_predicates = WTFMove(remainingPredicates); } void optimizeStepPair(Step& first, Step& second, bool& dropSecondStep) { dropSecondStep = false; if (first.m_axis != Step::DescendantOrSelfAxis) return; if (first.m_nodeTest.m_kind != Step::NodeTest::AnyNodeTest) return; if (!first.m_predicates.isEmpty()) return; if (!first.m_nodeTest.m_mergedPredicates.isEmpty()) return; ASSERT(first.m_nodeTest.m_data.isEmpty()); ASSERT(first.m_nodeTest.m_namespaceURI.isEmpty()); // Optimize the common case of "//" AKA /descendant-or-self::node()/child::NodeTest to /descendant::NodeTest. if (second.m_axis != Step::ChildAxis) return; if (!second.predicatesAreContextListInsensitive()) return; first.m_axis = Step::DescendantAxis; first.m_nodeTest = WTFMove(second.m_nodeTest); first.m_predicates = WTFMove(second.m_predicates); first.optimize(); dropSecondStep = true; } bool Step::predicatesAreContextListInsensitive() const { for (auto& predicate : m_predicates) { if (predicateIsContextPositionSensitive(*predicate) || predicate->isContextSizeSensitive()) return false; } for (auto& predicate : m_nodeTest.m_mergedPredicates) { if (predicateIsContextPositionSensitive(*predicate) || predicate->isContextSizeSensitive()) return false; } return true; } void Step::evaluate(Node& context, NodeSet& nodes) const { EvaluationContext& evaluationContext = Expression::evaluationContext(); evaluationContext.position = 0; nodesInAxis(context, nodes); // Check predicates that couldn't be merged into node test. for (auto& predicate : m_predicates) { NodeSet newNodes; if (!nodes.isSorted()) newNodes.markSorted(false); for (unsigned j = 0; j < nodes.size(); j++) { Node* node = nodes[j]; evaluationContext.node = node; evaluationContext.size = nodes.size(); evaluationContext.position = j + 1; if (evaluatePredicate(*predicate)) newNodes.append(node); } nodes = WTFMove(newNodes); } } #if !ASSERT_DISABLED static inline Node::NodeType primaryNodeType(Step::Axis axis) { switch (axis) { case Step::AttributeAxis: return Node::ATTRIBUTE_NODE; default: return Node::ELEMENT_NODE; } } #endif // Evaluate NodeTest without considering merged predicates. inline bool nodeMatchesBasicTest(Node& node, Step::Axis axis, const Step::NodeTest& nodeTest) { switch (nodeTest.m_kind) { case Step::NodeTest::TextNodeTest: return node.nodeType() == Node::TEXT_NODE || node.nodeType() == Node::CDATA_SECTION_NODE; case Step::NodeTest::CommentNodeTest: return node.nodeType() == Node::COMMENT_NODE; case Step::NodeTest::ProcessingInstructionNodeTest: { const AtomicString& name = nodeTest.m_data; return node.nodeType() == Node::PROCESSING_INSTRUCTION_NODE && (name.isEmpty() || node.nodeName() == name); } case Step::NodeTest::AnyNodeTest: return true; case Step::NodeTest::NameTest: { const AtomicString& name = nodeTest.m_data; const AtomicString& namespaceURI = nodeTest.m_namespaceURI; if (axis == Step::AttributeAxis) { ASSERT(node.isAttributeNode()); // In XPath land, namespace nodes are not accessible on the attribute axis. if (node.namespaceURI() == XMLNSNames::xmlnsNamespaceURI) return false; if (name == starAtom) return namespaceURI.isEmpty() || node.namespaceURI() == namespaceURI; return node.localName() == name && node.namespaceURI() == namespaceURI; } // Node test on the namespace axis is not implemented yet, the caller has a check for it. ASSERT(axis != Step::NamespaceAxis); // For other axes, the principal node type is element. ASSERT(primaryNodeType(axis) == Node::ELEMENT_NODE); if (!is(node)) return false; if (name == starAtom) return namespaceURI.isEmpty() || namespaceURI == node.namespaceURI(); if (is(node.document())) { if (is(node)) { // Paths without namespaces should match HTML elements in HTML documents despite those having an XHTML namespace. Names are compared case-insensitively. return equalIgnoringASCIICase(downcast(node).localName(), name) && (namespaceURI.isNull() || namespaceURI == node.namespaceURI()); } // An expression without any prefix shouldn't match no-namespace nodes (because HTML5 says so). return downcast(node).hasLocalName(name) && namespaceURI == node.namespaceURI() && !namespaceURI.isNull(); } return downcast(node).hasLocalName(name) && namespaceURI == node.namespaceURI(); } } ASSERT_NOT_REACHED(); return false; } inline bool nodeMatches(Node& node, Step::Axis axis, const Step::NodeTest& nodeTest) { if (!nodeMatchesBasicTest(node, axis, nodeTest)) return false; EvaluationContext& evaluationContext = Expression::evaluationContext(); // Only the first merged predicate may depend on position. ++evaluationContext.position; for (auto& predicate : nodeTest.m_mergedPredicates) { // No need to set context size - we only get here when evaluating predicates that do not depend on it. evaluationContext.node = &node; if (!evaluatePredicate(*predicate)) return false; } return true; } // Result nodes are ordered in axis order. Node test (including merged predicates) is applied. void Step::nodesInAxis(Node& context, NodeSet& nodes) const { ASSERT(nodes.isEmpty()); switch (m_axis) { case ChildAxis: if (context.isAttributeNode()) // In XPath model, attribute nodes do not have children. return; for (Node* node = context.firstChild(); node; node = node->nextSibling()) { if (nodeMatches(*node, ChildAxis, m_nodeTest)) nodes.append(node); } return; case DescendantAxis: if (context.isAttributeNode()) // In XPath model, attribute nodes do not have children. return; for (Node* node = context.firstChild(); node; node = NodeTraversal::next(*node, &context)) { if (nodeMatches(*node, DescendantAxis, m_nodeTest)) nodes.append(node); } return; case ParentAxis: if (context.isAttributeNode()) { Element* node = static_cast(context).ownerElement(); if (nodeMatches(*node, ParentAxis, m_nodeTest)) nodes.append(node); } else { ContainerNode* node = context.parentNode(); if (node && nodeMatches(*node, ParentAxis, m_nodeTest)) nodes.append(node); } return; case AncestorAxis: { Node* node = &context; if (context.isAttributeNode()) { node = static_cast(context).ownerElement(); if (nodeMatches(*node, AncestorAxis, m_nodeTest)) nodes.append(node); } for (node = node->parentNode(); node; node = node->parentNode()) { if (nodeMatches(*node, AncestorAxis, m_nodeTest)) nodes.append(node); } nodes.markSorted(false); return; } case FollowingSiblingAxis: if (context.isAttributeNode()) return; for (Node* node = context.nextSibling(); node; node = node->nextSibling()) { if (nodeMatches(*node, FollowingSiblingAxis, m_nodeTest)) nodes.append(node); } return; case PrecedingSiblingAxis: if (context.isAttributeNode()) return; for (Node* node = context.previousSibling(); node; node = node->previousSibling()) { if (nodeMatches(*node, PrecedingSiblingAxis, m_nodeTest)) nodes.append(node); } nodes.markSorted(false); return; case FollowingAxis: if (context.isAttributeNode()) { Node* node = static_cast(context).ownerElement(); while ((node = NodeTraversal::next(*node))) { if (nodeMatches(*node, FollowingAxis, m_nodeTest)) nodes.append(node); } } else { for (Node* parent = &context; !isRootDomNode(parent); parent = parent->parentNode()) { for (Node* node = parent->nextSibling(); node; node = node->nextSibling()) { if (nodeMatches(*node, FollowingAxis, m_nodeTest)) nodes.append(node); for (Node* child = node->firstChild(); child; child = NodeTraversal::next(*child, node)) { if (nodeMatches(*child, FollowingAxis, m_nodeTest)) nodes.append(child); } } } } return; case PrecedingAxis: { Node* node; if (context.isAttributeNode()) node = static_cast(context).ownerElement(); else node = &context; while (ContainerNode* parent = node->parentNode()) { for (node = NodeTraversal::previous(*node); node != parent; node = NodeTraversal::previous(*node)) { if (nodeMatches(*node, PrecedingAxis, m_nodeTest)) nodes.append(node); } node = parent; } nodes.markSorted(false); return; } case AttributeAxis: { if (!is(context)) return; Element& contextElement = downcast(context); // Avoid lazily creating attribute nodes for attributes that we do not need anyway. if (m_nodeTest.m_kind == NodeTest::NameTest && m_nodeTest.m_data != starAtom) { RefPtr attr = contextElement.getAttributeNodeNS(m_nodeTest.m_namespaceURI, m_nodeTest.m_data); if (attr && attr->namespaceURI() != XMLNSNames::xmlnsNamespaceURI) { // In XPath land, namespace nodes are not accessible on the attribute axis. if (nodeMatches(*attr, AttributeAxis, m_nodeTest)) // Still need to check merged predicates. nodes.append(attr.release()); } return; } if (!contextElement.hasAttributes()) return; for (const Attribute& attribute : contextElement.attributesIterator()) { RefPtr attr = contextElement.ensureAttr(attribute.name()); if (nodeMatches(*attr, AttributeAxis, m_nodeTest)) nodes.append(attr.release()); } return; } case NamespaceAxis: // XPath namespace nodes are not implemented yet. return; case SelfAxis: if (nodeMatches(context, SelfAxis, m_nodeTest)) nodes.append(&context); return; case DescendantOrSelfAxis: if (nodeMatches(context, DescendantOrSelfAxis, m_nodeTest)) nodes.append(&context); if (context.isAttributeNode()) // In XPath model, attribute nodes do not have children. return; for (Node* node = context.firstChild(); node; node = NodeTraversal::next(*node, &context)) { if (nodeMatches(*node, DescendantOrSelfAxis, m_nodeTest)) nodes.append(node); } return; case AncestorOrSelfAxis: { if (nodeMatches(context, AncestorOrSelfAxis, m_nodeTest)) nodes.append(&context); Node* node = &context; if (context.isAttributeNode()) { node = static_cast(context).ownerElement(); if (nodeMatches(*node, AncestorOrSelfAxis, m_nodeTest)) nodes.append(node); } for (node = node->parentNode(); node; node = node->parentNode()) { if (nodeMatches(*node, AncestorOrSelfAxis, m_nodeTest)) nodes.append(node); } nodes.markSorted(false); return; } } ASSERT_NOT_REACHED(); } } }