/* Copyright 2002 - 2016, The gtkmm Development Team * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ // Bug 564005 - Valgrind errors and crash on exit with Gtk::UIManager // Bug 154498 - Unnecessary warning on console: signalproxy_connectionnode.cc // libsigc++-only test case. (Or almost so. RefPtr is stolen from glibmm.) // This test case is much more useful if it's run under valgrind. #include "testutilities.h" #include #define ACTIVATE_BUG 1 #ifndef _GLIBMM_REFPTR_H #define _GLIBMM_REFPTR_H //#include namespace Glib { /** RefPtr<> is a reference-counting shared smartpointer. * * Some objects in gtkmm are obtained from a shared * store. Consequently you cannot instantiate them yourself. Instead they * return a RefPtr which behaves much like an ordinary pointer in that members * can be reached with the usual object_ptr->member notation. * Unlike most other smart pointers, RefPtr doesn't support dereferencing * through *object_ptr. * * Reference counting means that a shared reference count is incremented each * time a RefPtr is copied, and decremented each time a RefPtr is destroyed, * for instance when it leaves its scope. When the reference count reaches * zero, the contained object is deleted, meaning you don't need to remember * to delete the object. * * RefPtr<> can store any class that has reference() and unreference() methods. * In gtkmm, that is anything derived from Glib::ObjectBase, such as * Gdk::Pixmap. * * See the "Memory Management" section in the "Programming with gtkmm" * book for further information. */ template class RefPtr { public: /** Default constructor * * Afterwards it will be null and use of -> will cause a segmentation fault. */ inline RefPtr(); /// Destructor - decrements reference count. inline ~RefPtr(); /// For use only by the ::create() methods. explicit inline RefPtr(T_CppObject* pCppObject); /** Copy constructor * * This increments the shared reference count. */ inline RefPtr(const RefPtr& src); /** Copy constructor (from different, but castable type). * * Increments the reference count. */ template inline explicit RefPtr(const RefPtr& src); /** Swap the contents of two RefPtr<>. * This method swaps the internal pointers to T_CppObject. This can be * done safely without involving a reference/unreference cycle and is * therefore highly efficient. */ inline void swap(RefPtr& other); /// Copy from another RefPtr: inline RefPtr& operator=(const RefPtr& src); /** Copy from different, but castable type). * * Increments the reference count. */ template inline RefPtr& operator=(const RefPtr& src); /// Tests whether the RefPtr<> point to the same underlying instance. inline bool operator==(const RefPtr& src) const; /// See operator==(). inline bool operator!=(const RefPtr& src) const; /** Dereferencing. * * Use the methods of the underlying instance like so: * refptr->memberfun(). */ inline T_CppObject* operator->() const; /** Test whether the RefPtr<> points to any underlying instance. * * Mimics usage of ordinary pointers: * @code * if (ptr) * do_something(); * @endcode */ inline explicit operator bool() const; #ifndef GLIBMM_DISABLE_DEPRECATED /// @deprecated Use reset() instead because this leads to confusion with clear() methods on the /// underlying class. For instance, people use .clear() when they mean ->clear(). inline void clear(); #endif // GLIBMM_DISABLE_DEPRECATED /** Set underlying instance to 0, decrementing reference count of existing instance appropriately. * @newin{2,16} */ inline void reset(); /** Dynamic cast to derived class. * * The RefPtr can't be cast with the usual notation so instead you can use * @code * ptr_derived = RefPtr::cast_dynamic(ptr_base); * @endcode */ template static inline RefPtr cast_dynamic(const RefPtr& src); /** Static cast to derived class. * * Like the dynamic cast; the notation is * @code * ptr_derived = RefPtr::cast_static(ptr_base); * @endcode */ template static inline RefPtr cast_static(const RefPtr& src); /** Cast to non-const. * * The RefPtr can't be cast with the usual notation so instead you can use * @code * ptr_unconst = RefPtr::cast_const(ptr_const); * @endcode */ template static inline RefPtr cast_const(const RefPtr& src); /** Compare based on the underlying instance address. * * This is needed in code that requires an ordering on * RefPtr instances, e.g. std::set >. * * Without these, comparing two RefPtr instances * is still syntactically possible, but the result is semantically * wrong, as p1 REL_OP p2 is interpreted as (bool)p1 REL_OP (bool)p2. */ inline bool operator<(const RefPtr& src) const; /// See operator<(). inline bool operator<=(const RefPtr& src) const; /// See operator<(). inline bool operator>(const RefPtr& src) const; /// See operator<(). inline bool operator>=(const RefPtr& src) const; private: T_CppObject* pCppObject_; }; #ifndef DOXYGEN_SHOULD_SKIP_THIS // RefPtr<>::operator->() comes first here since it's used by other methods. // If it would come after them it wouldn't be inlined. template inline T_CppObject* RefPtr::operator->() const { return pCppObject_; } template inline RefPtr::RefPtr() : pCppObject_(nullptr) { } template inline RefPtr::~RefPtr() { if (pCppObject_) pCppObject_->unreference(); // This could cause pCppObject to be deleted. } template inline RefPtr::RefPtr(T_CppObject* pCppObject) : pCppObject_(pCppObject) { } template inline RefPtr::RefPtr(const RefPtr& src) : pCppObject_(src.pCppObject_) { if (pCppObject_) pCppObject_->reference(); } // The templated ctor allows copy construction from any object that's // castable. Thus, it does downcasts: // base_ref = derived_ref template template inline RefPtr::RefPtr(const RefPtr& src) : // A different RefPtr<> will not allow us access to pCppObject_. We need // to add a get_underlying() for this, but that would encourage incorrect // use, so we use the less well-known operator->() accessor: pCppObject_(src.operator->()) { if (pCppObject_) pCppObject_->reference(); } template inline void RefPtr::swap(RefPtr& other) { const auto temp = pCppObject_; pCppObject_ = other.pCppObject_; other.pCppObject_ = temp; } template inline RefPtr& RefPtr::operator=(const RefPtr& src) { // In case you haven't seen the swap() technique to implement copy // assignment before, here's what it does: // // 1) Create a temporary RefPtr<> instance via the copy ctor, thereby // increasing the reference count of the source object. // // 2) Swap the internal object pointers of *this and the temporary // RefPtr<>. After this step, *this already contains the new pointer, // and the old pointer is now managed by temp. // // 3) The destructor of temp is executed, thereby unreferencing the // old object pointer. // // This technique is described in Herb Sutter's "Exceptional C++", and // has a number of advantages over conventional approaches: // // - Code reuse by calling the copy ctor. // - Strong exception safety for free. // - Self assignment is handled implicitely. // - Simplicity. // - It just works and is hard to get wrong; i.e. you can use it without // even thinking about it to implement copy assignment whereever the // object data is managed indirectly via a pointer, which is very common. RefPtr temp(src); this->swap(temp); return *this; } template template inline RefPtr& RefPtr::operator=(const RefPtr& src) { RefPtr temp(src); this->swap(temp); return *this; } template inline bool RefPtr::operator==(const RefPtr& src) const { return (pCppObject_ == src.pCppObject_); } template inline bool RefPtr::operator!=(const RefPtr& src) const { return (pCppObject_ != src.pCppObject_); } template inline RefPtr::operator bool() const { return (pCppObject_ != nullptr); } #ifndef GLIBMM_DISABLE_DEPRECATED template inline void RefPtr::clear() { reset(); } #endif // GLIBMM_DISABLE_DEPRECATED template inline void RefPtr::reset() { RefPtr temp; // swap with an empty RefPtr<> to clear *this this->swap(temp); } template template inline RefPtr RefPtr::cast_dynamic(const RefPtr& src) { const auto pCppObject = dynamic_cast(src.operator->()); if (pCppObject) pCppObject->reference(); return RefPtr(pCppObject); } template template inline RefPtr RefPtr::cast_static(const RefPtr& src) { const auto pCppObject = static_cast(src.operator->()); if (pCppObject) pCppObject->reference(); return RefPtr(pCppObject); } template template inline RefPtr RefPtr::cast_const(const RefPtr& src) { const auto pCppObject = const_cast(src.operator->()); if (pCppObject) pCppObject->reference(); return RefPtr(pCppObject); } template inline bool RefPtr::operator<(const RefPtr& src) const { return (pCppObject_ < src.pCppObject_); } template inline bool RefPtr::operator<=(const RefPtr& src) const { return (pCppObject_ <= src.pCppObject_); } template inline bool RefPtr::operator>(const RefPtr& src) const { return (pCppObject_ > src.pCppObject_); } template inline bool RefPtr::operator>=(const RefPtr& src) const { return (pCppObject_ >= src.pCppObject_); } #endif /* DOXYGEN_SHOULD_SKIP_THIS */ /** @relates Glib::RefPtr */ template inline void swap(RefPtr& lhs, RefPtr& rhs) { lhs.swap(rhs); } } // namespace Glib #endif /* _GLIBMM_REFPTR_H */ namespace { std::ostringstream result_stream; class Action : public sigc::trackable { public: Action() : ref_count(1) {} void reference() { ++ref_count; } void unreference() { if (--ref_count <= 0) delete this; } void emit_sig1(int n) { sig1.emit(n); } sigc::signal& signal_sig1() { return sig1; } private: sigc::signal sig1; int ref_count; }; class Test : public sigc::trackable { public: Test() : action(new Action) { result_stream << "new Test; "; #ifdef ACTIVATE_BUG // See https://bugzilla.gnome.org/show_bug.cgi?id=564005#c14 action->signal_sig1().connect(sigc::bind(sigc::mem_fun(*this, &Test::on_sig1), action)); #else Glib::RefPtr action2(new Action); action->signal_sig1().connect(sigc::bind(sigc::mem_fun(*this, &Test::on_sig1), action2)); #endif } ~Test() { result_stream << "delete Test; "; } void on_sig1(int n, Glib::RefPtr /* action */) { result_stream << "Test::on_sig1, n=" << n << "; "; } Glib::RefPtr action; }; // end Test } // end anonymous namespace int main(int argc, char* argv[]) { auto util = TestUtilities::get_instance(); if (!util->check_command_args(argc, argv)) return util->get_result_and_delete_instance() ? EXIT_SUCCESS : EXIT_FAILURE; auto test = new Test; test->action->emit_sig1(23); delete test; util->check_result(result_stream, "new Test; Test::on_sig1, n=23; delete Test; "); return util->get_result_and_delete_instance() ? EXIT_SUCCESS : EXIT_FAILURE; }