diff options
author | Lorry Tar Creator <lorry-tar-importer@lorry> | 2015-10-15 09:45:50 +0000 |
---|---|---|
committer | Lorry Tar Creator <lorry-tar-importer@lorry> | 2015-10-15 09:45:50 +0000 |
commit | e15dd966d523731101f70ccf768bba12435a0208 (patch) | |
tree | ae9cb828a24ded2585a41af3f21411523b47897d /Source/JavaScriptCore/ftl/FTLLowerDFGToLLVM.cpp | |
download | WebKitGtk-tarball-e15dd966d523731101f70ccf768bba12435a0208.tar.gz |
webkitgtk-2.10.2webkitgtk-2.10.2
Diffstat (limited to 'Source/JavaScriptCore/ftl/FTLLowerDFGToLLVM.cpp')
-rw-r--r-- | Source/JavaScriptCore/ftl/FTLLowerDFGToLLVM.cpp | 8564 |
1 files changed, 8564 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/ftl/FTLLowerDFGToLLVM.cpp b/Source/JavaScriptCore/ftl/FTLLowerDFGToLLVM.cpp new file mode 100644 index 000000000..678629fd9 --- /dev/null +++ b/Source/JavaScriptCore/ftl/FTLLowerDFGToLLVM.cpp @@ -0,0 +1,8564 @@ +/* + * Copyright (C) 2013-2015 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" +#include "FTLLowerDFGToLLVM.h" + +#if ENABLE(FTL_JIT) + +#include "CodeBlockWithJITType.h" +#include "DFGAbstractInterpreterInlines.h" +#include "DFGInPlaceAbstractState.h" +#include "DFGOSRAvailabilityAnalysisPhase.h" +#include "DFGOSRExitFuzz.h" +#include "DirectArguments.h" +#include "FTLAbstractHeapRepository.h" +#include "FTLAvailableRecovery.h" +#include "FTLForOSREntryJITCode.h" +#include "FTLFormattedValue.h" +#include "FTLInlineCacheSize.h" +#include "FTLLoweredNodeValue.h" +#include "FTLOperations.h" +#include "FTLOutput.h" +#include "FTLThunks.h" +#include "FTLWeightedTarget.h" +#include "JSCInlines.h" +#include "JSLexicalEnvironment.h" +#include "OperandsInlines.h" +#include "ScopedArguments.h" +#include "ScopedArgumentsTable.h" +#include "VirtualRegister.h" +#include <atomic> +#include <dlfcn.h> +#include <llvm/InitializeLLVM.h> +#include <unordered_set> +#include <wtf/ProcessID.h> + +namespace JSC { namespace FTL { + +using namespace DFG; + +namespace { + +std::atomic<int> compileCounter; + +#if ASSERT_DISABLED +NO_RETURN_DUE_TO_CRASH static void ftlUnreachable() +{ + CRASH(); +} +#else +NO_RETURN_DUE_TO_CRASH static void ftlUnreachable( + CodeBlock* codeBlock, BlockIndex blockIndex, unsigned nodeIndex) +{ + dataLog("Crashing in thought-to-be-unreachable FTL-generated code for ", pointerDump(codeBlock), " at basic block #", blockIndex); + if (nodeIndex != UINT_MAX) + dataLog(", node @", nodeIndex); + dataLog(".\n"); + CRASH(); +} +#endif + +// Using this instead of typeCheck() helps to reduce the load on LLVM, by creating +// significantly less dead code. +#define FTL_TYPE_CHECK(lowValue, highValue, typesPassedThrough, failCondition) do { \ + FormattedValue _ftc_lowValue = (lowValue); \ + Edge _ftc_highValue = (highValue); \ + SpeculatedType _ftc_typesPassedThrough = (typesPassedThrough); \ + if (!m_interpreter.needsTypeCheck(_ftc_highValue, _ftc_typesPassedThrough)) \ + break; \ + typeCheck(_ftc_lowValue, _ftc_highValue, _ftc_typesPassedThrough, (failCondition)); \ + } while (false) + +class LowerDFGToLLVM { +public: + LowerDFGToLLVM(State& state) + : m_graph(state.graph) + , m_ftlState(state) + , m_heaps(state.context) + , m_out(state.context) + , m_state(state.graph) + , m_interpreter(state.graph, m_state) + , m_stackmapIDs(0) + , m_tbaaKind(mdKindID(state.context, "tbaa")) + , m_tbaaStructKind(mdKindID(state.context, "tbaa.struct")) + { + } + + void lower() + { + CString name; + if (verboseCompilationEnabled()) { + name = toCString( + "jsBody_", ++compileCounter, "_", codeBlock()->inferredName(), + "_", codeBlock()->hash()); + } else + name = "jsBody"; + + m_graph.m_dominators.computeIfNecessary(m_graph); + + m_ftlState.module = + moduleCreateWithNameInContext(name.data(), m_ftlState.context); + + m_ftlState.function = addFunction( + m_ftlState.module, name.data(), functionType(m_out.int64)); + setFunctionCallingConv(m_ftlState.function, LLVMCCallConv); + if (isX86() && Options::llvmDisallowAVX()) { + // AVX makes V8/raytrace 80% slower. It makes Kraken/audio-oscillator 4.5x + // slower. It should be disabled. + addTargetDependentFunctionAttr(m_ftlState.function, "target-features", "-avx"); + } + + if (verboseCompilationEnabled()) + dataLog("Function ready, beginning lowering.\n"); + + m_out.initialize(m_ftlState.module, m_ftlState.function, m_heaps); + + m_prologue = FTL_NEW_BLOCK(m_out, ("Prologue")); + LBasicBlock stackOverflow = FTL_NEW_BLOCK(m_out, ("Stack overflow")); + m_handleExceptions = FTL_NEW_BLOCK(m_out, ("Handle Exceptions")); + + LBasicBlock checkArguments = FTL_NEW_BLOCK(m_out, ("Check arguments")); + + for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { + m_highBlock = m_graph.block(blockIndex); + if (!m_highBlock) + continue; + m_blocks.add(m_highBlock, FTL_NEW_BLOCK(m_out, ("Block ", *m_highBlock))); + } + + m_out.appendTo(m_prologue, stackOverflow); + createPhiVariables(); + + auto preOrder = m_graph.blocksInPreOrder(); + + LValue capturedAlloca = m_out.alloca(arrayType(m_out.int64, m_graph.m_nextMachineLocal)); + + m_captured = m_out.add( + m_out.ptrToInt(capturedAlloca, m_out.intPtr), + m_out.constIntPtr(m_graph.m_nextMachineLocal * sizeof(Register))); + + m_ftlState.capturedStackmapID = m_stackmapIDs++; + m_out.call( + m_out.stackmapIntrinsic(), m_out.constInt64(m_ftlState.capturedStackmapID), + m_out.int32Zero, capturedAlloca); + + // If we have any CallVarargs then we nee to have a spill slot for it. + bool hasVarargs = false; + for (BasicBlock* block : preOrder) { + for (Node* node : *block) { + switch (node->op()) { + case CallVarargs: + case CallForwardVarargs: + case ConstructVarargs: + case ConstructForwardVarargs: + hasVarargs = true; + break; + default: + break; + } + } + } + if (hasVarargs) { + LValue varargsSpillSlots = m_out.alloca( + arrayType(m_out.int64, JSCallVarargs::numSpillSlotsNeeded())); + m_ftlState.varargsSpillSlotsStackmapID = m_stackmapIDs++; + m_out.call( + m_out.stackmapIntrinsic(), m_out.constInt64(m_ftlState.varargsSpillSlotsStackmapID), + m_out.int32Zero, varargsSpillSlots); + } + + // We should not create any alloca's after this point, since they will cease to + // be mem2reg candidates. + + m_callFrame = m_out.ptrToInt( + m_out.call(m_out.frameAddressIntrinsic(), m_out.int32Zero), m_out.intPtr); + m_tagTypeNumber = m_out.constInt64(TagTypeNumber); + m_tagMask = m_out.constInt64(TagMask); + + m_out.storePtr(m_out.constIntPtr(codeBlock()), addressFor(JSStack::CodeBlock)); + + m_out.branch( + didOverflowStack(), rarely(stackOverflow), usually(checkArguments)); + + m_out.appendTo(stackOverflow, m_handleExceptions); + m_out.call(m_out.operation(operationThrowStackOverflowError), m_callFrame, m_out.constIntPtr(codeBlock())); + m_ftlState.handleStackOverflowExceptionStackmapID = m_stackmapIDs++; + m_out.call( + m_out.stackmapIntrinsic(), m_out.constInt64(m_ftlState.handleStackOverflowExceptionStackmapID), + m_out.constInt32(MacroAssembler::maxJumpReplacementSize())); + m_out.unreachable(); + + m_out.appendTo(m_handleExceptions, checkArguments); + m_ftlState.handleExceptionStackmapID = m_stackmapIDs++; + m_out.call( + m_out.stackmapIntrinsic(), m_out.constInt64(m_ftlState.handleExceptionStackmapID), + m_out.constInt32(MacroAssembler::maxJumpReplacementSize())); + m_out.unreachable(); + + m_out.appendTo(checkArguments, lowBlock(m_graph.block(0))); + availabilityMap().clear(); + availabilityMap().m_locals = Operands<Availability>(codeBlock()->numParameters(), 0); + for (unsigned i = codeBlock()->numParameters(); i--;) { + availabilityMap().m_locals.argument(i) = + Availability(FlushedAt(FlushedJSValue, virtualRegisterForArgument(i))); + } + m_codeOriginForExitTarget = CodeOrigin(0); + m_codeOriginForExitProfile = CodeOrigin(0); + m_node = nullptr; + for (unsigned i = codeBlock()->numParameters(); i--;) { + Node* node = m_graph.m_arguments[i]; + VirtualRegister operand = virtualRegisterForArgument(i); + + LValue jsValue = m_out.load64(addressFor(operand)); + + if (node) { + DFG_ASSERT(m_graph, node, operand == node->stackAccessData()->machineLocal); + + // This is a hack, but it's an effective one. It allows us to do CSE on the + // primordial load of arguments. This assumes that the GetLocal that got put in + // place of the original SetArgument doesn't have any effects before it. This + // should hold true. + m_loadedArgumentValues.add(node, jsValue); + } + + switch (m_graph.m_argumentFormats[i]) { + case FlushedInt32: + speculate(BadType, jsValueValue(jsValue), node, isNotInt32(jsValue)); + break; + case FlushedBoolean: + speculate(BadType, jsValueValue(jsValue), node, isNotBoolean(jsValue)); + break; + case FlushedCell: + speculate(BadType, jsValueValue(jsValue), node, isNotCell(jsValue)); + break; + case FlushedJSValue: + break; + default: + DFG_CRASH(m_graph, node, "Bad flush format for argument"); + break; + } + } + m_out.jump(lowBlock(m_graph.block(0))); + + for (BasicBlock* block : preOrder) + compileBlock(block); + + if (Options::dumpLLVMIR()) + dumpModule(m_ftlState.module); + + if (verboseCompilationEnabled()) + m_ftlState.dumpState("after lowering"); + if (validationEnabled()) + verifyModule(m_ftlState.module); + } + +private: + + void createPhiVariables() + { + for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { + BasicBlock* block = m_graph.block(blockIndex); + if (!block) + continue; + for (unsigned nodeIndex = block->size(); nodeIndex--;) { + Node* node = block->at(nodeIndex); + if (node->op() != Phi) + continue; + LType type; + switch (node->flags() & NodeResultMask) { + case NodeResultDouble: + type = m_out.doubleType; + break; + case NodeResultInt32: + type = m_out.int32; + break; + case NodeResultInt52: + type = m_out.int64; + break; + case NodeResultBoolean: + type = m_out.boolean; + break; + case NodeResultJS: + type = m_out.int64; + break; + default: + DFG_CRASH(m_graph, node, "Bad Phi node result type"); + break; + } + m_phis.add(node, buildAlloca(m_out.m_builder, type)); + } + } + } + + void compileBlock(BasicBlock* block) + { + if (!block) + return; + + if (verboseCompilationEnabled()) + dataLog("Compiling block ", *block, "\n"); + + m_highBlock = block; + + LBasicBlock lowBlock = m_blocks.get(m_highBlock); + + m_nextHighBlock = 0; + for (BlockIndex nextBlockIndex = m_highBlock->index + 1; nextBlockIndex < m_graph.numBlocks(); ++nextBlockIndex) { + m_nextHighBlock = m_graph.block(nextBlockIndex); + if (m_nextHighBlock) + break; + } + m_nextLowBlock = m_nextHighBlock ? m_blocks.get(m_nextHighBlock) : 0; + + // All of this effort to find the next block gives us the ability to keep the + // generated IR in roughly program order. This ought not affect the performance + // of the generated code (since we expect LLVM to reorder things) but it will + // make IR dumps easier to read. + m_out.appendTo(lowBlock, m_nextLowBlock); + + if (Options::ftlCrashes()) + m_out.trap(); + + if (!m_highBlock->cfaHasVisited) { + if (verboseCompilationEnabled()) + dataLog("Bailing because CFA didn't reach.\n"); + crash(m_highBlock->index, UINT_MAX); + return; + } + + m_availabilityCalculator.beginBlock(m_highBlock); + + m_state.reset(); + m_state.beginBasicBlock(m_highBlock); + + for (m_nodeIndex = 0; m_nodeIndex < m_highBlock->size(); ++m_nodeIndex) { + if (!compileNode(m_nodeIndex)) + break; + } + } + + void safelyInvalidateAfterTermination() + { + if (verboseCompilationEnabled()) + dataLog("Bailing.\n"); + crash(); + + // Invalidate dominated blocks. Under normal circumstances we would expect + // them to be invalidated already. But you can have the CFA become more + // precise over time because the structures of objects change on the main + // thread. Failing to do this would result in weird crashes due to a value + // being used but not defined. Race conditions FTW! + for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { + BasicBlock* target = m_graph.block(blockIndex); + if (!target) + continue; + if (m_graph.m_dominators.dominates(m_highBlock, target)) { + if (verboseCompilationEnabled()) + dataLog("Block ", *target, " will bail also.\n"); + target->cfaHasVisited = false; + } + } + } + + bool compileNode(unsigned nodeIndex) + { + if (!m_state.isValid()) { + safelyInvalidateAfterTermination(); + return false; + } + + m_node = m_highBlock->at(nodeIndex); + m_codeOriginForExitProfile = m_node->origin.semantic; + m_codeOriginForExitTarget = m_node->origin.forExit; + + if (verboseCompilationEnabled()) + dataLog("Lowering ", m_node, "\n"); + + m_availableRecoveries.resize(0); + + m_interpreter.startExecuting(); + + switch (m_node->op()) { + case Upsilon: + compileUpsilon(); + break; + case Phi: + compilePhi(); + break; + case JSConstant: + break; + case DoubleConstant: + compileDoubleConstant(); + break; + case Int52Constant: + compileInt52Constant(); + break; + case DoubleRep: + compileDoubleRep(); + break; + case DoubleAsInt32: + compileDoubleAsInt32(); + break; + case ValueRep: + compileValueRep(); + break; + case Int52Rep: + compileInt52Rep(); + break; + case ValueToInt32: + compileValueToInt32(); + break; + case BooleanToNumber: + compileBooleanToNumber(); + break; + case ExtractOSREntryLocal: + compileExtractOSREntryLocal(); + break; + case GetStack: + compileGetStack(); + break; + case PutStack: + compilePutStack(); + break; + case Check: + compileNoOp(); + break; + case ToThis: + compileToThis(); + break; + case ValueAdd: + compileValueAdd(); + break; + case ArithAdd: + case ArithSub: + compileArithAddOrSub(); + break; + case ArithClz32: + compileArithClz32(); + break; + case ArithMul: + compileArithMul(); + break; + case ArithDiv: + compileArithDiv(); + break; + case ArithMod: + compileArithMod(); + break; + case ArithMin: + case ArithMax: + compileArithMinOrMax(); + break; + case ArithAbs: + compileArithAbs(); + break; + case ArithSin: + compileArithSin(); + break; + case ArithCos: + compileArithCos(); + break; + case ArithPow: + compileArithPow(); + break; + case ArithRound: + compileArithRound(); + break; + case ArithSqrt: + compileArithSqrt(); + break; + case ArithLog: + compileArithLog(); + break; + case ArithFRound: + compileArithFRound(); + break; + case ArithNegate: + compileArithNegate(); + break; + case BitAnd: + compileBitAnd(); + break; + case BitOr: + compileBitOr(); + break; + case BitXor: + compileBitXor(); + break; + case BitRShift: + compileBitRShift(); + break; + case BitLShift: + compileBitLShift(); + break; + case BitURShift: + compileBitURShift(); + break; + case UInt32ToNumber: + compileUInt32ToNumber(); + break; + case CheckStructure: + compileCheckStructure(); + break; + case CheckCell: + compileCheckCell(); + break; + case CheckNotEmpty: + compileCheckNotEmpty(); + break; + case CheckBadCell: + compileCheckBadCell(); + break; + case CheckIdent: + compileCheckIdent(); + break; + case GetExecutable: + compileGetExecutable(); + break; + case ArrayifyToStructure: + compileArrayifyToStructure(); + break; + case PutStructure: + compilePutStructure(); + break; + case GetById: + compileGetById(); + break; + case In: + compileIn(); + break; + case PutById: + case PutByIdDirect: + compilePutById(); + break; + case GetButterfly: + compileGetButterfly(); + break; + case ConstantStoragePointer: + compileConstantStoragePointer(); + break; + case GetIndexedPropertyStorage: + compileGetIndexedPropertyStorage(); + break; + case CheckArray: + compileCheckArray(); + break; + case GetArrayLength: + compileGetArrayLength(); + break; + case CheckInBounds: + compileCheckInBounds(); + break; + case GetByVal: + compileGetByVal(); + break; + case GetMyArgumentByVal: + compileGetMyArgumentByVal(); + break; + case PutByVal: + case PutByValAlias: + case PutByValDirect: + compilePutByVal(); + break; + case ArrayPush: + compileArrayPush(); + break; + case ArrayPop: + compileArrayPop(); + break; + case CreateActivation: + compileCreateActivation(); + break; + case NewFunction: + compileNewFunction(); + break; + case CreateDirectArguments: + compileCreateDirectArguments(); + break; + case CreateScopedArguments: + compileCreateScopedArguments(); + break; + case CreateClonedArguments: + compileCreateClonedArguments(); + break; + case NewObject: + compileNewObject(); + break; + case NewArray: + compileNewArray(); + break; + case NewArrayBuffer: + compileNewArrayBuffer(); + break; + case NewArrayWithSize: + compileNewArrayWithSize(); + break; + case GetTypedArrayByteOffset: + compileGetTypedArrayByteOffset(); + break; + case AllocatePropertyStorage: + compileAllocatePropertyStorage(); + break; + case ReallocatePropertyStorage: + compileReallocatePropertyStorage(); + break; + case ToString: + case CallStringConstructor: + compileToStringOrCallStringConstructor(); + break; + case ToPrimitive: + compileToPrimitive(); + break; + case MakeRope: + compileMakeRope(); + break; + case StringCharAt: + compileStringCharAt(); + break; + case StringCharCodeAt: + compileStringCharCodeAt(); + break; + case GetByOffset: + case GetGetterSetterByOffset: + compileGetByOffset(); + break; + case GetGetter: + compileGetGetter(); + break; + case GetSetter: + compileGetSetter(); + break; + case MultiGetByOffset: + compileMultiGetByOffset(); + break; + case PutByOffset: + compilePutByOffset(); + break; + case MultiPutByOffset: + compileMultiPutByOffset(); + break; + case GetGlobalVar: + compileGetGlobalVar(); + break; + case PutGlobalVar: + compilePutGlobalVar(); + break; + case NotifyWrite: + compileNotifyWrite(); + break; + case GetCallee: + compileGetCallee(); + break; + case GetArgumentCount: + compileGetArgumentCount(); + break; + case GetScope: + compileGetScope(); + break; + case SkipScope: + compileSkipScope(); + break; + case GetClosureVar: + compileGetClosureVar(); + break; + case PutClosureVar: + compilePutClosureVar(); + break; + case GetFromArguments: + compileGetFromArguments(); + break; + case PutToArguments: + compilePutToArguments(); + break; + case CompareEq: + compileCompareEq(); + break; + case CompareEqConstant: + compileCompareEqConstant(); + break; + case CompareStrictEq: + compileCompareStrictEq(); + break; + case CompareLess: + compileCompareLess(); + break; + case CompareLessEq: + compileCompareLessEq(); + break; + case CompareGreater: + compileCompareGreater(); + break; + case CompareGreaterEq: + compileCompareGreaterEq(); + break; + case LogicalNot: + compileLogicalNot(); + break; + case Call: + case Construct: + compileCallOrConstruct(); + break; + case CallVarargs: + case CallForwardVarargs: + case ConstructVarargs: + case ConstructForwardVarargs: + compileCallOrConstructVarargs(); + break; + case LoadVarargs: + compileLoadVarargs(); + break; + case ForwardVarargs: + compileForwardVarargs(); + break; + case Jump: + compileJump(); + break; + case Branch: + compileBranch(); + break; + case Switch: + compileSwitch(); + break; + case Return: + compileReturn(); + break; + case ForceOSRExit: + compileForceOSRExit(); + break; + case Throw: + case ThrowReferenceError: + compileThrow(); + break; + case InvalidationPoint: + compileInvalidationPoint(); + break; + case IsUndefined: + compileIsUndefined(); + break; + case IsBoolean: + compileIsBoolean(); + break; + case IsNumber: + compileIsNumber(); + break; + case IsString: + compileIsString(); + break; + case IsObject: + compileIsObject(); + break; + case IsObjectOrNull: + compileIsObjectOrNull(); + break; + case IsFunction: + compileIsFunction(); + break; + case TypeOf: + compileTypeOf(); + break; + case CheckHasInstance: + compileCheckHasInstance(); + break; + case InstanceOf: + compileInstanceOf(); + break; + case CountExecution: + compileCountExecution(); + break; + case StoreBarrier: + compileStoreBarrier(); + break; + case HasIndexedProperty: + compileHasIndexedProperty(); + break; + case HasGenericProperty: + compileHasGenericProperty(); + break; + case HasStructureProperty: + compileHasStructureProperty(); + break; + case GetDirectPname: + compileGetDirectPname(); + break; + case GetEnumerableLength: + compileGetEnumerableLength(); + break; + case GetPropertyEnumerator: + compileGetPropertyEnumerator(); + break; + case GetEnumeratorStructurePname: + compileGetEnumeratorStructurePname(); + break; + case GetEnumeratorGenericPname: + compileGetEnumeratorGenericPname(); + break; + case ToIndexString: + compileToIndexString(); + break; + case CheckStructureImmediate: + compileCheckStructureImmediate(); + break; + case MaterializeNewObject: + compileMaterializeNewObject(); + break; + case MaterializeCreateActivation: + compileMaterializeCreateActivation(); + break; + + case PhantomLocal: + case LoopHint: + case MovHint: + case ZombieHint: + case PhantomNewObject: + case PhantomNewFunction: + case PhantomCreateActivation: + case PhantomDirectArguments: + case PhantomClonedArguments: + case PutHint: + case BottomValue: + case KillStack: + break; + default: + DFG_CRASH(m_graph, m_node, "Unrecognized node in FTL backend"); + break; + } + + if (m_node->isTerminal()) + return false; + + if (!m_state.isValid()) { + safelyInvalidateAfterTermination(); + return false; + } + + m_availabilityCalculator.executeNode(m_node); + m_interpreter.executeEffects(nodeIndex); + + return true; + } + + void compileUpsilon() + { + LValue destination = m_phis.get(m_node->phi()); + + switch (m_node->child1().useKind()) { + case DoubleRepUse: + m_out.set(lowDouble(m_node->child1()), destination); + break; + case Int32Use: + m_out.set(lowInt32(m_node->child1()), destination); + break; + case Int52RepUse: + m_out.set(lowInt52(m_node->child1()), destination); + break; + case BooleanUse: + m_out.set(lowBoolean(m_node->child1()), destination); + break; + case CellUse: + m_out.set(lowCell(m_node->child1()), destination); + break; + case UntypedUse: + m_out.set(lowJSValue(m_node->child1()), destination); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compilePhi() + { + LValue source = m_phis.get(m_node); + + switch (m_node->flags() & NodeResultMask) { + case NodeResultDouble: + setDouble(m_out.get(source)); + break; + case NodeResultInt32: + setInt32(m_out.get(source)); + break; + case NodeResultInt52: + setInt52(m_out.get(source)); + break; + case NodeResultBoolean: + setBoolean(m_out.get(source)); + break; + case NodeResultJS: + setJSValue(m_out.get(source)); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileDoubleConstant() + { + setDouble(m_out.constDouble(m_node->asNumber())); + } + + void compileInt52Constant() + { + int64_t value = m_node->asMachineInt(); + + setInt52(m_out.constInt64(value << JSValue::int52ShiftAmount)); + setStrictInt52(m_out.constInt64(value)); + } + + void compileDoubleRep() + { + switch (m_node->child1().useKind()) { + case RealNumberUse: { + LValue value = lowJSValue(m_node->child1(), ManualOperandSpeculation); + + LValue doubleValue = unboxDouble(value); + + LBasicBlock intCase = FTL_NEW_BLOCK(m_out, ("DoubleRep RealNumberUse int case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("DoubleRep continuation")); + + ValueFromBlock fastResult = m_out.anchor(doubleValue); + m_out.branch( + m_out.doubleEqual(doubleValue, doubleValue), + usually(continuation), rarely(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, continuation); + + FTL_TYPE_CHECK( + jsValueValue(value), m_node->child1(), SpecBytecodeRealNumber, + isNotInt32(value, provenType(m_node->child1()) & ~SpecFullDouble)); + ValueFromBlock slowResult = m_out.anchor(m_out.intToDouble(unboxInt32(value))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setDouble(m_out.phi(m_out.doubleType, fastResult, slowResult)); + return; + } + + case NotCellUse: + case NumberUse: { + bool shouldConvertNonNumber = m_node->child1().useKind() == NotCellUse; + + LValue value = lowJSValue(m_node->child1(), ManualOperandSpeculation); + + LBasicBlock intCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble unboxing int case")); + LBasicBlock doubleTesting = FTL_NEW_BLOCK(m_out, ("jsValueToDouble testing double case")); + LBasicBlock doubleCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble unboxing double case")); + LBasicBlock nonDoubleCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble testing undefined case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("jsValueToDouble unboxing continuation")); + + m_out.branch( + isNotInt32(value, provenType(m_node->child1())), + unsure(doubleTesting), unsure(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, doubleTesting); + + ValueFromBlock intToDouble = m_out.anchor( + m_out.intToDouble(unboxInt32(value))); + m_out.jump(continuation); + + m_out.appendTo(doubleTesting, doubleCase); + LValue valueIsNumber = isNumber(value, provenType(m_node->child1())); + m_out.branch(valueIsNumber, usually(doubleCase), rarely(nonDoubleCase)); + + m_out.appendTo(doubleCase, nonDoubleCase); + ValueFromBlock unboxedDouble = m_out.anchor(unboxDouble(value)); + m_out.jump(continuation); + + if (shouldConvertNonNumber) { + LBasicBlock undefinedCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble converting undefined case")); + LBasicBlock testNullCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble testing null case")); + LBasicBlock nullCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble converting null case")); + LBasicBlock testBooleanTrueCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble testing boolean true case")); + LBasicBlock convertBooleanTrueCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble convert boolean true case")); + LBasicBlock convertBooleanFalseCase = FTL_NEW_BLOCK(m_out, ("jsValueToDouble convert boolean false case")); + + m_out.appendTo(nonDoubleCase, undefinedCase); + LValue valueIsUndefined = m_out.equal(value, m_out.constInt64(ValueUndefined)); + m_out.branch(valueIsUndefined, unsure(undefinedCase), unsure(testNullCase)); + + m_out.appendTo(undefinedCase, testNullCase); + ValueFromBlock convertedUndefined = m_out.anchor(m_out.constDouble(PNaN)); + m_out.jump(continuation); + + m_out.appendTo(testNullCase, nullCase); + LValue valueIsNull = m_out.equal(value, m_out.constInt64(ValueNull)); + m_out.branch(valueIsNull, unsure(nullCase), unsure(testBooleanTrueCase)); + + m_out.appendTo(nullCase, testBooleanTrueCase); + ValueFromBlock convertedNull = m_out.anchor(m_out.constDouble(0)); + m_out.jump(continuation); + + m_out.appendTo(testBooleanTrueCase, convertBooleanTrueCase); + LValue valueIsBooleanTrue = m_out.equal(value, m_out.constInt64(ValueTrue)); + m_out.branch(valueIsBooleanTrue, unsure(convertBooleanTrueCase), unsure(convertBooleanFalseCase)); + + m_out.appendTo(convertBooleanTrueCase, convertBooleanFalseCase); + ValueFromBlock convertedTrue = m_out.anchor(m_out.constDouble(1)); + m_out.jump(continuation); + + m_out.appendTo(convertBooleanFalseCase, continuation); + + LValue valueIsNotBooleanFalse = m_out.notEqual(value, m_out.constInt64(ValueFalse)); + FTL_TYPE_CHECK(jsValueValue(value), m_node->child1(), ~SpecCell, valueIsNotBooleanFalse); + ValueFromBlock convertedFalse = m_out.anchor(m_out.constDouble(0)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setDouble(m_out.phi(m_out.doubleType, intToDouble, unboxedDouble, convertedUndefined, convertedNull, convertedTrue, convertedFalse)); + return; + } + m_out.appendTo(nonDoubleCase, continuation); + FTL_TYPE_CHECK(jsValueValue(value), m_node->child1(), SpecBytecodeNumber, m_out.booleanTrue); + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + + setDouble(m_out.phi(m_out.doubleType, intToDouble, unboxedDouble)); + return; + } + + case Int52RepUse: { + setDouble(strictInt52ToDouble(lowStrictInt52(m_node->child1()))); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + } + } + + void compileDoubleAsInt32() + { + LValue integerValue = convertDoubleToInt32(lowDouble(m_node->child1()), shouldCheckNegativeZero(m_node->arithMode())); + setInt32(integerValue); + } + + void compileValueRep() + { + switch (m_node->child1().useKind()) { + case DoubleRepUse: { + LValue value = lowDouble(m_node->child1()); + + if (m_interpreter.needsTypeCheck(m_node->child1(), ~SpecDoubleImpureNaN)) { + value = m_out.select( + m_out.doubleEqual(value, value), value, m_out.constDouble(PNaN)); + } + + setJSValue(boxDouble(value)); + return; + } + + case Int52RepUse: { + setJSValue(strictInt52ToJSValue(lowStrictInt52(m_node->child1()))); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + } + } + + void compileInt52Rep() + { + switch (m_node->child1().useKind()) { + case Int32Use: + setStrictInt52(m_out.signExt(lowInt32(m_node->child1()), m_out.int64)); + return; + + case MachineIntUse: + setStrictInt52( + jsValueToStrictInt52( + m_node->child1(), lowJSValue(m_node->child1(), ManualOperandSpeculation))); + return; + + case DoubleRepMachineIntUse: + setStrictInt52( + doubleToStrictInt52( + m_node->child1(), lowDouble(m_node->child1()))); + return; + + default: + RELEASE_ASSERT_NOT_REACHED(); + } + } + + void compileValueToInt32() + { + switch (m_node->child1().useKind()) { + case Int52RepUse: + setInt32(m_out.castToInt32(lowStrictInt52(m_node->child1()))); + break; + + case DoubleRepUse: + setInt32(doubleToInt32(lowDouble(m_node->child1()))); + break; + + case NumberUse: + case NotCellUse: { + LoweredNodeValue value = m_int32Values.get(m_node->child1().node()); + if (isValid(value)) { + setInt32(value.value()); + break; + } + + value = m_jsValueValues.get(m_node->child1().node()); + if (isValid(value)) { + setInt32(numberOrNotCellToInt32(m_node->child1(), value.value())); + break; + } + + // We'll basically just get here for constants. But it's good to have this + // catch-all since we often add new representations into the mix. + setInt32( + numberOrNotCellToInt32( + m_node->child1(), + lowJSValue(m_node->child1(), ManualOperandSpeculation))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileBooleanToNumber() + { + switch (m_node->child1().useKind()) { + case BooleanUse: { + setInt32(m_out.zeroExt(lowBoolean(m_node->child1()), m_out.int32)); + return; + } + + case UntypedUse: { + LValue value = lowJSValue(m_node->child1()); + + if (!m_interpreter.needsTypeCheck(m_node->child1(), SpecBoolInt32 | SpecBoolean)) { + setInt32(m_out.bitAnd(m_out.castToInt32(value), m_out.int32One)); + return; + } + + LBasicBlock booleanCase = FTL_NEW_BLOCK(m_out, ("BooleanToNumber boolean case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("BooleanToNumber continuation")); + + ValueFromBlock notBooleanResult = m_out.anchor(value); + m_out.branch( + isBoolean(value, provenType(m_node->child1())), + unsure(booleanCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(booleanCase, continuation); + ValueFromBlock booleanResult = m_out.anchor(m_out.bitOr( + m_out.zeroExt(unboxBoolean(value), m_out.int64), m_tagTypeNumber)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, booleanResult, notBooleanResult)); + return; + } + + default: + RELEASE_ASSERT_NOT_REACHED(); + return; + } + } + + void compileExtractOSREntryLocal() + { + EncodedJSValue* buffer = static_cast<EncodedJSValue*>( + m_ftlState.jitCode->ftlForOSREntry()->entryBuffer()->dataBuffer()); + setJSValue(m_out.load64(m_out.absolute(buffer + m_node->unlinkedLocal().toLocal()))); + } + + void compileGetStack() + { + // GetLocals arise only for captured variables and arguments. For arguments, we might have + // already loaded it. + if (LValue value = m_loadedArgumentValues.get(m_node)) { + setJSValue(value); + return; + } + + StackAccessData* data = m_node->stackAccessData(); + AbstractValue& value = m_state.variables().operand(data->local); + + DFG_ASSERT(m_graph, m_node, isConcrete(data->format)); + DFG_ASSERT(m_graph, m_node, data->format != FlushedDouble); // This just happens to not arise for GetStacks, right now. It would be trivial to support. + + if (isInt32Speculation(value.m_type)) + setInt32(m_out.load32(payloadFor(data->machineLocal))); + else + setJSValue(m_out.load64(addressFor(data->machineLocal))); + } + + void compilePutStack() + { + StackAccessData* data = m_node->stackAccessData(); + switch (data->format) { + case FlushedJSValue: { + LValue value = lowJSValue(m_node->child1()); + m_out.store64(value, addressFor(data->machineLocal)); + break; + } + + case FlushedDouble: { + LValue value = lowDouble(m_node->child1()); + m_out.storeDouble(value, addressFor(data->machineLocal)); + break; + } + + case FlushedInt32: { + LValue value = lowInt32(m_node->child1()); + m_out.store32(value, payloadFor(data->machineLocal)); + break; + } + + case FlushedInt52: { + LValue value = lowInt52(m_node->child1()); + m_out.store64(value, addressFor(data->machineLocal)); + break; + } + + case FlushedCell: { + LValue value = lowCell(m_node->child1()); + m_out.store64(value, addressFor(data->machineLocal)); + break; + } + + case FlushedBoolean: { + speculateBoolean(m_node->child1()); + m_out.store64( + lowJSValue(m_node->child1(), ManualOperandSpeculation), + addressFor(data->machineLocal)); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad flush format"); + break; + } + } + + void compileNoOp() + { + DFG_NODE_DO_TO_CHILDREN(m_graph, m_node, speculate); + } + + void compileToThis() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("ToThis is cell case")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("ToThis slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ToThis continuation")); + + m_out.branch( + isCell(value, provenType(m_node->child1())), usually(isCellCase), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, slowCase); + ValueFromBlock fastResult = m_out.anchor(value); + m_out.branch(isType(value, FinalObjectType), usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + J_JITOperation_EJ function; + if (m_graph.isStrictModeFor(m_node->origin.semantic)) + function = operationToThisStrict; + else + function = operationToThis; + ValueFromBlock slowResult = m_out.anchor( + vmCall(m_out.operation(function), m_callFrame, value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, fastResult, slowResult)); + } + + void compileValueAdd() + { + J_JITOperation_EJJ operation; + if (!(provenType(m_node->child1()) & SpecFullNumber) + && !(provenType(m_node->child2()) & SpecFullNumber)) + operation = operationValueAddNotNumber; + else + operation = operationValueAdd; + setJSValue(vmCall( + m_out.operation(operation), m_callFrame, + lowJSValue(m_node->child1()), lowJSValue(m_node->child2()))); + } + + void compileArithAddOrSub() + { + bool isSub = m_node->op() == ArithSub; + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + + if (!shouldCheckOverflow(m_node->arithMode())) { + setInt32(isSub ? m_out.sub(left, right) : m_out.add(left, right)); + break; + } + + LValue result; + if (!isSub) { + result = m_out.addWithOverflow32(left, right); + + if (doesKill(m_node->child2())) { + addAvailableRecovery( + m_node->child2(), SubRecovery, + m_out.extractValue(result, 0), left, ValueFormatInt32); + } else if (doesKill(m_node->child1())) { + addAvailableRecovery( + m_node->child1(), SubRecovery, + m_out.extractValue(result, 0), right, ValueFormatInt32); + } + } else { + result = m_out.subWithOverflow32(left, right); + + if (doesKill(m_node->child2())) { + // result = left - right + // result - left = -right + // right = left - result + addAvailableRecovery( + m_node->child2(), SubRecovery, + left, m_out.extractValue(result, 0), ValueFormatInt32); + } else if (doesKill(m_node->child1())) { + // result = left - right + // result + right = left + addAvailableRecovery( + m_node->child1(), AddRecovery, + m_out.extractValue(result, 0), right, ValueFormatInt32); + } + } + + speculate(Overflow, noValue(), 0, m_out.extractValue(result, 1)); + setInt32(m_out.extractValue(result, 0)); + break; + } + + case Int52RepUse: { + if (!abstractValue(m_node->child1()).couldBeType(SpecInt52) + && !abstractValue(m_node->child2()).couldBeType(SpecInt52)) { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), kind); + setInt52(isSub ? m_out.sub(left, right) : m_out.add(left, right), kind); + break; + } + + LValue left = lowInt52(m_node->child1()); + LValue right = lowInt52(m_node->child2()); + + LValue result; + if (!isSub) { + result = m_out.addWithOverflow64(left, right); + + if (doesKill(m_node->child2())) { + addAvailableRecovery( + m_node->child2(), SubRecovery, + m_out.extractValue(result, 0), left, ValueFormatInt52); + } else if (doesKill(m_node->child1())) { + addAvailableRecovery( + m_node->child1(), SubRecovery, + m_out.extractValue(result, 0), right, ValueFormatInt52); + } + } else { + result = m_out.subWithOverflow64(left, right); + + if (doesKill(m_node->child2())) { + // result = left - right + // result - left = -right + // right = left - result + addAvailableRecovery( + m_node->child2(), SubRecovery, + left, m_out.extractValue(result, 0), ValueFormatInt52); + } else if (doesKill(m_node->child1())) { + // result = left - right + // result + right = left + addAvailableRecovery( + m_node->child1(), AddRecovery, + m_out.extractValue(result, 0), right, ValueFormatInt52); + } + } + + speculate(Int52Overflow, noValue(), 0, m_out.extractValue(result, 1)); + setInt52(m_out.extractValue(result, 0)); + break; + } + + case DoubleRepUse: { + LValue C1 = lowDouble(m_node->child1()); + LValue C2 = lowDouble(m_node->child2()); + + setDouble(isSub ? m_out.doubleSub(C1, C2) : m_out.doubleAdd(C1, C2)); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithClz32() + { + LValue operand = lowInt32(m_node->child1()); + LValue isZeroUndef = m_out.booleanFalse; + setInt32(m_out.ctlz32(operand, isZeroUndef)); + } + + void compileArithMul() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + + LValue result; + + if (!shouldCheckOverflow(m_node->arithMode())) + result = m_out.mul(left, right); + else { + LValue overflowResult = m_out.mulWithOverflow32(left, right); + speculate(Overflow, noValue(), 0, m_out.extractValue(overflowResult, 1)); + result = m_out.extractValue(overflowResult, 0); + } + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("ArithMul slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithMul continuation")); + + m_out.branch( + m_out.notZero32(result), usually(continuation), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(slowCase, continuation); + LValue cond = m_out.bitOr(m_out.lessThan(left, m_out.int32Zero), m_out.lessThan(right, m_out.int32Zero)); + speculate(NegativeZero, noValue(), 0, cond); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + setInt32(result); + break; + } + + case Int52RepUse: { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), opposite(kind)); + + LValue overflowResult = m_out.mulWithOverflow64(left, right); + speculate(Int52Overflow, noValue(), 0, m_out.extractValue(overflowResult, 1)); + LValue result = m_out.extractValue(overflowResult, 0); + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("ArithMul slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithMul continuation")); + + m_out.branch( + m_out.notZero64(result), usually(continuation), rarely(slowCase)); + + LBasicBlock lastNext = m_out.appendTo(slowCase, continuation); + LValue cond = m_out.bitOr(m_out.lessThan(left, m_out.int64Zero), m_out.lessThan(right, m_out.int64Zero)); + speculate(NegativeZero, noValue(), 0, cond); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + setInt52(result); + break; + } + + case DoubleRepUse: { + setDouble( + m_out.doubleMul(lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithDiv() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue numerator = lowInt32(m_node->child1()); + LValue denominator = lowInt32(m_node->child2()); + + LBasicBlock unsafeDenominator = FTL_NEW_BLOCK(m_out, ("ArithDiv unsafe denominator")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithDiv continuation")); + LBasicBlock done = FTL_NEW_BLOCK(m_out, ("ArithDiv done")); + + Vector<ValueFromBlock, 3> results; + + LValue adjustedDenominator = m_out.add(denominator, m_out.int32One); + + m_out.branch( + m_out.above(adjustedDenominator, m_out.int32One), + usually(continuation), rarely(unsafeDenominator)); + + LBasicBlock lastNext = m_out.appendTo(unsafeDenominator, continuation); + + LValue neg2ToThe31 = m_out.constInt32(-2147483647-1); + + if (shouldCheckOverflow(m_node->arithMode())) { + LValue cond = m_out.bitOr(m_out.isZero32(denominator), m_out.equal(numerator, neg2ToThe31)); + speculate(Overflow, noValue(), 0, cond); + m_out.jump(continuation); + } else { + // This is the case where we convert the result to an int after we're done. So, + // if the denominator is zero, then the result should be zero. + // If the denominator is not zero (i.e. it's -1 because we're guarded by the + // check above) and the numerator is -2^31 then the result should be -2^31. + + LBasicBlock divByZero = FTL_NEW_BLOCK(m_out, ("ArithDiv divide by zero")); + LBasicBlock notDivByZero = FTL_NEW_BLOCK(m_out, ("ArithDiv not divide by zero")); + LBasicBlock neg2ToThe31ByNeg1 = FTL_NEW_BLOCK(m_out, ("ArithDiv -2^31/-1")); + + m_out.branch( + m_out.isZero32(denominator), rarely(divByZero), usually(notDivByZero)); + + m_out.appendTo(divByZero, notDivByZero); + results.append(m_out.anchor(m_out.int32Zero)); + m_out.jump(done); + + m_out.appendTo(notDivByZero, neg2ToThe31ByNeg1); + m_out.branch( + m_out.equal(numerator, neg2ToThe31), + rarely(neg2ToThe31ByNeg1), usually(continuation)); + + m_out.appendTo(neg2ToThe31ByNeg1, continuation); + results.append(m_out.anchor(neg2ToThe31)); + m_out.jump(done); + } + + m_out.appendTo(continuation, done); + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock zeroNumerator = FTL_NEW_BLOCK(m_out, ("ArithDiv zero numerator")); + LBasicBlock numeratorContinuation = FTL_NEW_BLOCK(m_out, ("ArithDiv numerator continuation")); + + m_out.branch( + m_out.isZero32(numerator), + rarely(zeroNumerator), usually(numeratorContinuation)); + + LBasicBlock innerLastNext = m_out.appendTo(zeroNumerator, numeratorContinuation); + + speculate( + NegativeZero, noValue(), 0, m_out.lessThan(denominator, m_out.int32Zero)); + + m_out.jump(numeratorContinuation); + + m_out.appendTo(numeratorContinuation, innerLastNext); + } + + LValue result = m_out.div(numerator, denominator); + + if (shouldCheckOverflow(m_node->arithMode())) { + speculate( + Overflow, noValue(), 0, + m_out.notEqual(m_out.mul(result, denominator), numerator)); + } + + results.append(m_out.anchor(result)); + m_out.jump(done); + + m_out.appendTo(done, lastNext); + + setInt32(m_out.phi(m_out.int32, results)); + break; + } + + case DoubleRepUse: { + setDouble(m_out.doubleDiv( + lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithMod() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue numerator = lowInt32(m_node->child1()); + LValue denominator = lowInt32(m_node->child2()); + + LBasicBlock unsafeDenominator = FTL_NEW_BLOCK(m_out, ("ArithMod unsafe denominator")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithMod continuation")); + LBasicBlock done = FTL_NEW_BLOCK(m_out, ("ArithMod done")); + + Vector<ValueFromBlock, 3> results; + + LValue adjustedDenominator = m_out.add(denominator, m_out.int32One); + + m_out.branch( + m_out.above(adjustedDenominator, m_out.int32One), + usually(continuation), rarely(unsafeDenominator)); + + LBasicBlock lastNext = m_out.appendTo(unsafeDenominator, continuation); + + LValue neg2ToThe31 = m_out.constInt32(-2147483647-1); + + // FIXME: -2^31 / -1 will actually yield negative zero, so we could have a + // separate case for that. But it probably doesn't matter so much. + if (shouldCheckOverflow(m_node->arithMode())) { + LValue cond = m_out.bitOr(m_out.isZero32(denominator), m_out.equal(numerator, neg2ToThe31)); + speculate(Overflow, noValue(), 0, cond); + m_out.jump(continuation); + } else { + // This is the case where we convert the result to an int after we're done. So, + // if the denominator is zero, then the result should be result should be zero. + // If the denominator is not zero (i.e. it's -1 because we're guarded by the + // check above) and the numerator is -2^31 then the result should be -2^31. + + LBasicBlock modByZero = FTL_NEW_BLOCK(m_out, ("ArithMod modulo by zero")); + LBasicBlock notModByZero = FTL_NEW_BLOCK(m_out, ("ArithMod not modulo by zero")); + LBasicBlock neg2ToThe31ByNeg1 = FTL_NEW_BLOCK(m_out, ("ArithMod -2^31/-1")); + + m_out.branch( + m_out.isZero32(denominator), rarely(modByZero), usually(notModByZero)); + + m_out.appendTo(modByZero, notModByZero); + results.append(m_out.anchor(m_out.int32Zero)); + m_out.jump(done); + + m_out.appendTo(notModByZero, neg2ToThe31ByNeg1); + m_out.branch( + m_out.equal(numerator, neg2ToThe31), + rarely(neg2ToThe31ByNeg1), usually(continuation)); + + m_out.appendTo(neg2ToThe31ByNeg1, continuation); + results.append(m_out.anchor(m_out.int32Zero)); + m_out.jump(done); + } + + m_out.appendTo(continuation, done); + + LValue remainder = m_out.rem(numerator, denominator); + + if (shouldCheckNegativeZero(m_node->arithMode())) { + LBasicBlock negativeNumerator = FTL_NEW_BLOCK(m_out, ("ArithMod negative numerator")); + LBasicBlock numeratorContinuation = FTL_NEW_BLOCK(m_out, ("ArithMod numerator continuation")); + + m_out.branch( + m_out.lessThan(numerator, m_out.int32Zero), + unsure(negativeNumerator), unsure(numeratorContinuation)); + + LBasicBlock innerLastNext = m_out.appendTo(negativeNumerator, numeratorContinuation); + + speculate(NegativeZero, noValue(), 0, m_out.isZero32(remainder)); + + m_out.jump(numeratorContinuation); + + m_out.appendTo(numeratorContinuation, innerLastNext); + } + + results.append(m_out.anchor(remainder)); + m_out.jump(done); + + m_out.appendTo(done, lastNext); + + setInt32(m_out.phi(m_out.int32, results)); + break; + } + + case DoubleRepUse: { + setDouble( + m_out.doubleRem(lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithMinOrMax() + { + switch (m_node->binaryUseKind()) { + case Int32Use: { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + + setInt32( + m_out.select( + m_node->op() == ArithMin + ? m_out.lessThan(left, right) + : m_out.lessThan(right, left), + left, right)); + break; + } + + case DoubleRepUse: { + LValue left = lowDouble(m_node->child1()); + LValue right = lowDouble(m_node->child2()); + + LBasicBlock notLessThan = FTL_NEW_BLOCK(m_out, ("ArithMin/ArithMax not less than")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithMin/ArithMax continuation")); + + Vector<ValueFromBlock, 2> results; + + results.append(m_out.anchor(left)); + m_out.branch( + m_node->op() == ArithMin + ? m_out.doubleLessThan(left, right) + : m_out.doubleGreaterThan(left, right), + unsure(continuation), unsure(notLessThan)); + + LBasicBlock lastNext = m_out.appendTo(notLessThan, continuation); + results.append(m_out.anchor(m_out.select( + m_node->op() == ArithMin + ? m_out.doubleGreaterThanOrEqual(left, right) + : m_out.doubleLessThanOrEqual(left, right), + right, m_out.constDouble(PNaN)))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setDouble(m_out.phi(m_out.doubleType, results)); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithAbs() + { + switch (m_node->child1().useKind()) { + case Int32Use: { + LValue value = lowInt32(m_node->child1()); + + LValue mask = m_out.aShr(value, m_out.constInt32(31)); + LValue result = m_out.bitXor(mask, m_out.add(mask, value)); + + speculate(Overflow, noValue(), 0, m_out.equal(result, m_out.constInt32(1 << 31))); + + setInt32(result); + break; + } + + case DoubleRepUse: { + setDouble(m_out.doubleAbs(lowDouble(m_node->child1()))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileArithSin() { setDouble(m_out.doubleSin(lowDouble(m_node->child1()))); } + + void compileArithCos() { setDouble(m_out.doubleCos(lowDouble(m_node->child1()))); } + + void compileArithPow() + { + // FIXME: investigate llvm.powi to better understand its performance characteristics. + // It might be better to have the inline loop in DFG too. + if (m_node->child2().useKind() == Int32Use) + setDouble(m_out.doublePowi(lowDouble(m_node->child1()), lowInt32(m_node->child2()))); + else { + LValue base = lowDouble(m_node->child1()); + LValue exponent = lowDouble(m_node->child2()); + + LBasicBlock integerExponentIsSmallBlock = FTL_NEW_BLOCK(m_out, ("ArithPow test integer exponent is small.")); + LBasicBlock integerExponentPowBlock = FTL_NEW_BLOCK(m_out, ("ArithPow pow(double, (int)double).")); + LBasicBlock doubleExponentPowBlockEntry = FTL_NEW_BLOCK(m_out, ("ArithPow pow(double, double).")); + LBasicBlock nanExceptionExponentIsInfinity = FTL_NEW_BLOCK(m_out, ("ArithPow NaN Exception, check exponent is infinity.")); + LBasicBlock nanExceptionBaseIsOne = FTL_NEW_BLOCK(m_out, ("ArithPow NaN Exception, check base is one.")); + LBasicBlock powBlock = FTL_NEW_BLOCK(m_out, ("ArithPow regular pow")); + LBasicBlock nanExceptionResultIsNaN = FTL_NEW_BLOCK(m_out, ("ArithPow NaN Exception, result is NaN.")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithPow continuation")); + + LValue integerExponent = m_out.fpToInt32(exponent); + LValue integerExponentConvertedToDouble = m_out.intToDouble(integerExponent); + LValue exponentIsInteger = m_out.doubleEqual(exponent, integerExponentConvertedToDouble); + m_out.branch(exponentIsInteger, unsure(integerExponentIsSmallBlock), unsure(doubleExponentPowBlockEntry)); + + LBasicBlock lastNext = m_out.appendTo(integerExponentIsSmallBlock, integerExponentPowBlock); + LValue integerExponentBelow1000 = m_out.below(integerExponent, m_out.constInt32(1000)); + m_out.branch(integerExponentBelow1000, usually(integerExponentPowBlock), rarely(doubleExponentPowBlockEntry)); + + m_out.appendTo(integerExponentPowBlock, doubleExponentPowBlockEntry); + ValueFromBlock powDoubleIntResult = m_out.anchor(m_out.doublePowi(base, integerExponent)); + m_out.jump(continuation); + + // If y is NaN, the result is NaN. + m_out.appendTo(doubleExponentPowBlockEntry, nanExceptionExponentIsInfinity); + LValue exponentIsNaN; + if (provenType(m_node->child2()) & SpecDoubleNaN) + exponentIsNaN = m_out.doubleNotEqualOrUnordered(exponent, exponent); + else + exponentIsNaN = m_out.booleanFalse; + m_out.branch(exponentIsNaN, rarely(nanExceptionResultIsNaN), usually(nanExceptionExponentIsInfinity)); + + // If abs(x) is 1 and y is +infinity, the result is NaN. + // If abs(x) is 1 and y is -infinity, the result is NaN. + m_out.appendTo(nanExceptionExponentIsInfinity, nanExceptionBaseIsOne); + LValue absoluteExponent = m_out.doubleAbs(exponent); + LValue absoluteExponentIsInfinity = m_out.doubleEqual(absoluteExponent, m_out.constDouble(std::numeric_limits<double>::infinity())); + m_out.branch(absoluteExponentIsInfinity, rarely(nanExceptionBaseIsOne), usually(powBlock)); + + m_out.appendTo(nanExceptionBaseIsOne, powBlock); + LValue absoluteBase = m_out.doubleAbs(base); + LValue absoluteBaseIsOne = m_out.doubleEqual(absoluteBase, m_out.constDouble(1)); + m_out.branch(absoluteBaseIsOne, unsure(nanExceptionResultIsNaN), unsure(powBlock)); + + m_out.appendTo(powBlock, nanExceptionResultIsNaN); + ValueFromBlock powResult = m_out.anchor(m_out.doublePow(base, exponent)); + m_out.jump(continuation); + + m_out.appendTo(nanExceptionResultIsNaN, continuation); + ValueFromBlock pureNan = m_out.anchor(m_out.constDouble(PNaN)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setDouble(m_out.phi(m_out.doubleType, powDoubleIntResult, powResult, pureNan)); + } + } + + void compileArithRound() + { + LBasicBlock realPartIsMoreThanHalf = FTL_NEW_BLOCK(m_out, ("ArithRound should round down")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArithRound continuation")); + + LValue value = lowDouble(m_node->child1()); + LValue integerValue = m_out.ceil64(value); + ValueFromBlock integerValueResult = m_out.anchor(integerValue); + + LValue realPart = m_out.doubleSub(integerValue, value); + + m_out.branch(m_out.doubleGreaterThanOrUnordered(realPart, m_out.constDouble(0.5)), unsure(realPartIsMoreThanHalf), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(realPartIsMoreThanHalf, continuation); + LValue integerValueRoundedDown = m_out.doubleSub(integerValue, m_out.constDouble(1)); + ValueFromBlock integerValueRoundedDownResult = m_out.anchor(integerValueRoundedDown); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + + LValue result = m_out.phi(m_out.doubleType, integerValueResult, integerValueRoundedDownResult); + + if (producesInteger(m_node->arithRoundingMode())) { + LValue integerValue = convertDoubleToInt32(result, shouldCheckNegativeZero(m_node->arithRoundingMode())); + setInt32(integerValue); + } else + setDouble(result); + } + + void compileArithSqrt() { setDouble(m_out.doubleSqrt(lowDouble(m_node->child1()))); } + + void compileArithLog() { setDouble(m_out.doubleLog(lowDouble(m_node->child1()))); } + + void compileArithFRound() + { + LValue floatValue = m_out.fpCast(lowDouble(m_node->child1()), m_out.floatType); + setDouble(m_out.fpCast(floatValue, m_out.doubleType)); + } + + void compileArithNegate() + { + switch (m_node->child1().useKind()) { + case Int32Use: { + LValue value = lowInt32(m_node->child1()); + + LValue result; + if (!shouldCheckOverflow(m_node->arithMode())) + result = m_out.neg(value); + else if (!shouldCheckNegativeZero(m_node->arithMode())) { + // We don't have a negate-with-overflow intrinsic. Hopefully this + // does the trick, though. + LValue overflowResult = m_out.subWithOverflow32(m_out.int32Zero, value); + speculate(Overflow, noValue(), 0, m_out.extractValue(overflowResult, 1)); + result = m_out.extractValue(overflowResult, 0); + } else { + speculate(Overflow, noValue(), 0, m_out.testIsZero32(value, m_out.constInt32(0x7fffffff))); + result = m_out.neg(value); + } + + setInt32(result); + break; + } + + case Int52RepUse: { + if (!abstractValue(m_node->child1()).couldBeType(SpecInt52)) { + Int52Kind kind; + LValue value = lowWhicheverInt52(m_node->child1(), kind); + LValue result = m_out.neg(value); + if (shouldCheckNegativeZero(m_node->arithMode())) + speculate(NegativeZero, noValue(), 0, m_out.isZero64(result)); + setInt52(result, kind); + break; + } + + LValue value = lowInt52(m_node->child1()); + LValue overflowResult = m_out.subWithOverflow64(m_out.int64Zero, value); + speculate(Int52Overflow, noValue(), 0, m_out.extractValue(overflowResult, 1)); + LValue result = m_out.extractValue(overflowResult, 0); + speculate(NegativeZero, noValue(), 0, m_out.isZero64(result)); + setInt52(result); + break; + } + + case DoubleRepUse: { + setDouble(m_out.doubleNeg(lowDouble(m_node->child1()))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileBitAnd() + { + setInt32(m_out.bitAnd(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileBitOr() + { + setInt32(m_out.bitOr(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileBitXor() + { + setInt32(m_out.bitXor(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileBitRShift() + { + setInt32(m_out.aShr( + lowInt32(m_node->child1()), + m_out.bitAnd(lowInt32(m_node->child2()), m_out.constInt32(31)))); + } + + void compileBitLShift() + { + setInt32(m_out.shl( + lowInt32(m_node->child1()), + m_out.bitAnd(lowInt32(m_node->child2()), m_out.constInt32(31)))); + } + + void compileBitURShift() + { + setInt32(m_out.lShr( + lowInt32(m_node->child1()), + m_out.bitAnd(lowInt32(m_node->child2()), m_out.constInt32(31)))); + } + + void compileUInt32ToNumber() + { + LValue value = lowInt32(m_node->child1()); + + if (doesOverflow(m_node->arithMode())) { + setDouble(m_out.unsignedToDouble(value)); + return; + } + + speculate(Overflow, noValue(), 0, m_out.lessThan(value, m_out.int32Zero)); + setInt32(value); + } + + void compileCheckStructure() + { + LValue cell = lowCell(m_node->child1()); + + ExitKind exitKind; + if (m_node->child1()->hasConstant()) + exitKind = BadConstantCache; + else + exitKind = BadCache; + + LValue structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + + checkStructure( + structureID, jsValueValue(cell), exitKind, m_node->structureSet(), + [this] (Structure* structure) { + return weakStructureID(structure); + }); + } + + void compileCheckCell() + { + LValue cell = lowCell(m_node->child1()); + + speculate( + BadCell, jsValueValue(cell), m_node->child1().node(), + m_out.notEqual(cell, weakPointer(m_node->cellOperand()->cell()))); + } + + void compileCheckBadCell() + { + terminate(BadCell); + } + + void compileCheckNotEmpty() + { + speculate(TDZFailure, noValue(), nullptr, m_out.isZero64(lowJSValue(m_node->child1()))); + } + + void compileCheckIdent() + { + UniquedStringImpl* uid = m_node->uidOperand(); + if (uid->isSymbol()) { + LValue symbol = lowSymbol(m_node->child1()); + LValue stringImpl = m_out.loadPtr(symbol, m_heaps.Symbol_privateName); + speculate(BadIdent, noValue(), nullptr, m_out.notEqual(stringImpl, m_out.constIntPtr(uid))); + } else { + LValue string = lowStringIdent(m_node->child1()); + LValue stringImpl = m_out.loadPtr(string, m_heaps.JSString_value); + speculate(BadIdent, noValue(), nullptr, m_out.notEqual(stringImpl, m_out.constIntPtr(uid))); + } + } + + void compileGetExecutable() + { + LValue cell = lowCell(m_node->child1()); + speculateFunction(m_node->child1(), cell); + setJSValue(m_out.loadPtr(cell, m_heaps.JSFunction_executable)); + } + + void compileArrayifyToStructure() + { + LValue cell = lowCell(m_node->child1()); + LValue property = !!m_node->child2() ? lowInt32(m_node->child2()) : 0; + + LBasicBlock unexpectedStructure = FTL_NEW_BLOCK(m_out, ("ArrayifyToStructure unexpected structure")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArrayifyToStructure continuation")); + + LValue structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + + m_out.branch( + m_out.notEqual(structureID, weakStructureID(m_node->structure())), + rarely(unexpectedStructure), usually(continuation)); + + LBasicBlock lastNext = m_out.appendTo(unexpectedStructure, continuation); + + if (property) { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: + speculate( + Uncountable, noValue(), 0, + m_out.aboveOrEqual(property, m_out.constInt32(MIN_SPARSE_ARRAY_INDEX))); + break; + default: + break; + } + } + + switch (m_node->arrayMode().type()) { + case Array::Int32: + vmCall(m_out.operation(operationEnsureInt32), m_callFrame, cell); + break; + case Array::Double: + vmCall(m_out.operation(operationEnsureDouble), m_callFrame, cell); + break; + case Array::Contiguous: + vmCall(m_out.operation(operationEnsureContiguous), m_callFrame, cell); + break; + case Array::ArrayStorage: + case Array::SlowPutArrayStorage: + vmCall(m_out.operation(operationEnsureArrayStorage), m_callFrame, cell); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + break; + } + + structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + speculate( + BadIndexingType, jsValueValue(cell), 0, + m_out.notEqual(structureID, weakStructureID(m_node->structure()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void compilePutStructure() + { + m_ftlState.jitCode->common.notifyCompilingStructureTransition(m_graph.m_plan, codeBlock(), m_node); + + Structure* oldStructure = m_node->transition()->previous; + Structure* newStructure = m_node->transition()->next; + ASSERT_UNUSED(oldStructure, oldStructure->indexingType() == newStructure->indexingType()); + ASSERT(oldStructure->typeInfo().inlineTypeFlags() == newStructure->typeInfo().inlineTypeFlags()); + ASSERT(oldStructure->typeInfo().type() == newStructure->typeInfo().type()); + + LValue cell = lowCell(m_node->child1()); + m_out.store32( + weakStructureID(newStructure), + cell, m_heaps.JSCell_structureID); + } + + void compileGetById() + { + // Pretty much the only reason why we don't also support GetByIdFlush is because: + // https://bugs.webkit.org/show_bug.cgi?id=125711 + + switch (m_node->child1().useKind()) { + case CellUse: { + setJSValue(getById(lowCell(m_node->child1()))); + return; + } + + case UntypedUse: { + // This is pretty weird, since we duplicate the slow path both here and in the + // code generated by the IC. We should investigate making this less bad. + // https://bugs.webkit.org/show_bug.cgi?id=127830 + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("GetById untyped cell case")); + LBasicBlock notCellCase = FTL_NEW_BLOCK(m_out, ("GetById untyped not cell case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetById untyped continuation")); + + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notCellCase); + ValueFromBlock cellResult = m_out.anchor(getById(value)); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + ValueFromBlock notCellResult = m_out.anchor(vmCall( + m_out.operation(operationGetByIdGeneric), + m_callFrame, value, + m_out.constIntPtr(m_graph.identifiers()[m_node->identifierNumber()]))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, cellResult, notCellResult)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + } + + void compilePutById() + { + // See above; CellUse is easier so we do only that for now. + ASSERT(m_node->child1().useKind() == CellUse); + + LValue base = lowCell(m_node->child1()); + LValue value = lowJSValue(m_node->child2()); + auto uid = m_graph.identifiers()[m_node->identifierNumber()]; + + // Arguments: id, bytes, target, numArgs, args... + unsigned stackmapID = m_stackmapIDs++; + + if (verboseCompilationEnabled()) + dataLog(" Emitting PutById patchpoint with stackmap #", stackmapID, "\n"); + + LValue call = m_out.call( + m_out.patchpointVoidIntrinsic(), + m_out.constInt64(stackmapID), m_out.constInt32(sizeOfPutById()), + constNull(m_out.ref8), m_out.constInt32(2), base, value); + setInstructionCallingConvention(call, LLVMAnyRegCallConv); + + m_ftlState.putByIds.append(PutByIdDescriptor( + stackmapID, m_node->origin.semantic, uid, + m_graph.executableFor(m_node->origin.semantic)->ecmaMode(), + m_node->op() == PutByIdDirect ? Direct : NotDirect)); + } + + void compileGetButterfly() + { + setStorage(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.JSObject_butterfly)); + } + + void compileConstantStoragePointer() + { + setStorage(m_out.constIntPtr(m_node->storagePointer())); + } + + void compileGetIndexedPropertyStorage() + { + LValue cell = lowCell(m_node->child1()); + + if (m_node->arrayMode().type() == Array::String) { + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("GetIndexedPropertyStorage String slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetIndexedPropertyStorage String continuation")); + + ValueFromBlock fastResult = m_out.anchor( + m_out.loadPtr(cell, m_heaps.JSString_value)); + + m_out.branch( + m_out.notNull(fastResult.value()), usually(continuation), rarely(slowPath)); + + LBasicBlock lastNext = m_out.appendTo(slowPath, continuation); + + ValueFromBlock slowResult = m_out.anchor( + vmCall(m_out.operation(operationResolveRope), m_callFrame, cell)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setStorage(m_out.loadPtr(m_out.phi(m_out.intPtr, fastResult, slowResult), m_heaps.StringImpl_data)); + return; + } + + setStorage(m_out.loadPtr(cell, m_heaps.JSArrayBufferView_vector)); + } + + void compileCheckArray() + { + Edge edge = m_node->child1(); + LValue cell = lowCell(edge); + + if (m_node->arrayMode().alreadyChecked(m_graph, m_node, abstractValue(edge))) + return; + + speculate( + BadIndexingType, jsValueValue(cell), 0, + m_out.bitNot(isArrayType(cell, m_node->arrayMode()))); + } + + void compileGetTypedArrayByteOffset() + { + LValue basePtr = lowCell(m_node->child1()); + + LBasicBlock simpleCase = FTL_NEW_BLOCK(m_out, ("wasteless typed array")); + LBasicBlock wastefulCase = FTL_NEW_BLOCK(m_out, ("wasteful typed array")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("continuation branch")); + + LValue mode = m_out.load32(basePtr, m_heaps.JSArrayBufferView_mode); + m_out.branch( + m_out.notEqual(mode, m_out.constInt32(WastefulTypedArray)), + unsure(simpleCase), unsure(wastefulCase)); + + // begin simple case + LBasicBlock lastNext = m_out.appendTo(simpleCase, wastefulCase); + + ValueFromBlock simpleOut = m_out.anchor(m_out.constIntPtr(0)); + + m_out.jump(continuation); + + // begin wasteful case + m_out.appendTo(wastefulCase, continuation); + + LValue vectorPtr = m_out.loadPtr(basePtr, m_heaps.JSArrayBufferView_vector); + LValue butterflyPtr = m_out.loadPtr(basePtr, m_heaps.JSObject_butterfly); + LValue arrayBufferPtr = m_out.loadPtr(butterflyPtr, m_heaps.Butterfly_arrayBuffer); + LValue dataPtr = m_out.loadPtr(arrayBufferPtr, m_heaps.ArrayBuffer_data); + + ValueFromBlock wastefulOut = m_out.anchor(m_out.sub(vectorPtr, dataPtr)); + + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + + // output + setInt32(m_out.castToInt32(m_out.phi(m_out.intPtr, simpleOut, wastefulOut))); + } + + void compileGetArrayLength() + { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + setInt32(m_out.load32NonNegative(lowStorage(m_node->child2()), m_heaps.Butterfly_publicLength)); + return; + } + + case Array::String: { + LValue string = lowCell(m_node->child1()); + setInt32(m_out.load32NonNegative(string, m_heaps.JSString_length)); + return; + } + + case Array::DirectArguments: { + LValue arguments = lowCell(m_node->child1()); + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.notNull(m_out.loadPtr(arguments, m_heaps.DirectArguments_overrides))); + setInt32(m_out.load32NonNegative(arguments, m_heaps.DirectArguments_length)); + return; + } + + case Array::ScopedArguments: { + LValue arguments = lowCell(m_node->child1()); + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.notZero8(m_out.load8(arguments, m_heaps.ScopedArguments_overrodeThings))); + setInt32(m_out.load32NonNegative(arguments, m_heaps.ScopedArguments_totalLength)); + return; + } + + default: + if (isTypedView(m_node->arrayMode().typedArrayType())) { + setInt32( + m_out.load32NonNegative(lowCell(m_node->child1()), m_heaps.JSArrayBufferView_length)); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } + } + + void compileCheckInBounds() + { + speculate( + OutOfBounds, noValue(), 0, + m_out.aboveOrEqual(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + } + + void compileGetByVal() + { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: { + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + IndexedAbstractHeap& heap = m_node->arrayMode().type() == Array::Int32 ? + m_heaps.indexedInt32Properties : m_heaps.indexedContiguousProperties; + + if (m_node->arrayMode().isInBounds()) { + LValue result = m_out.load64(baseIndex(heap, storage, index, m_node->child2())); + LValue isHole = m_out.isZero64(result); + if (m_node->arrayMode().isSaneChain()) { + DFG_ASSERT( + m_graph, m_node, m_node->arrayMode().type() == Array::Contiguous); + result = m_out.select( + isHole, m_out.constInt64(JSValue::encode(jsUndefined())), result); + } else + speculate(LoadFromHole, noValue(), 0, isHole); + setJSValue(result); + return; + } + + LValue base = lowCell(m_node->child1()); + + LBasicBlock fastCase = FTL_NEW_BLOCK(m_out, ("GetByVal int/contiguous fast case")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("GetByVal int/contiguous slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetByVal int/contiguous continuation")); + + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(fastCase)); + + LBasicBlock lastNext = m_out.appendTo(fastCase, slowCase); + + ValueFromBlock fastResult = m_out.anchor( + m_out.load64(baseIndex(heap, storage, index, m_node->child2()))); + m_out.branch( + m_out.isZero64(fastResult.value()), rarely(slowCase), usually(continuation)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor( + vmCall(m_out.operation(operationGetByValArrayInt), m_callFrame, base, index)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, fastResult, slowResult)); + return; + } + + case Array::Double: { + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + IndexedAbstractHeap& heap = m_heaps.indexedDoubleProperties; + + if (m_node->arrayMode().isInBounds()) { + LValue result = m_out.loadDouble( + baseIndex(heap, storage, index, m_node->child2())); + + if (!m_node->arrayMode().isSaneChain()) { + speculate( + LoadFromHole, noValue(), 0, + m_out.doubleNotEqualOrUnordered(result, result)); + } + setDouble(result); + break; + } + + LValue base = lowCell(m_node->child1()); + + LBasicBlock inBounds = FTL_NEW_BLOCK(m_out, ("GetByVal double in bounds")); + LBasicBlock boxPath = FTL_NEW_BLOCK(m_out, ("GetByVal double boxing")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("GetByVal double slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetByVal double continuation")); + + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(inBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, boxPath); + LValue doubleValue = m_out.loadDouble( + baseIndex(heap, storage, index, m_node->child2())); + m_out.branch( + m_out.doubleNotEqualOrUnordered(doubleValue, doubleValue), + rarely(slowCase), usually(boxPath)); + + m_out.appendTo(boxPath, slowCase); + ValueFromBlock fastResult = m_out.anchor(boxDouble(doubleValue)); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor( + vmCall(m_out.operation(operationGetByValArrayInt), m_callFrame, base, index)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, fastResult, slowResult)); + return; + } + + case Array::Undecided: { + LValue index = lowInt32(m_node->child2()); + + speculate(OutOfBounds, noValue(), m_node, m_out.lessThan(index, m_out.int32Zero)); + setJSValue(m_out.constInt64(ValueUndefined)); + return; + } + + case Array::DirectArguments: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.notNull(m_out.loadPtr(base, m_heaps.DirectArguments_overrides))); + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.aboveOrEqual( + index, + m_out.load32NonNegative(base, m_heaps.DirectArguments_length))); + + TypedPointer address = m_out.baseIndex( + m_heaps.DirectArguments_storage, base, m_out.zeroExtPtr(index)); + setJSValue(m_out.load64(address)); + return; + } + + case Array::ScopedArguments: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.aboveOrEqual( + index, + m_out.load32NonNegative(base, m_heaps.ScopedArguments_totalLength))); + + LValue table = m_out.loadPtr(base, m_heaps.ScopedArguments_table); + LValue namedLength = m_out.load32(table, m_heaps.ScopedArgumentsTable_length); + + LBasicBlock namedCase = FTL_NEW_BLOCK(m_out, ("GetByVal ScopedArguments named case")); + LBasicBlock overflowCase = FTL_NEW_BLOCK(m_out, ("GetByVal ScopedArguments overflow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetByVal ScopedArguments continuation")); + + m_out.branch( + m_out.aboveOrEqual(index, namedLength), unsure(overflowCase), unsure(namedCase)); + + LBasicBlock lastNext = m_out.appendTo(namedCase, overflowCase); + + LValue scope = m_out.loadPtr(base, m_heaps.ScopedArguments_scope); + LValue arguments = m_out.loadPtr(table, m_heaps.ScopedArgumentsTable_arguments); + + TypedPointer address = m_out.baseIndex( + m_heaps.scopedArgumentsTableArguments, arguments, m_out.zeroExtPtr(index)); + LValue scopeOffset = m_out.load32(address); + + speculate( + ExoticObjectMode, noValue(), nullptr, + m_out.equal(scopeOffset, m_out.constInt32(ScopeOffset::invalidOffset))); + + address = m_out.baseIndex( + m_heaps.JSEnvironmentRecord_variables, scope, m_out.zeroExtPtr(scopeOffset)); + ValueFromBlock namedResult = m_out.anchor(m_out.load64(address)); + m_out.jump(continuation); + + m_out.appendTo(overflowCase, continuation); + + address = m_out.baseIndex( + m_heaps.ScopedArguments_overflowStorage, base, + m_out.zeroExtPtr(m_out.sub(index, namedLength))); + LValue overflowValue = m_out.load64(address); + speculate(ExoticObjectMode, noValue(), nullptr, m_out.isZero64(overflowValue)); + ValueFromBlock overflowResult = m_out.anchor(overflowValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, namedResult, overflowResult)); + return; + } + + case Array::Generic: { + setJSValue(vmCall( + m_out.operation(operationGetByVal), m_callFrame, + lowJSValue(m_node->child1()), lowJSValue(m_node->child2()))); + return; + } + + case Array::String: { + compileStringCharAt(); + return; + } + + default: { + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + TypedArrayType type = m_node->arrayMode().typedArrayType(); + + if (isTypedView(type)) { + TypedPointer pointer = TypedPointer( + m_heaps.typedArrayProperties, + m_out.add( + storage, + m_out.shl( + m_out.zeroExtPtr(index), + m_out.constIntPtr(logElementSize(type))))); + + if (isInt(type)) { + LValue result; + switch (elementSize(type)) { + case 1: + result = m_out.load8(pointer); + break; + case 2: + result = m_out.load16(pointer); + break; + case 4: + result = m_out.load32(pointer); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad element size"); + } + + if (elementSize(type) < 4) { + if (isSigned(type)) + result = m_out.signExt(result, m_out.int32); + else + result = m_out.zeroExt(result, m_out.int32); + setInt32(result); + return; + } + + if (isSigned(type)) { + setInt32(result); + return; + } + + if (m_node->shouldSpeculateInt32()) { + speculate( + Overflow, noValue(), 0, m_out.lessThan(result, m_out.int32Zero)); + setInt32(result); + return; + } + + if (m_node->shouldSpeculateMachineInt()) { + setStrictInt52(m_out.zeroExt(result, m_out.int64)); + return; + } + + setDouble(m_out.unsignedToFP(result, m_out.doubleType)); + return; + } + + ASSERT(isFloat(type)); + + LValue result; + switch (type) { + case TypeFloat32: + result = m_out.fpCast(m_out.loadFloat(pointer), m_out.doubleType); + break; + case TypeFloat64: + result = m_out.loadDouble(pointer); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad typed array type"); + } + + setDouble(result); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } } + } + + void compileGetMyArgumentByVal() + { + InlineCallFrame* inlineCallFrame = m_node->child1()->origin.semantic.inlineCallFrame; + + LValue index = lowInt32(m_node->child2()); + + LValue limit; + if (inlineCallFrame && !inlineCallFrame->isVarargs()) + limit = m_out.constInt32(inlineCallFrame->arguments.size() - 1); + else { + VirtualRegister argumentCountRegister; + if (!inlineCallFrame) + argumentCountRegister = VirtualRegister(JSStack::ArgumentCount); + else + argumentCountRegister = inlineCallFrame->argumentCountRegister; + limit = m_out.sub(m_out.load32(payloadFor(argumentCountRegister)), m_out.int32One); + } + + speculate(ExoticObjectMode, noValue(), 0, m_out.aboveOrEqual(index, limit)); + + TypedPointer base; + if (inlineCallFrame) { + if (inlineCallFrame->arguments.size() <= 1) { + // We should have already exited due to the bounds check, above. Just tell the + // compiler that anything dominated by this instruction is not reachable, so + // that we don't waste time generating such code. This will also plant some + // kind of crashing instruction so that if by some fluke the bounds check didn't + // work, we'll crash in an easy-to-see way. + didAlreadyTerminate(); + return; + } + base = addressFor(inlineCallFrame->arguments[1].virtualRegister()); + } else + base = addressFor(virtualRegisterForArgument(1)); + + LValue pointer = m_out.baseIndex( + base.value(), m_out.zeroExt(index, m_out.intPtr), ScaleEight); + setJSValue(m_out.load64(TypedPointer(m_heaps.variables.atAnyIndex(), pointer))); + } + + void compilePutByVal() + { + Edge child1 = m_graph.varArgChild(m_node, 0); + Edge child2 = m_graph.varArgChild(m_node, 1); + Edge child3 = m_graph.varArgChild(m_node, 2); + Edge child4 = m_graph.varArgChild(m_node, 3); + Edge child5 = m_graph.varArgChild(m_node, 4); + + switch (m_node->arrayMode().type()) { + case Array::Generic: { + V_JITOperation_EJJJ operation; + if (m_node->op() == PutByValDirect) { + if (m_graph.isStrictModeFor(m_node->origin.semantic)) + operation = operationPutByValDirectStrict; + else + operation = operationPutByValDirectNonStrict; + } else { + if (m_graph.isStrictModeFor(m_node->origin.semantic)) + operation = operationPutByValStrict; + else + operation = operationPutByValNonStrict; + } + + vmCall( + m_out.operation(operation), m_callFrame, + lowJSValue(child1), lowJSValue(child2), lowJSValue(child3)); + return; + } + + default: + break; + } + + LValue base = lowCell(child1); + LValue index = lowInt32(child2); + LValue storage = lowStorage(child4); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("PutByVal continuation")); + LBasicBlock outerLastNext = m_out.appendTo(m_out.m_block, continuation); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: { + LValue value = lowJSValue(child3, ManualOperandSpeculation); + + if (m_node->arrayMode().type() == Array::Int32) + FTL_TYPE_CHECK(jsValueValue(value), child3, SpecInt32, isNotInt32(value)); + + TypedPointer elementPointer = m_out.baseIndex( + m_node->arrayMode().type() == Array::Int32 ? + m_heaps.indexedInt32Properties : m_heaps.indexedContiguousProperties, + storage, m_out.zeroExtPtr(index), provenValue(child2)); + + if (m_node->op() == PutByValAlias) { + m_out.store64(value, elementPointer); + break; + } + + contiguousPutByValOutOfBounds( + codeBlock()->isStrictMode() + ? operationPutByValBeyondArrayBoundsStrict + : operationPutByValBeyondArrayBoundsNonStrict, + base, storage, index, value, continuation); + + m_out.store64(value, elementPointer); + break; + } + + case Array::Double: { + LValue value = lowDouble(child3); + + FTL_TYPE_CHECK( + doubleValue(value), child3, SpecDoubleReal, + m_out.doubleNotEqualOrUnordered(value, value)); + + TypedPointer elementPointer = m_out.baseIndex( + m_heaps.indexedDoubleProperties, storage, m_out.zeroExtPtr(index), + provenValue(child2)); + + if (m_node->op() == PutByValAlias) { + m_out.storeDouble(value, elementPointer); + break; + } + + contiguousPutByValOutOfBounds( + codeBlock()->isStrictMode() + ? operationPutDoubleByValBeyondArrayBoundsStrict + : operationPutDoubleByValBeyondArrayBoundsNonStrict, + base, storage, index, value, continuation); + + m_out.storeDouble(value, elementPointer); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + } + + m_out.jump(continuation); + m_out.appendTo(continuation, outerLastNext); + return; + } + + default: + TypedArrayType type = m_node->arrayMode().typedArrayType(); + + if (isTypedView(type)) { + TypedPointer pointer = TypedPointer( + m_heaps.typedArrayProperties, + m_out.add( + storage, + m_out.shl( + m_out.zeroExt(index, m_out.intPtr), + m_out.constIntPtr(logElementSize(type))))); + + LType refType; + LValue valueToStore; + + if (isInt(type)) { + LValue intValue; + switch (child3.useKind()) { + case Int52RepUse: + case Int32Use: { + if (child3.useKind() == Int32Use) + intValue = lowInt32(child3); + else + intValue = m_out.castToInt32(lowStrictInt52(child3)); + + if (isClamped(type)) { + ASSERT(elementSize(type) == 1); + + LBasicBlock atLeastZero = FTL_NEW_BLOCK(m_out, ("PutByVal int clamp atLeastZero")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("PutByVal int clamp continuation")); + + Vector<ValueFromBlock, 2> intValues; + intValues.append(m_out.anchor(m_out.int32Zero)); + m_out.branch( + m_out.lessThan(intValue, m_out.int32Zero), + unsure(continuation), unsure(atLeastZero)); + + LBasicBlock lastNext = m_out.appendTo(atLeastZero, continuation); + + intValues.append(m_out.anchor(m_out.select( + m_out.greaterThan(intValue, m_out.constInt32(255)), + m_out.constInt32(255), + intValue))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + intValue = m_out.phi(m_out.int32, intValues); + } + break; + } + + case DoubleRepUse: { + LValue doubleValue = lowDouble(child3); + + if (isClamped(type)) { + ASSERT(elementSize(type) == 1); + + LBasicBlock atLeastZero = FTL_NEW_BLOCK(m_out, ("PutByVal double clamp atLeastZero")); + LBasicBlock withinRange = FTL_NEW_BLOCK(m_out, ("PutByVal double clamp withinRange")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("PutByVal double clamp continuation")); + + Vector<ValueFromBlock, 3> intValues; + intValues.append(m_out.anchor(m_out.int32Zero)); + m_out.branch( + m_out.doubleLessThanOrUnordered(doubleValue, m_out.doubleZero), + unsure(continuation), unsure(atLeastZero)); + + LBasicBlock lastNext = m_out.appendTo(atLeastZero, withinRange); + intValues.append(m_out.anchor(m_out.constInt32(255))); + m_out.branch( + m_out.doubleGreaterThan(doubleValue, m_out.constDouble(255)), + unsure(continuation), unsure(withinRange)); + + m_out.appendTo(withinRange, continuation); + intValues.append(m_out.anchor(m_out.fpToInt32(doubleValue))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + intValue = m_out.phi(m_out.int32, intValues); + } else + intValue = doubleToInt32(doubleValue); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + } + + switch (elementSize(type)) { + case 1: + valueToStore = m_out.intCast(intValue, m_out.int8); + refType = m_out.ref8; + break; + case 2: + valueToStore = m_out.intCast(intValue, m_out.int16); + refType = m_out.ref16; + break; + case 4: + valueToStore = intValue; + refType = m_out.ref32; + break; + default: + DFG_CRASH(m_graph, m_node, "Bad element size"); + } + } else /* !isInt(type) */ { + LValue value = lowDouble(child3); + switch (type) { + case TypeFloat32: + valueToStore = m_out.fpCast(value, m_out.floatType); + refType = m_out.refFloat; + break; + case TypeFloat64: + valueToStore = value; + refType = m_out.refDouble; + break; + default: + DFG_CRASH(m_graph, m_node, "Bad typed array type"); + } + } + + if (m_node->arrayMode().isInBounds() || m_node->op() == PutByValAlias) + m_out.store(valueToStore, pointer, refType); + else { + LBasicBlock isInBounds = FTL_NEW_BLOCK(m_out, ("PutByVal typed array in bounds case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("PutByVal typed array continuation")); + + m_out.branch( + m_out.aboveOrEqual(index, lowInt32(child5)), + unsure(continuation), unsure(isInBounds)); + + LBasicBlock lastNext = m_out.appendTo(isInBounds, continuation); + m_out.store(valueToStore, pointer, refType); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + return; + } + + DFG_CRASH(m_graph, m_node, "Bad array type"); + break; + } + } + + void compileArrayPush() + { + LValue base = lowCell(m_node->child1()); + LValue storage = lowStorage(m_node->child3()); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: + case Array::Double: { + LValue value; + LType refType; + + if (m_node->arrayMode().type() != Array::Double) { + value = lowJSValue(m_node->child2(), ManualOperandSpeculation); + if (m_node->arrayMode().type() == Array::Int32) { + FTL_TYPE_CHECK( + jsValueValue(value), m_node->child2(), SpecInt32, isNotInt32(value)); + } + refType = m_out.ref64; + } else { + value = lowDouble(m_node->child2()); + FTL_TYPE_CHECK( + doubleValue(value), m_node->child2(), SpecDoubleReal, + m_out.doubleNotEqualOrUnordered(value, value)); + refType = m_out.refDouble; + } + + IndexedAbstractHeap& heap = m_heaps.forArrayType(m_node->arrayMode().type()); + + LValue prevLength = m_out.load32(storage, m_heaps.Butterfly_publicLength); + + LBasicBlock fastPath = FTL_NEW_BLOCK(m_out, ("ArrayPush fast path")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("ArrayPush slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArrayPush continuation")); + + m_out.branch( + m_out.aboveOrEqual( + prevLength, m_out.load32(storage, m_heaps.Butterfly_vectorLength)), + rarely(slowPath), usually(fastPath)); + + LBasicBlock lastNext = m_out.appendTo(fastPath, slowPath); + m_out.store( + value, m_out.baseIndex(heap, storage, m_out.zeroExtPtr(prevLength)), refType); + LValue newLength = m_out.add(prevLength, m_out.int32One); + m_out.store32(newLength, storage, m_heaps.Butterfly_publicLength); + + ValueFromBlock fastResult = m_out.anchor(boxInt32(newLength)); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue operation; + if (m_node->arrayMode().type() != Array::Double) + operation = m_out.operation(operationArrayPush); + else + operation = m_out.operation(operationArrayPushDouble); + ValueFromBlock slowResult = m_out.anchor( + vmCall(operation, m_callFrame, value, base)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, fastResult, slowResult)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } + } + + void compileArrayPop() + { + LValue base = lowCell(m_node->child1()); + LValue storage = lowStorage(m_node->child2()); + + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + IndexedAbstractHeap& heap = m_heaps.forArrayType(m_node->arrayMode().type()); + + LBasicBlock fastCase = FTL_NEW_BLOCK(m_out, ("ArrayPop fast case")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("ArrayPop slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ArrayPop continuation")); + + LValue prevLength = m_out.load32(storage, m_heaps.Butterfly_publicLength); + + Vector<ValueFromBlock, 3> results; + results.append(m_out.anchor(m_out.constInt64(JSValue::encode(jsUndefined())))); + m_out.branch( + m_out.isZero32(prevLength), rarely(continuation), usually(fastCase)); + + LBasicBlock lastNext = m_out.appendTo(fastCase, slowCase); + LValue newLength = m_out.sub(prevLength, m_out.int32One); + m_out.store32(newLength, storage, m_heaps.Butterfly_publicLength); + TypedPointer pointer = m_out.baseIndex(heap, storage, m_out.zeroExtPtr(newLength)); + if (m_node->arrayMode().type() != Array::Double) { + LValue result = m_out.load64(pointer); + m_out.store64(m_out.int64Zero, pointer); + results.append(m_out.anchor(result)); + m_out.branch( + m_out.notZero64(result), usually(continuation), rarely(slowCase)); + } else { + LValue result = m_out.loadDouble(pointer); + m_out.store64(m_out.constInt64(bitwise_cast<int64_t>(PNaN)), pointer); + results.append(m_out.anchor(boxDouble(result))); + m_out.branch( + m_out.doubleEqual(result, result), + usually(continuation), rarely(slowCase)); + } + + m_out.appendTo(slowCase, continuation); + results.append(m_out.anchor(vmCall( + m_out.operation(operationArrayPopAndRecoverLength), m_callFrame, base))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, results)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad array type"); + return; + } + } + + void compileCreateActivation() + { + LValue scope = lowCell(m_node->child1()); + SymbolTable* table = m_node->castOperand<SymbolTable*>(); + Structure* structure = m_graph.globalObjectFor(m_node->origin.semantic)->activationStructure(); + JSValue initializationValue = m_node->initializationValueForActivation(); + ASSERT(initializationValue.isUndefined() || initializationValue == jsTDZValue()); + if (table->singletonScope()->isStillValid()) { + LValue callResult = vmCall( + m_out.operation(operationCreateActivationDirect), m_callFrame, weakPointer(structure), + scope, weakPointer(table), m_out.constInt64(JSValue::encode(initializationValue))); + setJSValue(callResult); + return; + } + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("CreateActivation slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("CreateActivation continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue fastObject = allocateObject<JSLexicalEnvironment>( + JSLexicalEnvironment::allocationSize(table), structure, m_out.intPtrZero, slowPath); + + // We don't need memory barriers since we just fast-created the activation, so the + // activation must be young. + m_out.storePtr(scope, fastObject, m_heaps.JSScope_next); + m_out.storePtr(weakPointer(table), fastObject, m_heaps.JSSymbolTableObject_symbolTable); + + for (unsigned i = 0; i < table->scopeSize(); ++i) { + m_out.store64( + m_out.constInt64(JSValue::encode(initializationValue)), + fastObject, m_heaps.JSEnvironmentRecord_variables[i]); + } + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue callResult = vmCall( + m_out.operation(operationCreateActivationDirect), m_callFrame, weakPointer(structure), + scope, weakPointer(table), m_out.constInt64(JSValue::encode(initializationValue))); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.intPtr, fastResult, slowResult)); + } + + void compileNewFunction() + { + LValue scope = lowCell(m_node->child1()); + FunctionExecutable* executable = m_node->castOperand<FunctionExecutable*>(); + if (executable->singletonFunction()->isStillValid()) { + LValue callResult = vmCall( + m_out.operation(operationNewFunction), m_callFrame, scope, weakPointer(executable)); + setJSValue(callResult); + return; + } + + Structure* structure = m_graph.globalObjectFor(m_node->origin.semantic)->functionStructure(); + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("NewFunction slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("NewFunction continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue fastObject = allocateObject<JSFunction>( + structure, m_out.intPtrZero, slowPath); + + // We don't need memory barriers since we just fast-created the function, so it + // must be young. + m_out.storePtr(scope, fastObject, m_heaps.JSFunction_scope); + m_out.storePtr(weakPointer(executable), fastObject, m_heaps.JSFunction_executable); + m_out.storePtr(m_out.intPtrZero, fastObject, m_heaps.JSFunction_rareData); + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue callResult = vmCall( + m_out.operation(operationNewFunctionWithInvalidatedReallocationWatchpoint), + m_callFrame, scope, weakPointer(executable)); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.intPtr, fastResult, slowResult)); + } + + void compileCreateDirectArguments() + { + // FIXME: A more effective way of dealing with the argument count and callee is to have + // them be explicit arguments to this node. + // https://bugs.webkit.org/show_bug.cgi?id=142207 + + Structure* structure = + m_graph.globalObjectFor(m_node->origin.semantic)->directArgumentsStructure(); + + unsigned minCapacity = m_graph.baselineCodeBlockFor(m_node->origin.semantic)->numParameters() - 1; + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("CreateDirectArguments slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("CreateDirectArguments continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + ArgumentsLength length = getArgumentsLength(); + + LValue fastObject; + if (length.isKnown) { + fastObject = allocateObject<DirectArguments>( + DirectArguments::allocationSize(std::max(length.known, minCapacity)), structure, + m_out.intPtrZero, slowPath); + } else { + LValue size = m_out.add( + m_out.shl(length.value, m_out.constInt32(3)), + m_out.constInt32(DirectArguments::storageOffset())); + + size = m_out.select( + m_out.aboveOrEqual(length.value, m_out.constInt32(minCapacity)), + size, m_out.constInt32(DirectArguments::allocationSize(minCapacity))); + + fastObject = allocateVariableSizedObject<DirectArguments>( + size, structure, m_out.intPtrZero, slowPath); + } + + m_out.store32(length.value, fastObject, m_heaps.DirectArguments_length); + m_out.store32(m_out.constInt32(minCapacity), fastObject, m_heaps.DirectArguments_minCapacity); + m_out.storePtr(m_out.intPtrZero, fastObject, m_heaps.DirectArguments_overrides); + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + LValue callResult = vmCall( + m_out.operation(operationCreateDirectArguments), m_callFrame, weakPointer(structure), + length.value, m_out.constInt32(minCapacity)); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi(m_out.intPtr, fastResult, slowResult); + + m_out.storePtr(getCurrentCallee(), result, m_heaps.DirectArguments_callee); + + if (length.isKnown) { + VirtualRegister start = AssemblyHelpers::argumentsStart(m_node->origin.semantic); + for (unsigned i = 0; i < std::max(length.known, minCapacity); ++i) { + m_out.store64( + m_out.load64(addressFor(start + i)), + result, m_heaps.DirectArguments_storage[i]); + } + } else { + LValue stackBase = getArgumentsStart(); + + LBasicBlock loop = FTL_NEW_BLOCK(m_out, ("CreateDirectArguments loop body")); + LBasicBlock end = FTL_NEW_BLOCK(m_out, ("CreateDirectArguments loop end")); + + ValueFromBlock originalLength; + if (minCapacity) { + LValue capacity = m_out.select( + m_out.aboveOrEqual(length.value, m_out.constInt32(minCapacity)), + length.value, + m_out.constInt32(minCapacity)); + originalLength = m_out.anchor(m_out.zeroExtPtr(capacity)); + m_out.jump(loop); + } else { + originalLength = m_out.anchor(m_out.zeroExtPtr(length.value)); + m_out.branch(m_out.isNull(originalLength.value()), unsure(end), unsure(loop)); + } + + lastNext = m_out.appendTo(loop, end); + LValue previousIndex = m_out.phi(m_out.intPtr, originalLength); + LValue index = m_out.sub(previousIndex, m_out.intPtrOne); + m_out.store64( + m_out.load64(m_out.baseIndex(m_heaps.variables, stackBase, index)), + m_out.baseIndex(m_heaps.DirectArguments_storage, result, index)); + ValueFromBlock nextIndex = m_out.anchor(index); + addIncoming(previousIndex, nextIndex); + m_out.branch(m_out.isNull(index), unsure(end), unsure(loop)); + + m_out.appendTo(end, lastNext); + } + + setJSValue(result); + } + + void compileCreateScopedArguments() + { + LValue scope = lowCell(m_node->child1()); + + LValue result = vmCall( + m_out.operation(operationCreateScopedArguments), m_callFrame, + weakPointer( + m_graph.globalObjectFor(m_node->origin.semantic)->scopedArgumentsStructure()), + getArgumentsStart(), getArgumentsLength().value, getCurrentCallee(), scope); + + setJSValue(result); + } + + void compileCreateClonedArguments() + { + LValue result = vmCall( + m_out.operation(operationCreateClonedArguments), m_callFrame, + weakPointer( + m_graph.globalObjectFor(m_node->origin.semantic)->outOfBandArgumentsStructure()), + getArgumentsStart(), getArgumentsLength().value, getCurrentCallee()); + + setJSValue(result); + } + + void compileNewObject() + { + setJSValue(allocateObject(m_node->structure())); + } + + void compileNewArray() + { + // First speculate appropriately on all of the children. Do this unconditionally up here + // because some of the slow paths may otherwise forget to do it. It's sort of arguable + // that doing the speculations up here might be unprofitable for RA - so we can consider + // sinking this to below the allocation fast path if we find that this has a lot of + // register pressure. + for (unsigned operandIndex = 0; operandIndex < m_node->numChildren(); ++operandIndex) + speculate(m_graph.varArgChild(m_node, operandIndex)); + + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + Structure* structure = globalObject->arrayStructureForIndexingTypeDuringAllocation( + m_node->indexingType()); + + DFG_ASSERT(m_graph, m_node, structure->indexingType() == m_node->indexingType()); + + if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(m_node->indexingType())) { + unsigned numElements = m_node->numChildren(); + + ArrayValues arrayValues = allocateJSArray(structure, numElements); + + for (unsigned operandIndex = 0; operandIndex < m_node->numChildren(); ++operandIndex) { + Edge edge = m_graph.varArgChild(m_node, operandIndex); + + switch (m_node->indexingType()) { + case ALL_BLANK_INDEXING_TYPES: + case ALL_UNDECIDED_INDEXING_TYPES: + DFG_CRASH(m_graph, m_node, "Bad indexing type"); + break; + + case ALL_DOUBLE_INDEXING_TYPES: + m_out.storeDouble( + lowDouble(edge), + arrayValues.butterfly, m_heaps.indexedDoubleProperties[operandIndex]); + break; + + case ALL_INT32_INDEXING_TYPES: + case ALL_CONTIGUOUS_INDEXING_TYPES: + m_out.store64( + lowJSValue(edge, ManualOperandSpeculation), + arrayValues.butterfly, + m_heaps.forIndexingType(m_node->indexingType())->at(operandIndex)); + break; + + default: + DFG_CRASH(m_graph, m_node, "Corrupt indexing type"); + break; + } + } + + setJSValue(arrayValues.array); + return; + } + + if (!m_node->numChildren()) { + setJSValue(vmCall( + m_out.operation(operationNewEmptyArray), m_callFrame, + m_out.constIntPtr(structure))); + return; + } + + size_t scratchSize = sizeof(EncodedJSValue) * m_node->numChildren(); + ASSERT(scratchSize); + ScratchBuffer* scratchBuffer = vm().scratchBufferForSize(scratchSize); + EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()); + + for (unsigned operandIndex = 0; operandIndex < m_node->numChildren(); ++operandIndex) { + Edge edge = m_graph.varArgChild(m_node, operandIndex); + m_out.store64( + lowJSValue(edge, ManualOperandSpeculation), + m_out.absolute(buffer + operandIndex)); + } + + m_out.storePtr( + m_out.constIntPtr(scratchSize), m_out.absolute(scratchBuffer->activeLengthPtr())); + + LValue result = vmCall( + m_out.operation(operationNewArray), m_callFrame, + m_out.constIntPtr(structure), m_out.constIntPtr(buffer), + m_out.constIntPtr(m_node->numChildren())); + + m_out.storePtr(m_out.intPtrZero, m_out.absolute(scratchBuffer->activeLengthPtr())); + + setJSValue(result); + } + + void compileNewArrayBuffer() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + Structure* structure = globalObject->arrayStructureForIndexingTypeDuringAllocation( + m_node->indexingType()); + + DFG_ASSERT(m_graph, m_node, structure->indexingType() == m_node->indexingType()); + + if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(m_node->indexingType())) { + unsigned numElements = m_node->numConstants(); + + ArrayValues arrayValues = allocateJSArray(structure, numElements); + + JSValue* data = codeBlock()->constantBuffer(m_node->startConstant()); + for (unsigned index = 0; index < m_node->numConstants(); ++index) { + int64_t value; + if (hasDouble(m_node->indexingType())) + value = bitwise_cast<int64_t>(data[index].asNumber()); + else + value = JSValue::encode(data[index]); + + m_out.store64( + m_out.constInt64(value), + arrayValues.butterfly, + m_heaps.forIndexingType(m_node->indexingType())->at(index)); + } + + setJSValue(arrayValues.array); + return; + } + + setJSValue(vmCall( + m_out.operation(operationNewArrayBuffer), m_callFrame, + m_out.constIntPtr(structure), m_out.constIntPtr(m_node->startConstant()), + m_out.constIntPtr(m_node->numConstants()))); + } + + void compileNewArrayWithSize() + { + LValue publicLength = lowInt32(m_node->child1()); + + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + Structure* structure = globalObject->arrayStructureForIndexingTypeDuringAllocation( + m_node->indexingType()); + + if (!globalObject->isHavingABadTime() && !hasAnyArrayStorage(m_node->indexingType())) { + ASSERT( + hasUndecided(structure->indexingType()) + || hasInt32(structure->indexingType()) + || hasDouble(structure->indexingType()) + || hasContiguous(structure->indexingType())); + + LBasicBlock fastCase = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize fast case")); + LBasicBlock largeCase = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize large case")); + LBasicBlock failCase = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize fail case")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize continuation")); + + m_out.branch( + m_out.aboveOrEqual(publicLength, m_out.constInt32(MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH)), + rarely(largeCase), usually(fastCase)); + + LBasicBlock lastNext = m_out.appendTo(fastCase, largeCase); + + // We don't round up to BASE_VECTOR_LEN for new Array(blah). + LValue vectorLength = publicLength; + + LValue payloadSize = + m_out.shl(m_out.zeroExt(vectorLength, m_out.intPtr), m_out.constIntPtr(3)); + + LValue butterflySize = m_out.add( + payloadSize, m_out.constIntPtr(sizeof(IndexingHeader))); + + LValue endOfStorage = allocateBasicStorageAndGetEnd(butterflySize, failCase); + + LValue butterfly = m_out.sub(endOfStorage, payloadSize); + + LValue object = allocateObject<JSArray>( + structure, butterfly, failCase); + + m_out.store32(publicLength, butterfly, m_heaps.Butterfly_publicLength); + m_out.store32(vectorLength, butterfly, m_heaps.Butterfly_vectorLength); + + if (hasDouble(m_node->indexingType())) { + LBasicBlock initLoop = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize double init loop")); + LBasicBlock initDone = FTL_NEW_BLOCK(m_out, ("NewArrayWithSize double init done")); + + ValueFromBlock originalIndex = m_out.anchor(vectorLength); + ValueFromBlock originalPointer = m_out.anchor(butterfly); + m_out.branch( + m_out.notZero32(vectorLength), unsure(initLoop), unsure(initDone)); + + LBasicBlock initLastNext = m_out.appendTo(initLoop, initDone); + LValue index = m_out.phi(m_out.int32, originalIndex); + LValue pointer = m_out.phi(m_out.intPtr, originalPointer); + + m_out.store64( + m_out.constInt64(bitwise_cast<int64_t>(PNaN)), + TypedPointer(m_heaps.indexedDoubleProperties.atAnyIndex(), pointer)); + + LValue nextIndex = m_out.sub(index, m_out.int32One); + addIncoming(index, m_out.anchor(nextIndex)); + addIncoming(pointer, m_out.anchor(m_out.add(pointer, m_out.intPtrEight))); + m_out.branch( + m_out.notZero32(nextIndex), unsure(initLoop), unsure(initDone)); + + m_out.appendTo(initDone, initLastNext); + } + + ValueFromBlock fastResult = m_out.anchor(object); + m_out.jump(continuation); + + m_out.appendTo(largeCase, failCase); + ValueFromBlock largeStructure = m_out.anchor(m_out.constIntPtr( + globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithArrayStorage))); + m_out.jump(slowCase); + + m_out.appendTo(failCase, slowCase); + ValueFromBlock failStructure = m_out.anchor(m_out.constIntPtr(structure)); + m_out.jump(slowCase); + + m_out.appendTo(slowCase, continuation); + LValue structureValue = m_out.phi( + m_out.intPtr, largeStructure, failStructure); + ValueFromBlock slowResult = m_out.anchor(vmCall( + m_out.operation(operationNewArrayWithSize), + m_callFrame, structureValue, publicLength)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.intPtr, fastResult, slowResult)); + return; + } + + LValue structureValue = m_out.select( + m_out.aboveOrEqual(publicLength, m_out.constInt32(MIN_ARRAY_STORAGE_CONSTRUCTION_LENGTH)), + m_out.constIntPtr( + globalObject->arrayStructureForIndexingTypeDuringAllocation(ArrayWithArrayStorage)), + m_out.constIntPtr(structure)); + setJSValue(vmCall(m_out.operation(operationNewArrayWithSize), m_callFrame, structureValue, publicLength)); + } + + void compileAllocatePropertyStorage() + { + LValue object = lowCell(m_node->child1()); + setStorage(allocatePropertyStorage(object, m_node->transition()->previous)); + } + + void compileReallocatePropertyStorage() + { + Transition* transition = m_node->transition(); + LValue object = lowCell(m_node->child1()); + LValue oldStorage = lowStorage(m_node->child2()); + + setStorage( + reallocatePropertyStorage( + object, oldStorage, transition->previous, transition->next)); + } + + void compileToStringOrCallStringConstructor() + { + switch (m_node->child1().useKind()) { + case StringObjectUse: { + LValue cell = lowCell(m_node->child1()); + speculateStringObjectForCell(m_node->child1(), cell); + m_interpreter.filter(m_node->child1(), SpecStringObject); + + setJSValue(m_out.loadPtr(cell, m_heaps.JSWrapperObject_internalValue)); + return; + } + + case StringOrStringObjectUse: { + LValue cell = lowCell(m_node->child1()); + LValue structureID = m_out.load32(cell, m_heaps.JSCell_structureID); + + LBasicBlock notString = FTL_NEW_BLOCK(m_out, ("ToString StringOrStringObject not string case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ToString StringOrStringObject continuation")); + + ValueFromBlock simpleResult = m_out.anchor(cell); + m_out.branch( + m_out.equal(structureID, m_out.constInt32(vm().stringStructure->id())), + unsure(continuation), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(notString, continuation); + speculateStringObjectForStructureID(m_node->child1(), structureID); + ValueFromBlock unboxedResult = m_out.anchor( + m_out.loadPtr(cell, m_heaps.JSWrapperObject_internalValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, simpleResult, unboxedResult)); + + m_interpreter.filter(m_node->child1(), SpecString | SpecStringObject); + return; + } + + case CellUse: + case UntypedUse: { + LValue value; + if (m_node->child1().useKind() == CellUse) + value = lowCell(m_node->child1()); + else + value = lowJSValue(m_node->child1()); + + LBasicBlock isCell = FTL_NEW_BLOCK(m_out, ("ToString CellUse/UntypedUse is cell")); + LBasicBlock notString = FTL_NEW_BLOCK(m_out, ("ToString CellUse/UntypedUse not string")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ToString CellUse/UntypedUse continuation")); + + LValue isCellPredicate; + if (m_node->child1().useKind() == CellUse) + isCellPredicate = m_out.booleanTrue; + else + isCellPredicate = this->isCell(value, provenType(m_node->child1())); + m_out.branch(isCellPredicate, unsure(isCell), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(isCell, notString); + ValueFromBlock simpleResult = m_out.anchor(value); + LValue isStringPredicate; + if (m_node->child1()->prediction() & SpecString) { + isStringPredicate = isString(value, provenType(m_node->child1())); + } else + isStringPredicate = m_out.booleanFalse; + m_out.branch(isStringPredicate, unsure(continuation), unsure(notString)); + + m_out.appendTo(notString, continuation); + LValue operation; + if (m_node->child1().useKind() == CellUse) + operation = m_out.operation(m_node->op() == ToString ? operationToStringOnCell : operationCallStringConstructorOnCell); + else + operation = m_out.operation(m_node->op() == ToString ? operationToString : operationCallStringConstructor); + ValueFromBlock convertedResult = m_out.anchor(vmCall(operation, m_callFrame, value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, simpleResult, convertedResult)); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + } + + void compileToPrimitive() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("ToPrimitive cell case")); + LBasicBlock isObjectCase = FTL_NEW_BLOCK(m_out, ("ToPrimitive object case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ToPrimitive continuation")); + + Vector<ValueFromBlock, 3> results; + + results.append(m_out.anchor(value)); + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isObjectCase); + results.append(m_out.anchor(value)); + m_out.branch( + isObject(value, provenType(m_node->child1())), + unsure(isObjectCase), unsure(continuation)); + + m_out.appendTo(isObjectCase, continuation); + results.append(m_out.anchor(vmCall( + m_out.operation(operationToPrimitive), m_callFrame, value))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, results)); + } + + void compileMakeRope() + { + LValue kids[3]; + unsigned numKids; + kids[0] = lowCell(m_node->child1()); + kids[1] = lowCell(m_node->child2()); + if (m_node->child3()) { + kids[2] = lowCell(m_node->child3()); + numKids = 3; + } else { + kids[2] = 0; + numKids = 2; + } + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("MakeRope slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("MakeRope continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + MarkedAllocator& allocator = + vm().heap.allocatorForObjectWithDestructor(sizeof(JSRopeString)); + + LValue result = allocateCell( + m_out.constIntPtr(&allocator), + vm().stringStructure.get(), + slowPath); + + m_out.storePtr(m_out.intPtrZero, result, m_heaps.JSString_value); + for (unsigned i = 0; i < numKids; ++i) + m_out.storePtr(kids[i], result, m_heaps.JSRopeString_fibers[i]); + for (unsigned i = numKids; i < JSRopeString::s_maxInternalRopeLength; ++i) + m_out.storePtr(m_out.intPtrZero, result, m_heaps.JSRopeString_fibers[i]); + LValue flags = m_out.load32(kids[0], m_heaps.JSString_flags); + LValue length = m_out.load32(kids[0], m_heaps.JSString_length); + for (unsigned i = 1; i < numKids; ++i) { + flags = m_out.bitAnd(flags, m_out.load32(kids[i], m_heaps.JSString_flags)); + LValue lengthAndOverflow = m_out.addWithOverflow32( + length, m_out.load32(kids[i], m_heaps.JSString_length)); + speculate(Uncountable, noValue(), 0, m_out.extractValue(lengthAndOverflow, 1)); + length = m_out.extractValue(lengthAndOverflow, 0); + } + m_out.store32( + m_out.bitAnd(m_out.constInt32(JSString::Is8Bit), flags), + result, m_heaps.JSString_flags); + m_out.store32(length, result, m_heaps.JSString_length); + + ValueFromBlock fastResult = m_out.anchor(result); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + ValueFromBlock slowResult; + switch (numKids) { + case 2: + slowResult = m_out.anchor(vmCall( + m_out.operation(operationMakeRope2), m_callFrame, kids[0], kids[1])); + break; + case 3: + slowResult = m_out.anchor(vmCall( + m_out.operation(operationMakeRope3), m_callFrame, kids[0], kids[1], kids[2])); + break; + default: + DFG_CRASH(m_graph, m_node, "Bad number of children"); + break; + } + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, fastResult, slowResult)); + } + + void compileStringCharAt() + { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + LBasicBlock fastPath = FTL_NEW_BLOCK(m_out, ("GetByVal String fast path")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("GetByVal String slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetByVal String continuation")); + + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(base, m_heaps.JSString_length)), + rarely(slowPath), usually(fastPath)); + + LBasicBlock lastNext = m_out.appendTo(fastPath, slowPath); + + LValue stringImpl = m_out.loadPtr(base, m_heaps.JSString_value); + + LBasicBlock is8Bit = FTL_NEW_BLOCK(m_out, ("GetByVal String 8-bit case")); + LBasicBlock is16Bit = FTL_NEW_BLOCK(m_out, ("GetByVal String 16-bit case")); + LBasicBlock bitsContinuation = FTL_NEW_BLOCK(m_out, ("GetByVal String bitness continuation")); + LBasicBlock bigCharacter = FTL_NEW_BLOCK(m_out, ("GetByVal String big character")); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(is16Bit), unsure(is8Bit)); + + m_out.appendTo(is8Bit, is16Bit); + + ValueFromBlock char8Bit = m_out.anchor(m_out.zeroExt( + m_out.load8(m_out.baseIndex( + m_heaps.characters8, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2()))), + m_out.int32)); + m_out.jump(bitsContinuation); + + m_out.appendTo(is16Bit, bigCharacter); + + ValueFromBlock char16Bit = m_out.anchor(m_out.zeroExt( + m_out.load16(m_out.baseIndex( + m_heaps.characters16, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2()))), + m_out.int32)); + m_out.branch( + m_out.aboveOrEqual(char16Bit.value(), m_out.constInt32(0x100)), + rarely(bigCharacter), usually(bitsContinuation)); + + m_out.appendTo(bigCharacter, bitsContinuation); + + Vector<ValueFromBlock, 4> results; + results.append(m_out.anchor(vmCall( + m_out.operation(operationSingleCharacterString), + m_callFrame, char16Bit.value()))); + m_out.jump(continuation); + + m_out.appendTo(bitsContinuation, slowPath); + + LValue character = m_out.phi(m_out.int32, char8Bit, char16Bit); + + LValue smallStrings = m_out.constIntPtr(vm().smallStrings.singleCharacterStrings()); + + results.append(m_out.anchor(m_out.loadPtr(m_out.baseIndex( + m_heaps.singleCharacterStrings, smallStrings, m_out.zeroExtPtr(character))))); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + if (m_node->arrayMode().isInBounds()) { + speculate(OutOfBounds, noValue(), 0, m_out.booleanTrue); + results.append(m_out.anchor(m_out.intPtrZero)); + } else { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + if (globalObject->stringPrototypeChainIsSane()) { + // FIXME: This could be captured using a Speculation mode that means + // "out-of-bounds loads return a trivial value", something like + // SaneChainOutOfBounds. + // https://bugs.webkit.org/show_bug.cgi?id=144668 + + m_graph.watchpoints().addLazily(globalObject->stringPrototype()->structure()->transitionWatchpointSet()); + m_graph.watchpoints().addLazily(globalObject->objectPrototype()->structure()->transitionWatchpointSet()); + + LBasicBlock negativeIndex = FTL_NEW_BLOCK(m_out, ("GetByVal String negative index")); + + results.append(m_out.anchor(m_out.constInt64(JSValue::encode(jsUndefined())))); + m_out.branch( + m_out.lessThan(index, m_out.int32Zero), + rarely(negativeIndex), usually(continuation)); + + m_out.appendTo(negativeIndex, continuation); + } + + results.append(m_out.anchor(vmCall( + m_out.operation(operationGetByValStringInt), m_callFrame, base, index))); + } + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, results)); + } + + void compileStringCharCodeAt() + { + LBasicBlock is8Bit = FTL_NEW_BLOCK(m_out, ("StringCharCodeAt 8-bit case")); + LBasicBlock is16Bit = FTL_NEW_BLOCK(m_out, ("StringCharCodeAt 16-bit case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("StringCharCodeAt continuation")); + + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + speculate( + Uncountable, noValue(), 0, + m_out.aboveOrEqual( + index, m_out.load32NonNegative(base, m_heaps.JSString_length))); + + LValue stringImpl = m_out.loadPtr(base, m_heaps.JSString_value); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(is16Bit), unsure(is8Bit)); + + LBasicBlock lastNext = m_out.appendTo(is8Bit, is16Bit); + + ValueFromBlock char8Bit = m_out.anchor(m_out.zeroExt( + m_out.load8(m_out.baseIndex( + m_heaps.characters8, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2()))), + m_out.int32)); + m_out.jump(continuation); + + m_out.appendTo(is16Bit, continuation); + + ValueFromBlock char16Bit = m_out.anchor(m_out.zeroExt( + m_out.load16(m_out.baseIndex( + m_heaps.characters16, storage, m_out.zeroExtPtr(index), + provenValue(m_node->child2()))), + m_out.int32)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + setInt32(m_out.phi(m_out.int32, char8Bit, char16Bit)); + } + + void compileGetByOffset() + { + StorageAccessData& data = m_node->storageAccessData(); + + setJSValue(loadProperty( + lowStorage(m_node->child1()), data.identifierNumber, data.offset)); + } + + void compileGetGetter() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.GetterSetter_getter)); + } + + void compileGetSetter() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.GetterSetter_setter)); + } + + void compileMultiGetByOffset() + { + LValue base = lowCell(m_node->child1()); + + MultiGetByOffsetData& data = m_node->multiGetByOffsetData(); + + if (data.cases.isEmpty()) { + // Protect against creating a Phi function with zero inputs. LLVM doesn't like that. + terminate(BadCache); + return; + } + + Vector<LBasicBlock, 2> blocks(data.cases.size()); + for (unsigned i = data.cases.size(); i--;) + blocks[i] = FTL_NEW_BLOCK(m_out, ("MultiGetByOffset case ", i)); + LBasicBlock exit = FTL_NEW_BLOCK(m_out, ("MultiGetByOffset fail")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("MultiGetByOffset continuation")); + + Vector<SwitchCase, 2> cases; + StructureSet baseSet; + for (unsigned i = data.cases.size(); i--;) { + MultiGetByOffsetCase getCase = data.cases[i]; + for (unsigned j = getCase.set().size(); j--;) { + Structure* structure = getCase.set()[j]; + baseSet.add(structure); + cases.append(SwitchCase(weakStructureID(structure), blocks[i], Weight(1))); + } + } + m_out.switchInstruction( + m_out.load32(base, m_heaps.JSCell_structureID), cases, exit, Weight(0)); + + LBasicBlock lastNext = m_out.m_nextBlock; + + Vector<ValueFromBlock, 2> results; + for (unsigned i = data.cases.size(); i--;) { + MultiGetByOffsetCase getCase = data.cases[i]; + GetByOffsetMethod method = getCase.method(); + + m_out.appendTo(blocks[i], i + 1 < data.cases.size() ? blocks[i + 1] : exit); + + LValue result; + + switch (method.kind()) { + case GetByOffsetMethod::Invalid: + RELEASE_ASSERT_NOT_REACHED(); + break; + + case GetByOffsetMethod::Constant: + result = m_out.constInt64(JSValue::encode(method.constant()->value())); + break; + + case GetByOffsetMethod::Load: + case GetByOffsetMethod::LoadFromPrototype: { + LValue propertyBase; + if (method.kind() == GetByOffsetMethod::Load) + propertyBase = base; + else + propertyBase = weakPointer(method.prototype()->value().asCell()); + if (!isInlineOffset(method.offset())) + propertyBase = m_out.loadPtr(propertyBase, m_heaps.JSObject_butterfly); + result = loadProperty( + propertyBase, data.identifierNumber, method.offset()); + break; + } } + + results.append(m_out.anchor(result)); + m_out.jump(continuation); + } + + m_out.appendTo(exit, continuation); + if (!m_interpreter.forNode(m_node->child1()).m_structure.isSubsetOf(baseSet)) + speculate(BadCache, noValue(), nullptr, m_out.booleanTrue); + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, results)); + } + + void compilePutByOffset() + { + StorageAccessData& data = m_node->storageAccessData(); + + storeProperty( + lowJSValue(m_node->child3()), + lowStorage(m_node->child1()), data.identifierNumber, data.offset); + } + + void compileMultiPutByOffset() + { + LValue base = lowCell(m_node->child1()); + LValue value = lowJSValue(m_node->child2()); + + MultiPutByOffsetData& data = m_node->multiPutByOffsetData(); + + Vector<LBasicBlock, 2> blocks(data.variants.size()); + for (unsigned i = data.variants.size(); i--;) + blocks[i] = FTL_NEW_BLOCK(m_out, ("MultiPutByOffset case ", i)); + LBasicBlock exit = FTL_NEW_BLOCK(m_out, ("MultiPutByOffset fail")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("MultiPutByOffset continuation")); + + Vector<SwitchCase, 2> cases; + StructureSet baseSet; + for (unsigned i = data.variants.size(); i--;) { + PutByIdVariant variant = data.variants[i]; + for (unsigned j = variant.oldStructure().size(); j--;) { + Structure* structure = variant.oldStructure()[j]; + baseSet.add(structure); + cases.append(SwitchCase(weakStructureID(structure), blocks[i], Weight(1))); + } + } + m_out.switchInstruction( + m_out.load32(base, m_heaps.JSCell_structureID), cases, exit, Weight(0)); + + LBasicBlock lastNext = m_out.m_nextBlock; + + for (unsigned i = data.variants.size(); i--;) { + m_out.appendTo(blocks[i], i + 1 < data.variants.size() ? blocks[i + 1] : exit); + + PutByIdVariant variant = data.variants[i]; + + LValue storage; + if (variant.kind() == PutByIdVariant::Replace) { + if (isInlineOffset(variant.offset())) + storage = base; + else + storage = m_out.loadPtr(base, m_heaps.JSObject_butterfly); + } else { + m_graph.m_plan.transitions.addLazily( + codeBlock(), m_node->origin.semantic.codeOriginOwner(), + variant.oldStructureForTransition(), variant.newStructure()); + + storage = storageForTransition( + base, variant.offset(), + variant.oldStructureForTransition(), variant.newStructure()); + + ASSERT(variant.oldStructureForTransition()->indexingType() == variant.newStructure()->indexingType()); + ASSERT(variant.oldStructureForTransition()->typeInfo().inlineTypeFlags() == variant.newStructure()->typeInfo().inlineTypeFlags()); + ASSERT(variant.oldStructureForTransition()->typeInfo().type() == variant.newStructure()->typeInfo().type()); + m_out.store32( + weakStructureID(variant.newStructure()), base, m_heaps.JSCell_structureID); + } + + storeProperty(value, storage, data.identifierNumber, variant.offset()); + m_out.jump(continuation); + } + + m_out.appendTo(exit, continuation); + if (!m_interpreter.forNode(m_node->child1()).m_structure.isSubsetOf(baseSet)) + speculate(BadCache, noValue(), nullptr, m_out.booleanTrue); + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + } + + void compileGetGlobalVar() + { + setJSValue(m_out.load64(m_out.absolute(m_node->variablePointer()))); + } + + void compilePutGlobalVar() + { + m_out.store64( + lowJSValue(m_node->child2()), m_out.absolute(m_node->variablePointer())); + } + + void compileNotifyWrite() + { + WatchpointSet* set = m_node->watchpointSet(); + + LBasicBlock isNotInvalidated = FTL_NEW_BLOCK(m_out, ("NotifyWrite not invalidated case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("NotifyWrite continuation")); + + LValue state = m_out.load8(m_out.absolute(set->addressOfState())); + m_out.branch( + m_out.equal(state, m_out.constInt8(IsInvalidated)), + usually(continuation), rarely(isNotInvalidated)); + + LBasicBlock lastNext = m_out.appendTo(isNotInvalidated, continuation); + + vmCall(m_out.operation(operationNotifyWrite), m_callFrame, m_out.constIntPtr(set)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void compileGetCallee() + { + setJSValue(m_out.loadPtr(addressFor(JSStack::Callee))); + } + + void compileGetArgumentCount() + { + setInt32(m_out.load32(payloadFor(JSStack::ArgumentCount))); + } + + void compileGetScope() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.JSFunction_scope)); + } + + void compileSkipScope() + { + setJSValue(m_out.loadPtr(lowCell(m_node->child1()), m_heaps.JSScope_next)); + } + + void compileGetClosureVar() + { + setJSValue( + m_out.load64( + lowCell(m_node->child1()), + m_heaps.JSEnvironmentRecord_variables[m_node->scopeOffset().offset()])); + } + + void compilePutClosureVar() + { + m_out.store64( + lowJSValue(m_node->child2()), + lowCell(m_node->child1()), + m_heaps.JSEnvironmentRecord_variables[m_node->scopeOffset().offset()]); + } + + void compileGetFromArguments() + { + setJSValue( + m_out.load64( + lowCell(m_node->child1()), + m_heaps.DirectArguments_storage[m_node->capturedArgumentsOffset().offset()])); + } + + void compilePutToArguments() + { + m_out.store64( + lowJSValue(m_node->child2()), + lowCell(m_node->child1()), + m_heaps.DirectArguments_storage[m_node->capturedArgumentsOffset().offset()]); + } + + void compileCompareEq() + { + if (m_node->isBinaryUseKind(Int32Use) + || m_node->isBinaryUseKind(Int52RepUse) + || m_node->isBinaryUseKind(DoubleRepUse) + || m_node->isBinaryUseKind(ObjectUse) + || m_node->isBinaryUseKind(BooleanUse) + || m_node->isBinaryUseKind(StringIdentUse)) { + compileCompareStrictEq(); + return; + } + + if (m_node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse)) { + compareEqObjectOrOtherToObject(m_node->child2(), m_node->child1()); + return; + } + + if (m_node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse)) { + compareEqObjectOrOtherToObject(m_node->child1(), m_node->child2()); + return; + } + + if (m_node->isBinaryUseKind(UntypedUse)) { + nonSpeculativeCompare(LLVMIntEQ, operationCompareEq); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad use kinds"); + } + + void compileCompareEqConstant() + { + ASSERT(m_node->child2()->asJSValue().isNull()); + setBoolean( + equalNullOrUndefined( + m_node->child1(), AllCellsAreFalse, EqualNullOrUndefined)); + } + + void compileCompareStrictEq() + { + if (m_node->isBinaryUseKind(Int32Use)) { + setBoolean( + m_out.equal(lowInt32(m_node->child1()), lowInt32(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(Int52RepUse)) { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), kind); + setBoolean(m_out.equal(left, right)); + return; + } + + if (m_node->isBinaryUseKind(DoubleRepUse)) { + setBoolean( + m_out.doubleEqual(lowDouble(m_node->child1()), lowDouble(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(StringIdentUse)) { + setBoolean( + m_out.equal(lowStringIdent(m_node->child1()), lowStringIdent(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(ObjectUse, UntypedUse)) { + setBoolean( + m_out.equal( + lowNonNullObject(m_node->child1()), + lowJSValue(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(UntypedUse, ObjectUse)) { + setBoolean( + m_out.equal( + lowNonNullObject(m_node->child2()), + lowJSValue(m_node->child1()))); + return; + } + + if (m_node->isBinaryUseKind(ObjectUse)) { + setBoolean( + m_out.equal( + lowNonNullObject(m_node->child1()), + lowNonNullObject(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(BooleanUse)) { + setBoolean( + m_out.equal(lowBoolean(m_node->child1()), lowBoolean(m_node->child2()))); + return; + } + + if (m_node->isBinaryUseKind(MiscUse, UntypedUse) + || m_node->isBinaryUseKind(UntypedUse, MiscUse)) { + speculate(m_node->child1()); + speculate(m_node->child2()); + LValue left = lowJSValue(m_node->child1(), ManualOperandSpeculation); + LValue right = lowJSValue(m_node->child2(), ManualOperandSpeculation); + setBoolean(m_out.equal(left, right)); + return; + } + + if (m_node->isBinaryUseKind(StringIdentUse, NotStringVarUse) + || m_node->isBinaryUseKind(NotStringVarUse, StringIdentUse)) { + Edge leftEdge = m_node->childFor(StringIdentUse); + Edge rightEdge = m_node->childFor(NotStringVarUse); + + LValue left = lowStringIdent(leftEdge); + LValue rightValue = lowJSValue(rightEdge, ManualOperandSpeculation); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("CompareStrictEq StringIdent to NotStringVar is cell case")); + LBasicBlock isStringCase = FTL_NEW_BLOCK(m_out, ("CompareStrictEq StringIdent to NotStringVar is string case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("CompareStrictEq StringIdent to NotStringVar continuation")); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(rightValue, provenType(rightEdge)), + unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + ValueFromBlock notStringResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isString(rightValue, provenType(rightEdge)), + unsure(isStringCase), unsure(continuation)); + + m_out.appendTo(isStringCase, continuation); + LValue right = m_out.loadPtr(rightValue, m_heaps.JSString_value); + speculateStringIdent(rightEdge, rightValue, right); + ValueFromBlock isStringResult = m_out.anchor(m_out.equal(left, right)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, notCellResult, notStringResult, isStringResult)); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad use kinds"); + } + + void compileCompareStrictEqConstant() + { + JSValue constant = m_node->child2()->asJSValue(); + + setBoolean( + m_out.equal( + lowJSValue(m_node->child1()), + m_out.constInt64(JSValue::encode(constant)))); + } + + void compileCompareLess() + { + compare(LLVMIntSLT, LLVMRealOLT, operationCompareLess); + } + + void compileCompareLessEq() + { + compare(LLVMIntSLE, LLVMRealOLE, operationCompareLessEq); + } + + void compileCompareGreater() + { + compare(LLVMIntSGT, LLVMRealOGT, operationCompareGreater); + } + + void compileCompareGreaterEq() + { + compare(LLVMIntSGE, LLVMRealOGE, operationCompareGreaterEq); + } + + void compileLogicalNot() + { + setBoolean(m_out.bitNot(boolify(m_node->child1()))); + } + + void compileCallOrConstruct() + { + int numPassedArgs = m_node->numChildren() - 1; + int numArgs = numPassedArgs; + + LValue jsCallee = lowJSValue(m_graph.varArgChild(m_node, 0)); + + unsigned stackmapID = m_stackmapIDs++; + + Vector<LValue> arguments; + arguments.append(m_out.constInt64(stackmapID)); + arguments.append(m_out.constInt32(sizeOfCall())); + arguments.append(constNull(m_out.ref8)); + arguments.append(m_out.constInt32(1 + JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize + numArgs)); + arguments.append(jsCallee); // callee -> %rax + arguments.append(getUndef(m_out.int64)); // code block + arguments.append(jsCallee); // callee -> stack + arguments.append(m_out.constInt64(numArgs)); // argument count and zeros for the tag + for (int i = 0; i < numPassedArgs; ++i) + arguments.append(lowJSValue(m_graph.varArgChild(m_node, 1 + i))); + + callPreflight(); + + LValue call = m_out.call(m_out.patchpointInt64Intrinsic(), arguments); + setInstructionCallingConvention(call, LLVMWebKitJSCallConv); + + m_ftlState.jsCalls.append(JSCall(stackmapID, m_node)); + + setJSValue(call); + } + + void compileCallOrConstructVarargs() + { + LValue jsCallee = lowJSValue(m_node->child1()); + LValue thisArg = lowJSValue(m_node->child3()); + + LValue jsArguments = nullptr; + + switch (m_node->op()) { + case CallVarargs: + case ConstructVarargs: + jsArguments = lowJSValue(m_node->child2()); + break; + case CallForwardVarargs: + case ConstructForwardVarargs: + break; + default: + DFG_CRASH(m_graph, m_node, "bad node type"); + break; + } + + unsigned stackmapID = m_stackmapIDs++; + + Vector<LValue> arguments; + arguments.append(m_out.constInt64(stackmapID)); + arguments.append(m_out.constInt32(sizeOfICFor(m_node))); + arguments.append(constNull(m_out.ref8)); + arguments.append(m_out.constInt32(2 + !!jsArguments)); + arguments.append(jsCallee); + if (jsArguments) + arguments.append(jsArguments); + ASSERT(thisArg); + arguments.append(thisArg); + + callPreflight(); + + LValue call = m_out.call(m_out.patchpointInt64Intrinsic(), arguments); + setInstructionCallingConvention(call, LLVMCCallConv); + + m_ftlState.jsCallVarargses.append(JSCallVarargs(stackmapID, m_node)); + + setJSValue(call); + } + + void compileLoadVarargs() + { + LoadVarargsData* data = m_node->loadVarargsData(); + LValue jsArguments = lowJSValue(m_node->child1()); + + LValue length = vmCall( + m_out.operation(operationSizeOfVarargs), m_callFrame, jsArguments, + m_out.constInt32(data->offset)); + + // FIXME: There is a chance that we will call an effectful length property twice. This is safe + // from the standpoint of the VM's integrity, but it's subtly wrong from a spec compliance + // standpoint. The best solution would be one where we can exit *into* the op_call_varargs right + // past the sizing. + // https://bugs.webkit.org/show_bug.cgi?id=141448 + + LValue lengthIncludingThis = m_out.add(length, m_out.int32One); + speculate( + VarargsOverflow, noValue(), nullptr, + m_out.above(lengthIncludingThis, m_out.constInt32(data->limit))); + + m_out.store32(lengthIncludingThis, payloadFor(data->machineCount)); + + // FIXME: This computation is rather silly. If operationLaodVarargs just took a pointer instead + // of a VirtualRegister, we wouldn't have to do this. + // https://bugs.webkit.org/show_bug.cgi?id=141660 + LValue machineStart = m_out.lShr( + m_out.sub(addressFor(data->machineStart.offset()).value(), m_callFrame), + m_out.constIntPtr(3)); + + vmCall( + m_out.operation(operationLoadVarargs), m_callFrame, + m_out.castToInt32(machineStart), jsArguments, m_out.constInt32(data->offset), + length, m_out.constInt32(data->mandatoryMinimum)); + } + + void compileForwardVarargs() + { + LoadVarargsData* data = m_node->loadVarargsData(); + InlineCallFrame* inlineCallFrame = m_node->child1()->origin.semantic.inlineCallFrame; + + LValue length = getArgumentsLength(inlineCallFrame).value; + LValue lengthIncludingThis = m_out.add(length, m_out.constInt32(1 - data->offset)); + + speculate( + VarargsOverflow, noValue(), nullptr, + m_out.above(lengthIncludingThis, m_out.constInt32(data->limit))); + + m_out.store32(lengthIncludingThis, payloadFor(data->machineCount)); + + LValue sourceStart = getArgumentsStart(inlineCallFrame); + LValue targetStart = addressFor(data->machineStart).value(); + + LBasicBlock undefinedLoop = FTL_NEW_BLOCK(m_out, ("ForwardVarargs undefined loop body")); + LBasicBlock mainLoopEntry = FTL_NEW_BLOCK(m_out, ("ForwardVarargs main loop entry")); + LBasicBlock mainLoop = FTL_NEW_BLOCK(m_out, ("ForwardVarargs main loop body")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ForwardVarargs continuation")); + + LValue lengthAsPtr = m_out.zeroExtPtr(length); + ValueFromBlock loopBound = m_out.anchor(m_out.constIntPtr(data->mandatoryMinimum)); + m_out.branch( + m_out.above(loopBound.value(), lengthAsPtr), unsure(undefinedLoop), unsure(mainLoopEntry)); + + LBasicBlock lastNext = m_out.appendTo(undefinedLoop, mainLoopEntry); + LValue previousIndex = m_out.phi(m_out.intPtr, loopBound); + LValue currentIndex = m_out.sub(previousIndex, m_out.intPtrOne); + m_out.store64( + m_out.constInt64(JSValue::encode(jsUndefined())), + m_out.baseIndex(m_heaps.variables, targetStart, currentIndex)); + ValueFromBlock nextIndex = m_out.anchor(currentIndex); + addIncoming(previousIndex, nextIndex); + m_out.branch( + m_out.above(currentIndex, lengthAsPtr), unsure(undefinedLoop), unsure(mainLoopEntry)); + + m_out.appendTo(mainLoopEntry, mainLoop); + loopBound = m_out.anchor(lengthAsPtr); + m_out.branch(m_out.notNull(loopBound.value()), unsure(mainLoop), unsure(continuation)); + + m_out.appendTo(mainLoop, continuation); + previousIndex = m_out.phi(m_out.intPtr, loopBound); + currentIndex = m_out.sub(previousIndex, m_out.intPtrOne); + LValue value = m_out.load64( + m_out.baseIndex( + m_heaps.variables, sourceStart, + m_out.add(currentIndex, m_out.constIntPtr(data->offset)))); + m_out.store64(value, m_out.baseIndex(m_heaps.variables, targetStart, currentIndex)); + nextIndex = m_out.anchor(currentIndex); + addIncoming(previousIndex, nextIndex); + m_out.branch(m_out.isNull(currentIndex), unsure(continuation), unsure(mainLoop)); + + m_out.appendTo(continuation, lastNext); + } + + void compileJump() + { + m_out.jump(lowBlock(m_node->targetBlock())); + } + + void compileBranch() + { + m_out.branch( + boolify(m_node->child1()), + WeightedTarget( + lowBlock(m_node->branchData()->taken.block), + m_node->branchData()->taken.count), + WeightedTarget( + lowBlock(m_node->branchData()->notTaken.block), + m_node->branchData()->notTaken.count)); + } + + void compileSwitch() + { + SwitchData* data = m_node->switchData(); + switch (data->kind) { + case SwitchImm: { + Vector<ValueFromBlock, 2> intValues; + LBasicBlock switchOnInts = FTL_NEW_BLOCK(m_out, ("Switch/SwitchImm int case")); + + LBasicBlock lastNext = m_out.appendTo(m_out.m_block, switchOnInts); + + switch (m_node->child1().useKind()) { + case Int32Use: { + intValues.append(m_out.anchor(lowInt32(m_node->child1()))); + m_out.jump(switchOnInts); + break; + } + + case UntypedUse: { + LBasicBlock isInt = FTL_NEW_BLOCK(m_out, ("Switch/SwitchImm is int")); + LBasicBlock isNotInt = FTL_NEW_BLOCK(m_out, ("Switch/SwitchImm is not int")); + LBasicBlock isDouble = FTL_NEW_BLOCK(m_out, ("Switch/SwitchImm is double")); + + LValue boxedValue = lowJSValue(m_node->child1()); + m_out.branch(isNotInt32(boxedValue), unsure(isNotInt), unsure(isInt)); + + LBasicBlock innerLastNext = m_out.appendTo(isInt, isNotInt); + + intValues.append(m_out.anchor(unboxInt32(boxedValue))); + m_out.jump(switchOnInts); + + m_out.appendTo(isNotInt, isDouble); + m_out.branch( + isCellOrMisc(boxedValue, provenType(m_node->child1())), + usually(lowBlock(data->fallThrough.block)), rarely(isDouble)); + + m_out.appendTo(isDouble, innerLastNext); + LValue doubleValue = unboxDouble(boxedValue); + LValue intInDouble = m_out.fpToInt32(doubleValue); + intValues.append(m_out.anchor(intInDouble)); + m_out.branch( + m_out.doubleEqual(m_out.intToDouble(intInDouble), doubleValue), + unsure(switchOnInts), unsure(lowBlock(data->fallThrough.block))); + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + + m_out.appendTo(switchOnInts, lastNext); + buildSwitch(data, m_out.int32, m_out.phi(m_out.int32, intValues)); + return; + } + + case SwitchChar: { + LValue stringValue; + + // FIXME: We should use something other than unsure() for the branch weight + // of the fallThrough block. The main challenge is just that we have multiple + // branches to fallThrough but a single count, so we would need to divvy it up + // among the different lowered branches. + // https://bugs.webkit.org/show_bug.cgi?id=129082 + + switch (m_node->child1().useKind()) { + case StringUse: { + stringValue = lowString(m_node->child1()); + break; + } + + case UntypedUse: { + LValue unboxedValue = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar is cell")); + LBasicBlock isStringCase = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar is string")); + + m_out.branch( + isNotCell(unboxedValue, provenType(m_node->child1())), + unsure(lowBlock(data->fallThrough.block)), unsure(isCellCase)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + LValue cellValue = unboxedValue; + m_out.branch( + isNotString(cellValue, provenType(m_node->child1())), + unsure(lowBlock(data->fallThrough.block)), unsure(isStringCase)); + + m_out.appendTo(isStringCase, lastNext); + stringValue = cellValue; + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + break; + } + + LBasicBlock lengthIs1 = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar length is 1")); + LBasicBlock needResolution = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar resolution")); + LBasicBlock resolved = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar resolved")); + LBasicBlock is8Bit = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar 8bit")); + LBasicBlock is16Bit = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar 16bit")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("Switch/SwitchChar continuation")); + + m_out.branch( + m_out.notEqual( + m_out.load32NonNegative(stringValue, m_heaps.JSString_length), + m_out.int32One), + unsure(lowBlock(data->fallThrough.block)), unsure(lengthIs1)); + + LBasicBlock lastNext = m_out.appendTo(lengthIs1, needResolution); + Vector<ValueFromBlock, 2> values; + LValue fastValue = m_out.loadPtr(stringValue, m_heaps.JSString_value); + values.append(m_out.anchor(fastValue)); + m_out.branch(m_out.isNull(fastValue), rarely(needResolution), usually(resolved)); + + m_out.appendTo(needResolution, resolved); + values.append(m_out.anchor( + vmCall(m_out.operation(operationResolveRope), m_callFrame, stringValue))); + m_out.jump(resolved); + + m_out.appendTo(resolved, is8Bit); + LValue value = m_out.phi(m_out.intPtr, values); + LValue characterData = m_out.loadPtr(value, m_heaps.StringImpl_data); + m_out.branch( + m_out.testNonZero32( + m_out.load32(value, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(is8Bit), unsure(is16Bit)); + + Vector<ValueFromBlock, 2> characters; + m_out.appendTo(is8Bit, is16Bit); + characters.append(m_out.anchor( + m_out.zeroExt(m_out.load8(characterData, m_heaps.characters8[0]), m_out.int16))); + m_out.jump(continuation); + + m_out.appendTo(is16Bit, continuation); + characters.append(m_out.anchor(m_out.load16(characterData, m_heaps.characters16[0]))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + buildSwitch(data, m_out.int16, m_out.phi(m_out.int16, characters)); + return; + } + + case SwitchString: { + switch (m_node->child1().useKind()) { + case StringIdentUse: { + LValue stringImpl = lowStringIdent(m_node->child1()); + + Vector<SwitchCase> cases; + for (unsigned i = 0; i < data->cases.size(); ++i) { + LValue value = m_out.constIntPtr(data->cases[i].value.stringImpl()); + LBasicBlock block = lowBlock(data->cases[i].target.block); + Weight weight = Weight(data->cases[i].target.count); + cases.append(SwitchCase(value, block, weight)); + } + + m_out.switchInstruction( + stringImpl, cases, lowBlock(data->fallThrough.block), + Weight(data->fallThrough.count)); + return; + } + + case StringUse: { + switchString(data, lowString(m_node->child1())); + return; + } + + case UntypedUse: { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellBlock = FTL_NEW_BLOCK(m_out, ("Switch/SwitchString Untyped cell case")); + LBasicBlock isStringBlock = FTL_NEW_BLOCK(m_out, ("Switch/SwitchString Untyped string case")); + + m_out.branch( + isCell(value, provenType(m_node->child1())), + unsure(isCellBlock), unsure(lowBlock(data->fallThrough.block))); + + LBasicBlock lastNext = m_out.appendTo(isCellBlock, isStringBlock); + + m_out.branch( + isString(value, provenType(m_node->child1())), + unsure(isStringBlock), unsure(lowBlock(data->fallThrough.block))); + + m_out.appendTo(isStringBlock, lastNext); + + switchString(data, value); + return; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + return; + } + + case SwitchCell: { + LValue cell; + switch (m_node->child1().useKind()) { + case CellUse: { + cell = lowCell(m_node->child1()); + break; + } + + case UntypedUse: { + LValue value = lowJSValue(m_node->child1()); + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("Switch/SwitchCell cell case")); + m_out.branch( + isCell(value, provenType(m_node->child1())), + unsure(cellCase), unsure(lowBlock(data->fallThrough.block))); + m_out.appendTo(cellCase); + cell = value; + break; + } + + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return; + } + + buildSwitch(m_node->switchData(), m_out.intPtr, cell); + return; + } } + + DFG_CRASH(m_graph, m_node, "Bad switch kind"); + } + + void compileReturn() + { + m_out.ret(lowJSValue(m_node->child1())); + } + + void compileForceOSRExit() + { + terminate(InadequateCoverage); + } + + void compileThrow() + { + terminate(Uncountable); + } + + void compileInvalidationPoint() + { + if (verboseCompilationEnabled()) + dataLog(" Invalidation point with availability: ", availabilityMap(), "\n"); + + m_ftlState.jitCode->osrExit.append(OSRExit( + UncountableInvalidation, InvalidValueFormat, MethodOfGettingAValueProfile(), + m_codeOriginForExitTarget, m_codeOriginForExitProfile, + availabilityMap().m_locals.numberOfArguments(), + availabilityMap().m_locals.numberOfLocals())); + m_ftlState.finalizer->osrExit.append(OSRExitCompilationInfo()); + + OSRExit& exit = m_ftlState.jitCode->osrExit.last(); + OSRExitCompilationInfo& info = m_ftlState.finalizer->osrExit.last(); + + ExitArgumentList arguments; + + buildExitArguments(exit, arguments, FormattedValue(), exit.m_codeOrigin); + callStackmap(exit, arguments); + + info.m_isInvalidationPoint = true; + } + + void compileIsUndefined() + { + setBoolean(equalNullOrUndefined(m_node->child1(), AllCellsAreFalse, EqualUndefined)); + } + + void compileIsBoolean() + { + setBoolean(isBoolean(lowJSValue(m_node->child1()), provenType(m_node->child1()))); + } + + void compileIsNumber() + { + setBoolean(isNumber(lowJSValue(m_node->child1()), provenType(m_node->child1()))); + } + + void compileIsString() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("IsString cell case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("IsString continuation")); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, continuation); + ValueFromBlock cellResult = m_out.anchor(isString(value, provenType(m_node->child1()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, notCellResult, cellResult)); + } + + void compileIsObject() + { + LValue value = lowJSValue(m_node->child1()); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("IsObject cell case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("IsObject continuation")); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(value, provenType(m_node->child1())), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, continuation); + ValueFromBlock cellResult = m_out.anchor(isObject(value, provenType(m_node->child1()))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, notCellResult, cellResult)); + } + + void compileIsObjectOrNull() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + Edge child = m_node->child1(); + LValue value = lowJSValue(child); + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("IsObjectOrNull cell case")); + LBasicBlock notFunctionCase = FTL_NEW_BLOCK(m_out, ("IsObjectOrNull not function case")); + LBasicBlock objectCase = FTL_NEW_BLOCK(m_out, ("IsObjectOrNull object case")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("IsObjectOrNull slow path")); + LBasicBlock notCellCase = FTL_NEW_BLOCK(m_out, ("IsObjectOrNull not cell case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("IsObjectOrNull continuation")); + + m_out.branch(isCell(value, provenType(child)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notFunctionCase); + ValueFromBlock isFunctionResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isFunction(value, provenType(child)), + unsure(continuation), unsure(notFunctionCase)); + + m_out.appendTo(notFunctionCase, objectCase); + ValueFromBlock notObjectResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isObject(value, provenType(child)), + unsure(objectCase), unsure(continuation)); + + m_out.appendTo(objectCase, slowPath); + ValueFromBlock objectResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + isExoticForTypeof(value, provenType(child)), + rarely(slowPath), usually(continuation)); + + m_out.appendTo(slowPath, notCellCase); + LValue slowResultValue = vmCall( + m_out.operation(operationObjectIsObject), m_callFrame, weakPointer(globalObject), + value); + ValueFromBlock slowResult = m_out.anchor(m_out.notNull(slowResultValue)); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, continuation); + LValue notCellResultValue = m_out.equal(value, m_out.constInt64(JSValue::encode(jsNull()))); + ValueFromBlock notCellResult = m_out.anchor(notCellResultValue); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi( + m_out.boolean, + isFunctionResult, notObjectResult, objectResult, slowResult, notCellResult); + setBoolean(result); + } + + void compileIsFunction() + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + Edge child = m_node->child1(); + LValue value = lowJSValue(child); + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("IsFunction cell case")); + LBasicBlock notFunctionCase = FTL_NEW_BLOCK(m_out, ("IsFunction not function case")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("IsFunction slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("IsFunction continuation")); + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isCell(value, provenType(child)), unsure(cellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, notFunctionCase); + ValueFromBlock functionResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + isFunction(value, provenType(child)), + unsure(continuation), unsure(notFunctionCase)); + + m_out.appendTo(notFunctionCase, slowPath); + ValueFromBlock objectResult = m_out.anchor(m_out.booleanFalse); + m_out.branch( + isExoticForTypeof(value, provenType(child)), + rarely(slowPath), usually(continuation)); + + m_out.appendTo(slowPath, continuation); + LValue slowResultValue = vmCall( + m_out.operation(operationObjectIsFunction), m_callFrame, weakPointer(globalObject), + value); + ValueFromBlock slowResult = m_out.anchor(m_out.notNull(slowResultValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue result = m_out.phi( + m_out.boolean, notCellResult, functionResult, objectResult, slowResult); + setBoolean(result); + } + + void compileTypeOf() + { + Edge child = m_node->child1(); + LValue value = lowJSValue(child); + + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("TypeOf continuation")); + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + + Vector<ValueFromBlock> results; + + buildTypeOf( + child, value, + [&] (TypeofType type) { + results.append(m_out.anchor(weakPointer(vm().smallStrings.typeString(type)))); + m_out.jump(continuation); + }); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, results)); + } + + void compileIn() + { + Edge base = m_node->child2(); + LValue cell = lowCell(base); + speculateObject(base, cell); + if (JSString* string = m_node->child1()->dynamicCastConstant<JSString*>()) { + if (string->tryGetValueImpl() && string->tryGetValueImpl()->isAtomic()) { + + const auto str = static_cast<const AtomicStringImpl*>(string->tryGetValueImpl()); + unsigned stackmapID = m_stackmapIDs++; + + LValue call = m_out.call( + m_out.patchpointInt64Intrinsic(), + m_out.constInt64(stackmapID), m_out.constInt32(sizeOfIn()), + constNull(m_out.ref8), m_out.constInt32(1), cell); + + setInstructionCallingConvention(call, LLVMAnyRegCallConv); + + m_ftlState.checkIns.append(CheckInDescriptor(stackmapID, m_node->origin.semantic, str)); + setJSValue(call); + return; + } + } + + setJSValue(vmCall(m_out.operation(operationGenericIn), m_callFrame, cell, lowJSValue(m_node->child1()))); + } + + void compileCheckHasInstance() + { + speculate( + Uncountable, noValue(), 0, + m_out.testIsZero8( + m_out.load8(lowCell(m_node->child1()), m_heaps.JSCell_typeInfoFlags), + m_out.constInt8(ImplementsDefaultHasInstance))); + } + + void compileInstanceOf() + { + LValue cell; + + if (m_node->child1().useKind() == UntypedUse) + cell = lowJSValue(m_node->child1()); + else + cell = lowCell(m_node->child1()); + + LValue prototype = lowCell(m_node->child2()); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("InstanceOf cell case")); + LBasicBlock loop = FTL_NEW_BLOCK(m_out, ("InstanceOf loop")); + LBasicBlock notYetInstance = FTL_NEW_BLOCK(m_out, ("InstanceOf not yet instance")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("InstanceOf continuation")); + + LValue condition; + if (m_node->child1().useKind() == UntypedUse) + condition = isCell(cell, provenType(m_node->child1())); + else + condition = m_out.booleanTrue; + + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.branch(condition, unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, loop); + + speculate(BadType, noValue(), 0, isNotObject(prototype, provenType(m_node->child2()))); + + ValueFromBlock originalValue = m_out.anchor(cell); + m_out.jump(loop); + + m_out.appendTo(loop, notYetInstance); + LValue value = m_out.phi(m_out.int64, originalValue); + LValue structure = loadStructure(value); + LValue currentPrototype = m_out.load64(structure, m_heaps.Structure_prototype); + ValueFromBlock isInstanceResult = m_out.anchor(m_out.booleanTrue); + m_out.branch( + m_out.equal(currentPrototype, prototype), + unsure(continuation), unsure(notYetInstance)); + + m_out.appendTo(notYetInstance, continuation); + ValueFromBlock notInstanceResult = m_out.anchor(m_out.booleanFalse); + addIncoming(value, m_out.anchor(currentPrototype)); + m_out.branch(isCell(currentPrototype), unsure(loop), unsure(continuation)); + + m_out.appendTo(continuation, lastNext); + setBoolean( + m_out.phi(m_out.boolean, notCellResult, isInstanceResult, notInstanceResult)); + } + + void compileCountExecution() + { + TypedPointer counter = m_out.absolute(m_node->executionCounter()->address()); + m_out.store64(m_out.add(m_out.load64(counter), m_out.constInt64(1)), counter); + } + + void compileStoreBarrier() + { + emitStoreBarrier(lowCell(m_node->child1())); + } + + void compileHasIndexedProperty() + { + switch (m_node->arrayMode().type()) { + case Array::Int32: + case Array::Contiguous: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + IndexedAbstractHeap& heap = m_node->arrayMode().type() == Array::Int32 ? + m_heaps.indexedInt32Properties : m_heaps.indexedContiguousProperties; + + LBasicBlock checkHole = FTL_NEW_BLOCK(m_out, ("HasIndexedProperty int/contiguous check hole")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("HasIndexedProperty int/contiguous slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("HasIndexedProperty int/contiguous continuation")); + + if (!m_node->arrayMode().isInBounds()) { + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(checkHole)); + } else + m_out.jump(checkHole); + + LBasicBlock lastNext = m_out.appendTo(checkHole, slowCase); + ValueFromBlock checkHoleResult = m_out.anchor( + m_out.notZero64(m_out.load64(baseIndex(heap, storage, index, m_node->child2())))); + m_out.branch(checkHoleResult.value(), usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor(m_out.equal( + m_out.constInt64(JSValue::encode(jsBoolean(true))), + vmCall(m_out.operation(operationHasIndexedProperty), m_callFrame, base, index))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, checkHoleResult, slowResult)); + return; + } + case Array::Double: { + LValue base = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + LValue storage = lowStorage(m_node->child3()); + + IndexedAbstractHeap& heap = m_heaps.indexedDoubleProperties; + + LBasicBlock checkHole = FTL_NEW_BLOCK(m_out, ("HasIndexedProperty double check hole")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("HasIndexedProperty double slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("HasIndexedProperty double continuation")); + + if (!m_node->arrayMode().isInBounds()) { + m_out.branch( + m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)), + rarely(slowCase), usually(checkHole)); + } else + m_out.jump(checkHole); + + LBasicBlock lastNext = m_out.appendTo(checkHole, slowCase); + LValue doubleValue = m_out.loadDouble(baseIndex(heap, storage, index, m_node->child2())); + ValueFromBlock checkHoleResult = m_out.anchor(m_out.doubleEqual(doubleValue, doubleValue)); + m_out.branch(checkHoleResult.value(), usually(continuation), rarely(slowCase)); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowResult = m_out.anchor(m_out.equal( + m_out.constInt64(JSValue::encode(jsBoolean(true))), + vmCall(m_out.operation(operationHasIndexedProperty), m_callFrame, base, index))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, checkHoleResult, slowResult)); + return; + } + + default: + RELEASE_ASSERT_NOT_REACHED(); + return; + } + } + + void compileHasGenericProperty() + { + LValue base = lowJSValue(m_node->child1()); + LValue property = lowCell(m_node->child2()); + setJSValue(vmCall(m_out.operation(operationHasGenericProperty), m_callFrame, base, property)); + } + + void compileHasStructureProperty() + { + LValue base = lowJSValue(m_node->child1()); + LValue property = lowString(m_node->child2()); + LValue enumerator = lowCell(m_node->child3()); + + LBasicBlock correctStructure = FTL_NEW_BLOCK(m_out, ("HasStructureProperty correct structure")); + LBasicBlock wrongStructure = FTL_NEW_BLOCK(m_out, ("HasStructureProperty wrong structure")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("HasStructureProperty continuation")); + + m_out.branch(m_out.notEqual( + m_out.load32(base, m_heaps.JSCell_structureID), + m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedStructureID)), + rarely(wrongStructure), usually(correctStructure)); + + LBasicBlock lastNext = m_out.appendTo(correctStructure, wrongStructure); + ValueFromBlock correctStructureResult = m_out.anchor(m_out.booleanTrue); + m_out.jump(continuation); + + m_out.appendTo(wrongStructure, continuation); + ValueFromBlock wrongStructureResult = m_out.anchor( + m_out.equal( + m_out.constInt64(JSValue::encode(jsBoolean(true))), + vmCall(m_out.operation(operationHasGenericProperty), m_callFrame, base, property))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, correctStructureResult, wrongStructureResult)); + } + + void compileGetDirectPname() + { + LValue base = lowCell(m_graph.varArgChild(m_node, 0)); + LValue property = lowCell(m_graph.varArgChild(m_node, 1)); + LValue index = lowInt32(m_graph.varArgChild(m_node, 2)); + LValue enumerator = lowCell(m_graph.varArgChild(m_node, 3)); + + LBasicBlock checkOffset = FTL_NEW_BLOCK(m_out, ("GetDirectPname check offset")); + LBasicBlock inlineLoad = FTL_NEW_BLOCK(m_out, ("GetDirectPname inline load")); + LBasicBlock outOfLineLoad = FTL_NEW_BLOCK(m_out, ("GetDirectPname out-of-line load")); + LBasicBlock slowCase = FTL_NEW_BLOCK(m_out, ("GetDirectPname slow case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetDirectPname continuation")); + + m_out.branch(m_out.notEqual( + m_out.load32(base, m_heaps.JSCell_structureID), + m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedStructureID)), + rarely(slowCase), usually(checkOffset)); + + LBasicBlock lastNext = m_out.appendTo(checkOffset, inlineLoad); + m_out.branch(m_out.aboveOrEqual(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedInlineCapacity)), + unsure(outOfLineLoad), unsure(inlineLoad)); + + m_out.appendTo(inlineLoad, outOfLineLoad); + ValueFromBlock inlineResult = m_out.anchor( + m_out.load64(m_out.baseIndex(m_heaps.properties.atAnyNumber(), + base, m_out.zeroExt(index, m_out.int64), ScaleEight, JSObject::offsetOfInlineStorage()))); + m_out.jump(continuation); + + m_out.appendTo(outOfLineLoad, slowCase); + LValue storage = m_out.loadPtr(base, m_heaps.JSObject_butterfly); + LValue realIndex = m_out.signExt( + m_out.neg(m_out.sub(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_cachedInlineCapacity))), + m_out.int64); + int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue); + ValueFromBlock outOfLineResult = m_out.anchor( + m_out.load64(m_out.baseIndex(m_heaps.properties.atAnyNumber(), storage, realIndex, ScaleEight, offsetOfFirstProperty))); + m_out.jump(continuation); + + m_out.appendTo(slowCase, continuation); + ValueFromBlock slowCaseResult = m_out.anchor( + vmCall(m_out.operation(operationGetByVal), m_callFrame, base, property)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, inlineResult, outOfLineResult, slowCaseResult)); + } + + void compileGetEnumerableLength() + { + LValue enumerator = lowCell(m_node->child1()); + setInt32(m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_indexLength)); + } + + void compileGetPropertyEnumerator() + { + LValue base = lowCell(m_node->child1()); + setJSValue(vmCall(m_out.operation(operationGetPropertyEnumerator), m_callFrame, base)); + } + + void compileGetEnumeratorStructurePname() + { + LValue enumerator = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + LBasicBlock inBounds = FTL_NEW_BLOCK(m_out, ("GetEnumeratorStructurePname in bounds")); + LBasicBlock outOfBounds = FTL_NEW_BLOCK(m_out, ("GetEnumeratorStructurePname out of bounds")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetEnumeratorStructurePname continuation")); + + m_out.branch(m_out.below(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_endStructurePropertyIndex)), + usually(inBounds), rarely(outOfBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, outOfBounds); + LValue storage = m_out.loadPtr(enumerator, m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVector); + ValueFromBlock inBoundsResult = m_out.anchor( + m_out.loadPtr(m_out.baseIndex(m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVectorContents, storage, m_out.zeroExtPtr(index)))); + m_out.jump(continuation); + + m_out.appendTo(outOfBounds, continuation); + ValueFromBlock outOfBoundsResult = m_out.anchor(m_out.constInt64(ValueNull)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, inBoundsResult, outOfBoundsResult)); + } + + void compileGetEnumeratorGenericPname() + { + LValue enumerator = lowCell(m_node->child1()); + LValue index = lowInt32(m_node->child2()); + + LBasicBlock inBounds = FTL_NEW_BLOCK(m_out, ("GetEnumeratorGenericPname in bounds")); + LBasicBlock outOfBounds = FTL_NEW_BLOCK(m_out, ("GetEnumeratorGenericPname out of bounds")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("GetEnumeratorGenericPname continuation")); + + m_out.branch(m_out.below(index, m_out.load32(enumerator, m_heaps.JSPropertyNameEnumerator_endGenericPropertyIndex)), + usually(inBounds), rarely(outOfBounds)); + + LBasicBlock lastNext = m_out.appendTo(inBounds, outOfBounds); + LValue storage = m_out.loadPtr(enumerator, m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVector); + ValueFromBlock inBoundsResult = m_out.anchor( + m_out.loadPtr(m_out.baseIndex(m_heaps.JSPropertyNameEnumerator_cachedPropertyNamesVectorContents, storage, m_out.zeroExtPtr(index)))); + m_out.jump(continuation); + + m_out.appendTo(outOfBounds, continuation); + ValueFromBlock outOfBoundsResult = m_out.anchor(m_out.constInt64(ValueNull)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setJSValue(m_out.phi(m_out.int64, inBoundsResult, outOfBoundsResult)); + } + + void compileToIndexString() + { + LValue index = lowInt32(m_node->child1()); + setJSValue(vmCall(m_out.operation(operationToIndexString), m_callFrame, index)); + } + + void compileCheckStructureImmediate() + { + LValue structure = lowCell(m_node->child1()); + checkStructure( + structure, noValue(), BadCache, m_node->structureSet(), + [this] (Structure* structure) { + return weakStructure(structure); + }); + } + + void compileMaterializeNewObject() + { + ObjectMaterializationData& data = m_node->objectMaterializationData(); + + // Lower the values first, to avoid creating values inside a control flow diamond. + + Vector<LValue, 8> values; + for (unsigned i = 0; i < data.m_properties.size(); ++i) + values.append(lowJSValue(m_graph.varArgChild(m_node, 1 + i))); + + const StructureSet& set = m_node->structureSet(); + + Vector<LBasicBlock, 1> blocks(set.size()); + for (unsigned i = set.size(); i--;) + blocks[i] = FTL_NEW_BLOCK(m_out, ("MaterializeNewObject case ", i)); + LBasicBlock dummyDefault = FTL_NEW_BLOCK(m_out, ("MaterializeNewObject default case")); + LBasicBlock outerContinuation = FTL_NEW_BLOCK(m_out, ("MaterializeNewObject continuation")); + + Vector<SwitchCase, 1> cases(set.size()); + for (unsigned i = set.size(); i--;) + cases[i] = SwitchCase(weakStructure(set[i]), blocks[i], Weight(1)); + m_out.switchInstruction( + lowCell(m_graph.varArgChild(m_node, 0)), cases, dummyDefault, Weight(0)); + + LBasicBlock outerLastNext = m_out.m_nextBlock; + + Vector<ValueFromBlock, 1> results; + + for (unsigned i = set.size(); i--;) { + m_out.appendTo(blocks[i], i + 1 < set.size() ? blocks[i + 1] : dummyDefault); + + Structure* structure = set[i]; + + LValue object; + LValue butterfly; + + if (structure->outOfLineCapacity()) { + size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity()); + MarkedAllocator* allocator = &vm().heap.allocatorForObjectWithoutDestructor(allocationSize); + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("MaterializeNewObject complex object allocation slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("MaterializeNewObject complex object allocation continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue endOfStorage = allocateBasicStorageAndGetEnd( + m_out.constIntPtr(structure->outOfLineCapacity() * sizeof(JSValue)), + slowPath); + + LValue fastButterflyValue = m_out.add( + m_out.constIntPtr(sizeof(IndexingHeader)), endOfStorage); + + LValue fastObjectValue = allocateObject( + m_out.constIntPtr(allocator), structure, fastButterflyValue, slowPath); + + ValueFromBlock fastObject = m_out.anchor(fastObjectValue); + ValueFromBlock fastButterfly = m_out.anchor(fastButterflyValue); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + ValueFromBlock slowObject = m_out.anchor(vmCall( + m_out.operation(operationNewObjectWithButterfly), + m_callFrame, m_out.constIntPtr(structure))); + ValueFromBlock slowButterfly = m_out.anchor( + m_out.loadPtr(slowObject.value(), m_heaps.JSObject_butterfly)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + object = m_out.phi(m_out.intPtr, fastObject, slowObject); + butterfly = m_out.phi(m_out.intPtr, fastButterfly, slowButterfly); + } else { + // In the easy case where we can do a one-shot allocation, we simply allocate the + // object to directly have the desired structure. + object = allocateObject(structure); + butterfly = nullptr; // Don't have one, don't need one. + } + + for (PropertyMapEntry entry : structure->getPropertiesConcurrently()) { + for (unsigned i = data.m_properties.size(); i--;) { + PhantomPropertyValue value = data.m_properties[i]; + if (m_graph.identifiers()[value.m_identifierNumber] != entry.key) + continue; + + LValue base = isInlineOffset(entry.offset) ? object : butterfly; + storeProperty(values[i], base, value.m_identifierNumber, entry.offset); + break; + } + } + + results.append(m_out.anchor(object)); + m_out.jump(outerContinuation); + } + + m_out.appendTo(dummyDefault, outerContinuation); + m_out.unreachable(); + + m_out.appendTo(outerContinuation, outerLastNext); + setJSValue(m_out.phi(m_out.intPtr, results)); + } + + void compileMaterializeCreateActivation() + { + ObjectMaterializationData& data = m_node->objectMaterializationData(); + + Vector<LValue, 8> values; + for (unsigned i = 0; i < data.m_properties.size(); ++i) + values.append(lowJSValue(m_graph.varArgChild(m_node, 2 + i))); + + LValue scope = lowCell(m_graph.varArgChild(m_node, 1)); + SymbolTable* table = m_node->castOperand<SymbolTable*>(); + ASSERT(table == m_graph.varArgChild(m_node, 0)->castConstant<SymbolTable*>()); + Structure* structure = m_graph.globalObjectFor(m_node->origin.semantic)->activationStructure(); + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("MaterializeCreateActivation slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("MaterializeCreateActivation continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue fastObject = allocateObject<JSLexicalEnvironment>( + JSLexicalEnvironment::allocationSize(table), structure, m_out.intPtrZero, slowPath); + + m_out.storePtr(scope, fastObject, m_heaps.JSScope_next); + m_out.storePtr(weakPointer(table), fastObject, m_heaps.JSSymbolTableObject_symbolTable); + + + ValueFromBlock fastResult = m_out.anchor(fastObject); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + // We ensure allocation sinking explictly sets bottom values for all field members. + // Therefore, it doesn't matter what JSValue we pass in as the initialization value + // because all fields will be overwritten. + // FIXME: It may be worth creating an operation that calls a constructor on JSLexicalEnvironment that + // doesn't initialize every slot because we are guaranteed to do that here. + LValue callResult = vmCall( + m_out.operation(operationCreateActivationDirect), m_callFrame, weakPointer(structure), + scope, weakPointer(table), m_out.constInt64(JSValue::encode(jsUndefined()))); + ValueFromBlock slowResult = m_out.anchor(callResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue activation = m_out.phi(m_out.intPtr, fastResult, slowResult); + RELEASE_ASSERT(data.m_properties.size() == table->scopeSize()); + for (unsigned i = 0; i < data.m_properties.size(); ++i) { + m_out.store64(values[i], + activation, + m_heaps.JSEnvironmentRecord_variables[data.m_properties[i].m_identifierNumber]); + } + + if (validationEnabled()) { + // Validate to make sure every slot in the scope has one value. + ConcurrentJITLocker locker(table->m_lock); + for (auto iter = table->begin(locker), end = table->end(locker); iter != end; ++iter) { + bool found = false; + for (unsigned i = 0; i < data.m_properties.size(); ++i) { + if (iter->value.scopeOffset().offset() == data.m_properties[i].m_identifierNumber) { + found = true; + break; + } + } + ASSERT_UNUSED(found, found); + } + } + + setJSValue(activation); + } + + bool isInlinableSize(LValue function) + { + size_t instructionCount = 0; + size_t maxSize = Options::maximumLLVMInstructionCountForNativeInlining(); + for (LBasicBlock basicBlock = getFirstBasicBlock(function); basicBlock; basicBlock = getNextBasicBlock(basicBlock)) { + for (LValue instruction = getFirstInstruction(basicBlock); instruction; instruction = getNextInstruction(instruction)) { + if (++instructionCount >= maxSize) + return false; + } + } + return true; + } + + LValue didOverflowStack() + { + // This does a very simple leaf function analysis. The invariant of FTL call + // frames is that the caller had already done enough of a stack check to + // prove that this call frame has enough stack to run, and also enough stack + // to make runtime calls. So, we only need to stack check when making calls + // to other JS functions. If we don't find such calls then we don't need to + // do any stack checks. + + for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) { + BasicBlock* block = m_graph.block(blockIndex); + if (!block) + continue; + + for (unsigned nodeIndex = block->size(); nodeIndex--;) { + Node* node = block->at(nodeIndex); + + switch (node->op()) { + case GetById: + case PutById: + case Call: + case Construct: + return m_out.below( + m_callFrame, + m_out.loadPtr( + m_out.absolute(vm().addressOfFTLStackLimit()))); + + default: + break; + } + } + } + + return m_out.booleanFalse; + } + + struct ArgumentsLength { + ArgumentsLength() + : isKnown(false) + , known(UINT_MAX) + , value(nullptr) + { + } + + bool isKnown; + unsigned known; + LValue value; + }; + ArgumentsLength getArgumentsLength(InlineCallFrame* inlineCallFrame) + { + ArgumentsLength length; + + if (inlineCallFrame && !inlineCallFrame->isVarargs()) { + length.known = inlineCallFrame->arguments.size() - 1; + length.isKnown = true; + length.value = m_out.constInt32(length.known); + } else { + length.known = UINT_MAX; + length.isKnown = false; + + VirtualRegister argumentCountRegister; + if (!inlineCallFrame) + argumentCountRegister = VirtualRegister(JSStack::ArgumentCount); + else + argumentCountRegister = inlineCallFrame->argumentCountRegister; + length.value = m_out.sub(m_out.load32(payloadFor(argumentCountRegister)), m_out.int32One); + } + + return length; + } + + ArgumentsLength getArgumentsLength() + { + return getArgumentsLength(m_node->origin.semantic.inlineCallFrame); + } + + LValue getCurrentCallee() + { + if (InlineCallFrame* frame = m_node->origin.semantic.inlineCallFrame) { + if (frame->isClosureCall) + return m_out.loadPtr(addressFor(frame->calleeRecovery.virtualRegister())); + return weakPointer(frame->calleeRecovery.constant().asCell()); + } + return m_out.loadPtr(addressFor(JSStack::Callee)); + } + + LValue getArgumentsStart(InlineCallFrame* inlineCallFrame) + { + VirtualRegister start = AssemblyHelpers::argumentsStart(inlineCallFrame); + return addressFor(start).value(); + } + + LValue getArgumentsStart() + { + return getArgumentsStart(m_node->origin.semantic.inlineCallFrame); + } + + template<typename Functor> + void checkStructure( + LValue structureDiscriminant, const FormattedValue& formattedValue, ExitKind exitKind, + const StructureSet& set, const Functor& weakStructureDiscriminant) + { + if (set.size() == 1) { + speculate( + exitKind, formattedValue, 0, + m_out.notEqual(structureDiscriminant, weakStructureDiscriminant(set[0]))); + return; + } + + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("checkStructure continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + for (unsigned i = 0; i < set.size() - 1; ++i) { + LBasicBlock nextStructure = FTL_NEW_BLOCK(m_out, ("checkStructure nextStructure")); + m_out.branch( + m_out.equal(structureDiscriminant, weakStructureDiscriminant(set[i])), + unsure(continuation), unsure(nextStructure)); + m_out.appendTo(nextStructure); + } + + speculate( + exitKind, formattedValue, 0, + m_out.notEqual(structureDiscriminant, weakStructureDiscriminant(set.last()))); + + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + + LValue numberOrNotCellToInt32(Edge edge, LValue value) + { + LBasicBlock intCase = FTL_NEW_BLOCK(m_out, ("ValueToInt32 int case")); + LBasicBlock notIntCase = FTL_NEW_BLOCK(m_out, ("ValueToInt32 not int case")); + LBasicBlock doubleCase = 0; + LBasicBlock notNumberCase = 0; + if (edge.useKind() == NotCellUse) { + doubleCase = FTL_NEW_BLOCK(m_out, ("ValueToInt32 double case")); + notNumberCase = FTL_NEW_BLOCK(m_out, ("ValueToInt32 not number case")); + } + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ValueToInt32 continuation")); + + Vector<ValueFromBlock> results; + + m_out.branch(isNotInt32(value), unsure(notIntCase), unsure(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, notIntCase); + results.append(m_out.anchor(unboxInt32(value))); + m_out.jump(continuation); + + if (edge.useKind() == NumberUse) { + m_out.appendTo(notIntCase, continuation); + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecBytecodeNumber, isCellOrMisc(value)); + results.append(m_out.anchor(doubleToInt32(unboxDouble(value)))); + m_out.jump(continuation); + } else { + m_out.appendTo(notIntCase, doubleCase); + m_out.branch( + isCellOrMisc(value, provenType(edge)), unsure(notNumberCase), unsure(doubleCase)); + + m_out.appendTo(doubleCase, notNumberCase); + results.append(m_out.anchor(doubleToInt32(unboxDouble(value)))); + m_out.jump(continuation); + + m_out.appendTo(notNumberCase, continuation); + + FTL_TYPE_CHECK(jsValueValue(value), edge, ~SpecCell, isCell(value)); + + LValue specialResult = m_out.select( + m_out.equal(value, m_out.constInt64(JSValue::encode(jsBoolean(true)))), + m_out.int32One, m_out.int32Zero); + results.append(m_out.anchor(specialResult)); + m_out.jump(continuation); + } + + m_out.appendTo(continuation, lastNext); + return m_out.phi(m_out.int32, results); + } + + LValue loadProperty(LValue storage, unsigned identifierNumber, PropertyOffset offset) + { + return m_out.load64(addressOfProperty(storage, identifierNumber, offset)); + } + + void storeProperty( + LValue value, LValue storage, unsigned identifierNumber, PropertyOffset offset) + { + m_out.store64(value, addressOfProperty(storage, identifierNumber, offset)); + } + + TypedPointer addressOfProperty( + LValue storage, unsigned identifierNumber, PropertyOffset offset) + { + return m_out.address( + m_heaps.properties[identifierNumber], storage, offsetRelativeToBase(offset)); + } + + LValue storageForTransition( + LValue object, PropertyOffset offset, + Structure* previousStructure, Structure* nextStructure) + { + if (isInlineOffset(offset)) + return object; + + if (previousStructure->outOfLineCapacity() == nextStructure->outOfLineCapacity()) + return m_out.loadPtr(object, m_heaps.JSObject_butterfly); + + LValue result; + if (!previousStructure->outOfLineCapacity()) + result = allocatePropertyStorage(object, previousStructure); + else { + result = reallocatePropertyStorage( + object, m_out.loadPtr(object, m_heaps.JSObject_butterfly), + previousStructure, nextStructure); + } + + emitStoreBarrier(object); + + return result; + } + + LValue allocatePropertyStorage(LValue object, Structure* previousStructure) + { + if (previousStructure->couldHaveIndexingHeader()) { + return vmCall( + m_out.operation( + operationReallocateButterflyToHavePropertyStorageWithInitialCapacity), + m_callFrame, object); + } + + LValue result = allocatePropertyStorageWithSizeImpl(initialOutOfLineCapacity); + m_out.storePtr(result, object, m_heaps.JSObject_butterfly); + return result; + } + + LValue reallocatePropertyStorage( + LValue object, LValue oldStorage, Structure* previous, Structure* next) + { + size_t oldSize = previous->outOfLineCapacity(); + size_t newSize = oldSize * outOfLineGrowthFactor; + + ASSERT_UNUSED(next, newSize == next->outOfLineCapacity()); + + if (previous->couldHaveIndexingHeader()) { + LValue newAllocSize = m_out.constIntPtr(newSize); + return vmCall(m_out.operation(operationReallocateButterflyToGrowPropertyStorage), m_callFrame, object, newAllocSize); + } + + LValue result = allocatePropertyStorageWithSizeImpl(newSize); + + ptrdiff_t headerSize = -sizeof(IndexingHeader) - sizeof(void*); + ptrdiff_t endStorage = headerSize - static_cast<ptrdiff_t>(oldSize * sizeof(JSValue)); + + for (ptrdiff_t offset = headerSize; offset > endStorage; offset -= sizeof(void*)) { + LValue loaded = + m_out.loadPtr(m_out.address(m_heaps.properties.atAnyNumber(), oldStorage, offset)); + m_out.storePtr(loaded, m_out.address(m_heaps.properties.atAnyNumber(), result, offset)); + } + + m_out.storePtr(result, m_out.address(object, m_heaps.JSObject_butterfly)); + + return result; + } + + LValue allocatePropertyStorageWithSizeImpl(size_t sizeInValues) + { + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("allocatePropertyStorageWithSizeImpl slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("allocatePropertyStorageWithSizeImpl continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + LValue endOfStorage = allocateBasicStorageAndGetEnd( + m_out.constIntPtr(sizeInValues * sizeof(JSValue)), slowPath); + + ValueFromBlock fastButterfly = m_out.anchor( + m_out.add(m_out.constIntPtr(sizeof(IndexingHeader)), endOfStorage)); + + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + LValue slowButterflyValue; + if (sizeInValues == initialOutOfLineCapacity) { + slowButterflyValue = vmCall( + m_out.operation(operationAllocatePropertyStorageWithInitialCapacity), + m_callFrame); + } else { + slowButterflyValue = vmCall( + m_out.operation(operationAllocatePropertyStorage), + m_callFrame, m_out.constIntPtr(sizeInValues)); + } + ValueFromBlock slowButterfly = m_out.anchor(slowButterflyValue); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return m_out.phi(m_out.intPtr, fastButterfly, slowButterfly); + } + + LValue getById(LValue base) + { + auto uid = m_graph.identifiers()[m_node->identifierNumber()]; + + // Arguments: id, bytes, target, numArgs, args... + unsigned stackmapID = m_stackmapIDs++; + + if (Options::verboseCompilation()) + dataLog(" Emitting GetById patchpoint with stackmap #", stackmapID, "\n"); + + LValue call = m_out.call( + m_out.patchpointInt64Intrinsic(), + m_out.constInt64(stackmapID), m_out.constInt32(sizeOfGetById()), + constNull(m_out.ref8), m_out.constInt32(1), base); + setInstructionCallingConvention(call, LLVMAnyRegCallConv); + + m_ftlState.getByIds.append(GetByIdDescriptor(stackmapID, m_node->origin.semantic, uid)); + + return call; + } + + TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue storage, LValue index, Edge edge, ptrdiff_t offset = 0) + { + return m_out.baseIndex( + heap, storage, m_out.zeroExtPtr(index), provenValue(edge), offset); + } + + void compare( + LIntPredicate intCondition, LRealPredicate realCondition, + S_JITOperation_EJJ helperFunction) + { + if (m_node->isBinaryUseKind(Int32Use)) { + LValue left = lowInt32(m_node->child1()); + LValue right = lowInt32(m_node->child2()); + setBoolean(m_out.icmp(intCondition, left, right)); + return; + } + + if (m_node->isBinaryUseKind(Int52RepUse)) { + Int52Kind kind; + LValue left = lowWhicheverInt52(m_node->child1(), kind); + LValue right = lowInt52(m_node->child2(), kind); + setBoolean(m_out.icmp(intCondition, left, right)); + return; + } + + if (m_node->isBinaryUseKind(DoubleRepUse)) { + LValue left = lowDouble(m_node->child1()); + LValue right = lowDouble(m_node->child2()); + setBoolean(m_out.fcmp(realCondition, left, right)); + return; + } + + if (m_node->isBinaryUseKind(UntypedUse)) { + nonSpeculativeCompare(intCondition, helperFunction); + return; + } + + DFG_CRASH(m_graph, m_node, "Bad use kinds"); + } + + void compareEqObjectOrOtherToObject(Edge leftChild, Edge rightChild) + { + LValue rightCell = lowCell(rightChild); + LValue leftValue = lowJSValue(leftChild, ManualOperandSpeculation); + + speculateTruthyObject(rightChild, rightCell, SpecObject); + + LBasicBlock leftCellCase = FTL_NEW_BLOCK(m_out, ("CompareEqObjectOrOtherToObject left cell case")); + LBasicBlock leftNotCellCase = FTL_NEW_BLOCK(m_out, ("CompareEqObjectOrOtherToObject left not cell case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("CompareEqObjectOrOtherToObject continuation")); + + m_out.branch( + isCell(leftValue, provenType(leftChild)), + unsure(leftCellCase), unsure(leftNotCellCase)); + + LBasicBlock lastNext = m_out.appendTo(leftCellCase, leftNotCellCase); + speculateTruthyObject(leftChild, leftValue, SpecObject | (~SpecCell)); + ValueFromBlock cellResult = m_out.anchor(m_out.equal(rightCell, leftValue)); + m_out.jump(continuation); + + m_out.appendTo(leftNotCellCase, continuation); + FTL_TYPE_CHECK( + jsValueValue(leftValue), leftChild, SpecOther | SpecCell, isNotOther(leftValue)); + ValueFromBlock notCellResult = m_out.anchor(m_out.booleanFalse); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, cellResult, notCellResult)); + } + + void speculateTruthyObject(Edge edge, LValue cell, SpeculatedType filter) + { + if (masqueradesAsUndefinedWatchpointIsStillValid()) { + FTL_TYPE_CHECK(jsValueValue(cell), edge, filter, isNotObject(cell)); + return; + } + + FTL_TYPE_CHECK(jsValueValue(cell), edge, filter, isNotObject(cell)); + speculate( + BadType, jsValueValue(cell), edge.node(), + m_out.testNonZero8( + m_out.load8(cell, m_heaps.JSCell_typeInfoFlags), + m_out.constInt8(MasqueradesAsUndefined))); + } + + void nonSpeculativeCompare(LIntPredicate intCondition, S_JITOperation_EJJ helperFunction) + { + LValue left = lowJSValue(m_node->child1()); + LValue right = lowJSValue(m_node->child2()); + + LBasicBlock leftIsInt = FTL_NEW_BLOCK(m_out, ("CompareEq untyped left is int")); + LBasicBlock fastPath = FTL_NEW_BLOCK(m_out, ("CompareEq untyped fast path")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("CompareEq untyped slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("CompareEq untyped continuation")); + + m_out.branch(isNotInt32(left), rarely(slowPath), usually(leftIsInt)); + + LBasicBlock lastNext = m_out.appendTo(leftIsInt, fastPath); + m_out.branch(isNotInt32(right), rarely(slowPath), usually(fastPath)); + + m_out.appendTo(fastPath, slowPath); + ValueFromBlock fastResult = m_out.anchor( + m_out.icmp(intCondition, unboxInt32(left), unboxInt32(right))); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + ValueFromBlock slowResult = m_out.anchor(m_out.notNull(vmCall( + m_out.operation(helperFunction), m_callFrame, left, right))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + setBoolean(m_out.phi(m_out.boolean, fastResult, slowResult)); + } + + LValue allocateCell(LValue allocator, LBasicBlock slowPath) + { + LBasicBlock success = FTL_NEW_BLOCK(m_out, ("object allocation success")); + + LValue result = m_out.loadPtr( + allocator, m_heaps.MarkedAllocator_freeListHead); + + m_out.branch(m_out.notNull(result), usually(success), rarely(slowPath)); + + m_out.appendTo(success); + + m_out.storePtr( + m_out.loadPtr(result, m_heaps.JSCell_freeListNext), + allocator, m_heaps.MarkedAllocator_freeListHead); + + return result; + } + + void storeStructure(LValue object, Structure* structure) + { + m_out.store32(m_out.constInt32(structure->id()), object, m_heaps.JSCell_structureID); + m_out.store32( + m_out.constInt32(structure->objectInitializationBlob()), + object, m_heaps.JSCell_usefulBytes); + } + + LValue allocateCell(LValue allocator, Structure* structure, LBasicBlock slowPath) + { + LValue result = allocateCell(allocator, slowPath); + storeStructure(result, structure); + return result; + } + + LValue allocateObject( + LValue allocator, Structure* structure, LValue butterfly, LBasicBlock slowPath) + { + LValue result = allocateCell(allocator, structure, slowPath); + m_out.storePtr(butterfly, result, m_heaps.JSObject_butterfly); + return result; + } + + template<typename ClassType> + LValue allocateObject( + size_t size, Structure* structure, LValue butterfly, LBasicBlock slowPath) + { + MarkedAllocator* allocator = &vm().heap.allocatorForObjectOfType<ClassType>(size); + return allocateObject(m_out.constIntPtr(allocator), structure, butterfly, slowPath); + } + + template<typename ClassType> + LValue allocateObject(Structure* structure, LValue butterfly, LBasicBlock slowPath) + { + return allocateObject<ClassType>( + ClassType::allocationSize(0), structure, butterfly, slowPath); + } + + template<typename ClassType> + LValue allocateVariableSizedObject( + LValue size, Structure* structure, LValue butterfly, LBasicBlock slowPath) + { + static_assert(!(MarkedSpace::preciseStep & (MarkedSpace::preciseStep - 1)), "MarkedSpace::preciseStep must be a power of two."); + static_assert(!(MarkedSpace::impreciseStep & (MarkedSpace::impreciseStep - 1)), "MarkedSpace::impreciseStep must be a power of two."); + + LValue subspace = m_out.constIntPtr(&vm().heap.subspaceForObjectOfType<ClassType>()); + + LBasicBlock smallCaseBlock = FTL_NEW_BLOCK(m_out, ("allocateVariableSizedObject small case")); + LBasicBlock largeOrOversizeCaseBlock = FTL_NEW_BLOCK(m_out, ("allocateVariableSizedObject large or oversize case")); + LBasicBlock largeCaseBlock = FTL_NEW_BLOCK(m_out, ("allocateVariableSizedObject large case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("allocateVariableSizedObject continuation")); + + LValue uproundedSize = m_out.add(size, m_out.constInt32(MarkedSpace::preciseStep - 1)); + LValue isSmall = m_out.below(uproundedSize, m_out.constInt32(MarkedSpace::preciseCutoff)); + m_out.branch(isSmall, unsure(smallCaseBlock), unsure(largeOrOversizeCaseBlock)); + + LBasicBlock lastNext = m_out.appendTo(smallCaseBlock, largeOrOversizeCaseBlock); + TypedPointer address = m_out.baseIndex( + m_heaps.MarkedSpace_Subspace_preciseAllocators, subspace, + m_out.zeroExtPtr(m_out.lShr(uproundedSize, m_out.constInt32(getLSBSet(MarkedSpace::preciseStep))))); + ValueFromBlock smallAllocator = m_out.anchor(address.value()); + m_out.jump(continuation); + + m_out.appendTo(largeOrOversizeCaseBlock, largeCaseBlock); + m_out.branch( + m_out.below(uproundedSize, m_out.constInt32(MarkedSpace::impreciseCutoff)), + usually(largeCaseBlock), rarely(slowPath)); + + m_out.appendTo(largeCaseBlock, continuation); + address = m_out.baseIndex( + m_heaps.MarkedSpace_Subspace_impreciseAllocators, subspace, + m_out.zeroExtPtr(m_out.lShr(uproundedSize, m_out.constInt32(getLSBSet(MarkedSpace::impreciseStep))))); + ValueFromBlock largeAllocator = m_out.anchor(address.value()); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + LValue allocator = m_out.phi(m_out.intPtr, smallAllocator, largeAllocator); + + return allocateObject(allocator, structure, butterfly, slowPath); + } + + // Returns a pointer to the end of the allocation. + LValue allocateBasicStorageAndGetEnd(LValue size, LBasicBlock slowPath) + { + CopiedAllocator& allocator = vm().heap.storageAllocator(); + + LBasicBlock success = FTL_NEW_BLOCK(m_out, ("storage allocation success")); + + LValue remaining = m_out.loadPtr(m_out.absolute(&allocator.m_currentRemaining)); + LValue newRemaining = m_out.sub(remaining, size); + + m_out.branch( + m_out.lessThan(newRemaining, m_out.intPtrZero), + rarely(slowPath), usually(success)); + + m_out.appendTo(success); + + m_out.storePtr(newRemaining, m_out.absolute(&allocator.m_currentRemaining)); + return m_out.sub( + m_out.loadPtr(m_out.absolute(&allocator.m_currentPayloadEnd)), newRemaining); + } + + LValue allocateObject(Structure* structure) + { + size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity()); + MarkedAllocator* allocator = &vm().heap.allocatorForObjectWithoutDestructor(allocationSize); + + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("allocateObject slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("allocateObject continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + ValueFromBlock fastResult = m_out.anchor(allocateObject( + m_out.constIntPtr(allocator), structure, m_out.intPtrZero, slowPath)); + + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + ValueFromBlock slowResult = m_out.anchor(vmCall( + m_out.operation(operationNewObject), m_callFrame, m_out.constIntPtr(structure))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(m_out.intPtr, fastResult, slowResult); + } + + struct ArrayValues { + ArrayValues() + : array(0) + , butterfly(0) + { + } + + ArrayValues(LValue array, LValue butterfly) + : array(array) + , butterfly(butterfly) + { + } + + LValue array; + LValue butterfly; + }; + ArrayValues allocateJSArray( + Structure* structure, unsigned numElements, LBasicBlock slowPath) + { + ASSERT( + hasUndecided(structure->indexingType()) + || hasInt32(structure->indexingType()) + || hasDouble(structure->indexingType()) + || hasContiguous(structure->indexingType())); + + unsigned vectorLength = std::max(BASE_VECTOR_LEN, numElements); + + LValue endOfStorage = allocateBasicStorageAndGetEnd( + m_out.constIntPtr(sizeof(JSValue) * vectorLength + sizeof(IndexingHeader)), + slowPath); + + LValue butterfly = m_out.sub( + endOfStorage, m_out.constIntPtr(sizeof(JSValue) * vectorLength)); + + LValue object = allocateObject<JSArray>( + structure, butterfly, slowPath); + + m_out.store32(m_out.constInt32(numElements), butterfly, m_heaps.Butterfly_publicLength); + m_out.store32(m_out.constInt32(vectorLength), butterfly, m_heaps.Butterfly_vectorLength); + + if (hasDouble(structure->indexingType())) { + for (unsigned i = numElements; i < vectorLength; ++i) { + m_out.store64( + m_out.constInt64(bitwise_cast<int64_t>(PNaN)), + butterfly, m_heaps.indexedDoubleProperties[i]); + } + } + + return ArrayValues(object, butterfly); + } + + ArrayValues allocateJSArray(Structure* structure, unsigned numElements) + { + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("JSArray allocation slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("JSArray allocation continuation")); + + LBasicBlock lastNext = m_out.insertNewBlocksBefore(slowPath); + + ArrayValues fastValues = allocateJSArray(structure, numElements, slowPath); + ValueFromBlock fastArray = m_out.anchor(fastValues.array); + ValueFromBlock fastButterfly = m_out.anchor(fastValues.butterfly); + + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + + ValueFromBlock slowArray = m_out.anchor(vmCall( + m_out.operation(operationNewArrayWithSize), m_callFrame, + m_out.constIntPtr(structure), m_out.constInt32(numElements))); + ValueFromBlock slowButterfly = m_out.anchor( + m_out.loadPtr(slowArray.value(), m_heaps.JSObject_butterfly)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return ArrayValues( + m_out.phi(m_out.intPtr, fastArray, slowArray), + m_out.phi(m_out.intPtr, fastButterfly, slowButterfly)); + } + + LValue boolify(Edge edge) + { + switch (edge.useKind()) { + case BooleanUse: + case KnownBooleanUse: + return lowBoolean(edge); + case Int32Use: + return m_out.notZero32(lowInt32(edge)); + case DoubleRepUse: + return m_out.doubleNotEqual(lowDouble(edge), m_out.doubleZero); + case ObjectOrOtherUse: + return m_out.bitNot( + equalNullOrUndefined( + edge, CellCaseSpeculatesObject, SpeculateNullOrUndefined, + ManualOperandSpeculation)); + case StringUse: { + LValue stringValue = lowString(edge); + LValue length = m_out.load32NonNegative(stringValue, m_heaps.JSString_length); + return m_out.notEqual(length, m_out.int32Zero); + } + case UntypedUse: { + LValue value = lowJSValue(edge); + + // Implements the following control flow structure: + // if (value is cell) { + // if (value is string) + // result = !!value->length + // else { + // do evil things for masquerades-as-undefined + // result = true + // } + // } else if (value is int32) { + // result = !!unboxInt32(value) + // } else if (value is number) { + // result = !!unboxDouble(value) + // } else { + // result = value == jsTrue + // } + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped cell case")); + LBasicBlock stringCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped string case")); + LBasicBlock notStringCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped not string case")); + LBasicBlock notCellCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped not cell case")); + LBasicBlock int32Case = FTL_NEW_BLOCK(m_out, ("Boolify untyped int32 case")); + LBasicBlock notInt32Case = FTL_NEW_BLOCK(m_out, ("Boolify untyped not int32 case")); + LBasicBlock doubleCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped double case")); + LBasicBlock notDoubleCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped not double case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("Boolify untyped continuation")); + + Vector<ValueFromBlock> results; + + m_out.branch(isCell(value, provenType(edge)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, stringCase); + m_out.branch( + isString(value, provenType(edge) & SpecCell), + unsure(stringCase), unsure(notStringCase)); + + m_out.appendTo(stringCase, notStringCase); + LValue nonEmptyString = m_out.notZero32( + m_out.load32NonNegative(value, m_heaps.JSString_length)); + results.append(m_out.anchor(nonEmptyString)); + m_out.jump(continuation); + + m_out.appendTo(notStringCase, notCellCase); + LValue isTruthyObject; + if (masqueradesAsUndefinedWatchpointIsStillValid()) + isTruthyObject = m_out.booleanTrue; + else { + LBasicBlock masqueradesCase = FTL_NEW_BLOCK(m_out, ("Boolify untyped masquerades case")); + + results.append(m_out.anchor(m_out.booleanTrue)); + + m_out.branch( + m_out.testIsZero8( + m_out.load8(value, m_heaps.JSCell_typeInfoFlags), + m_out.constInt8(MasqueradesAsUndefined)), + usually(continuation), rarely(masqueradesCase)); + + m_out.appendTo(masqueradesCase); + + isTruthyObject = m_out.notEqual( + m_out.constIntPtr(m_graph.globalObjectFor(m_node->origin.semantic)), + m_out.loadPtr(loadStructure(value), m_heaps.Structure_globalObject)); + } + results.append(m_out.anchor(isTruthyObject)); + m_out.jump(continuation); + + m_out.appendTo(notCellCase, int32Case); + m_out.branch( + isInt32(value, provenType(edge) & ~SpecCell), + unsure(int32Case), unsure(notInt32Case)); + + m_out.appendTo(int32Case, notInt32Case); + results.append(m_out.anchor(m_out.notZero32(unboxInt32(value)))); + m_out.jump(continuation); + + m_out.appendTo(notInt32Case, doubleCase); + m_out.branch( + isNumber(value, provenType(edge) & ~SpecCell), + unsure(doubleCase), unsure(notDoubleCase)); + + m_out.appendTo(doubleCase, notDoubleCase); + // Note that doubleNotEqual() really means not-equal-and-ordered. It will return false + // if value is NaN. + LValue doubleIsTruthy = m_out.doubleNotEqual( + unboxDouble(value), m_out.constDouble(0)); + results.append(m_out.anchor(doubleIsTruthy)); + m_out.jump(continuation); + + m_out.appendTo(notDoubleCase, continuation); + LValue miscIsTruthy = m_out.equal( + value, m_out.constInt64(JSValue::encode(jsBoolean(true)))); + results.append(m_out.anchor(miscIsTruthy)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(m_out.boolean, results); + } + default: + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return 0; + } + } + + enum StringOrObjectMode { + AllCellsAreFalse, + CellCaseSpeculatesObject + }; + enum EqualNullOrUndefinedMode { + EqualNull, + EqualUndefined, + EqualNullOrUndefined, + SpeculateNullOrUndefined + }; + LValue equalNullOrUndefined( + Edge edge, StringOrObjectMode cellMode, EqualNullOrUndefinedMode primitiveMode, + OperandSpeculationMode operandMode = AutomaticOperandSpeculation) + { + bool validWatchpoint = masqueradesAsUndefinedWatchpointIsStillValid(); + + LValue value = lowJSValue(edge, operandMode); + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("EqualNullOrUndefined cell case")); + LBasicBlock primitiveCase = FTL_NEW_BLOCK(m_out, ("EqualNullOrUndefined primitive case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("EqualNullOrUndefined continuation")); + + m_out.branch(isNotCell(value, provenType(edge)), unsure(primitiveCase), unsure(cellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, primitiveCase); + + Vector<ValueFromBlock, 3> results; + + switch (cellMode) { + case AllCellsAreFalse: + break; + case CellCaseSpeculatesObject: + FTL_TYPE_CHECK( + jsValueValue(value), edge, (~SpecCell) | SpecObject, isNotObject(value)); + break; + } + + if (validWatchpoint) { + results.append(m_out.anchor(m_out.booleanFalse)); + m_out.jump(continuation); + } else { + LBasicBlock masqueradesCase = + FTL_NEW_BLOCK(m_out, ("EqualNullOrUndefined masquerades case")); + + results.append(m_out.anchor(m_out.booleanFalse)); + + m_out.branch( + m_out.testNonZero8( + m_out.load8(value, m_heaps.JSCell_typeInfoFlags), + m_out.constInt8(MasqueradesAsUndefined)), + rarely(masqueradesCase), usually(continuation)); + + m_out.appendTo(masqueradesCase, primitiveCase); + + LValue structure = loadStructure(value); + + results.append(m_out.anchor( + m_out.equal( + m_out.constIntPtr(m_graph.globalObjectFor(m_node->origin.semantic)), + m_out.loadPtr(structure, m_heaps.Structure_globalObject)))); + m_out.jump(continuation); + } + + m_out.appendTo(primitiveCase, continuation); + + LValue primitiveResult; + switch (primitiveMode) { + case EqualNull: + primitiveResult = m_out.equal(value, m_out.constInt64(ValueNull)); + break; + case EqualUndefined: + primitiveResult = m_out.equal(value, m_out.constInt64(ValueUndefined)); + break; + case EqualNullOrUndefined: + primitiveResult = isOther(value, provenType(edge)); + break; + case SpeculateNullOrUndefined: + FTL_TYPE_CHECK( + jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + primitiveResult = m_out.booleanTrue; + break; + } + results.append(m_out.anchor(primitiveResult)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return m_out.phi(m_out.boolean, results); + } + + template<typename FunctionType> + void contiguousPutByValOutOfBounds( + FunctionType slowPathFunction, LValue base, LValue storage, LValue index, LValue value, + LBasicBlock continuation) + { + LValue isNotInBounds = m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_publicLength)); + if (!m_node->arrayMode().isInBounds()) { + LBasicBlock notInBoundsCase = + FTL_NEW_BLOCK(m_out, ("PutByVal not in bounds")); + LBasicBlock performStore = + FTL_NEW_BLOCK(m_out, ("PutByVal perform store")); + + m_out.branch(isNotInBounds, unsure(notInBoundsCase), unsure(performStore)); + + LBasicBlock lastNext = m_out.appendTo(notInBoundsCase, performStore); + + LValue isOutOfBounds = m_out.aboveOrEqual( + index, m_out.load32NonNegative(storage, m_heaps.Butterfly_vectorLength)); + + if (!m_node->arrayMode().isOutOfBounds()) + speculate(OutOfBounds, noValue(), 0, isOutOfBounds); + else { + LBasicBlock outOfBoundsCase = + FTL_NEW_BLOCK(m_out, ("PutByVal out of bounds")); + LBasicBlock holeCase = + FTL_NEW_BLOCK(m_out, ("PutByVal hole case")); + + m_out.branch(isOutOfBounds, unsure(outOfBoundsCase), unsure(holeCase)); + + LBasicBlock innerLastNext = m_out.appendTo(outOfBoundsCase, holeCase); + + vmCall( + m_out.operation(slowPathFunction), + m_callFrame, base, index, value); + + m_out.jump(continuation); + + m_out.appendTo(holeCase, innerLastNext); + } + + m_out.store32( + m_out.add(index, m_out.int32One), + storage, m_heaps.Butterfly_publicLength); + + m_out.jump(performStore); + m_out.appendTo(performStore, lastNext); + } + } + + void buildSwitch(SwitchData* data, LType type, LValue switchValue) + { + Vector<SwitchCase> cases; + for (unsigned i = 0; i < data->cases.size(); ++i) { + cases.append(SwitchCase( + constInt(type, data->cases[i].value.switchLookupValue(data->kind)), + lowBlock(data->cases[i].target.block), Weight(data->cases[i].target.count))); + } + + m_out.switchInstruction( + switchValue, cases, + lowBlock(data->fallThrough.block), Weight(data->fallThrough.count)); + } + + void switchString(SwitchData* data, LValue string) + { + bool canDoBinarySwitch = true; + unsigned totalLength = 0; + + for (DFG::SwitchCase myCase : data->cases) { + StringImpl* string = myCase.value.stringImpl(); + if (!string->is8Bit()) { + canDoBinarySwitch = false; + break; + } + if (string->length() > Options::maximumBinaryStringSwitchCaseLength()) { + canDoBinarySwitch = false; + break; + } + totalLength += string->length(); + } + + if (!canDoBinarySwitch || totalLength > Options::maximumBinaryStringSwitchTotalLength()) { + switchStringSlow(data, string); + return; + } + + LValue stringImpl = m_out.loadPtr(string, m_heaps.JSString_value); + LValue length = m_out.load32(string, m_heaps.JSString_length); + + LBasicBlock hasImplBlock = FTL_NEW_BLOCK(m_out, ("Switch/SwitchString has impl case")); + LBasicBlock is8BitBlock = FTL_NEW_BLOCK(m_out, ("Switch/SwitchString is 8 bit case")); + LBasicBlock slowBlock = FTL_NEW_BLOCK(m_out, ("Switch/SwitchString slow case")); + + m_out.branch(m_out.isNull(stringImpl), unsure(slowBlock), unsure(hasImplBlock)); + + LBasicBlock lastNext = m_out.appendTo(hasImplBlock, is8BitBlock); + + m_out.branch( + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIs8Bit())), + unsure(slowBlock), unsure(is8BitBlock)); + + m_out.appendTo(is8BitBlock, slowBlock); + + LValue buffer = m_out.loadPtr(stringImpl, m_heaps.StringImpl_data); + + // FIXME: We should propagate branch weight data to the cases of this switch. + // https://bugs.webkit.org/show_bug.cgi?id=144368 + + Vector<StringSwitchCase> cases; + for (DFG::SwitchCase myCase : data->cases) + cases.append(StringSwitchCase(myCase.value.stringImpl(), lowBlock(myCase.target.block))); + std::sort(cases.begin(), cases.end()); + switchStringRecurse(data, buffer, length, cases, 0, 0, cases.size(), 0, false); + + m_out.appendTo(slowBlock, lastNext); + switchStringSlow(data, string); + } + + // The code for string switching is based closely on the same code in the DFG backend. While it + // would be nice to reduce the amount of similar-looking code, it seems like this is one of + // those algorithms where factoring out the common bits would result in more code than just + // duplicating. + + struct StringSwitchCase { + StringSwitchCase() { } + + StringSwitchCase(StringImpl* string, LBasicBlock target) + : string(string) + , target(target) + { + } + + bool operator<(const StringSwitchCase& other) const + { + return stringLessThan(*string, *other.string); + } + + StringImpl* string; + LBasicBlock target; + }; + + struct CharacterCase { + CharacterCase() + : character(0) + , begin(0) + , end(0) + { + } + + CharacterCase(LChar character, unsigned begin, unsigned end) + : character(character) + , begin(begin) + , end(end) + { + } + + bool operator<(const CharacterCase& other) const + { + return character < other.character; + } + + LChar character; + unsigned begin; + unsigned end; + }; + + void switchStringRecurse( + SwitchData* data, LValue buffer, LValue length, const Vector<StringSwitchCase>& cases, + unsigned numChecked, unsigned begin, unsigned end, unsigned alreadyCheckedLength, + unsigned checkedExactLength) + { + LBasicBlock fallThrough = lowBlock(data->fallThrough.block); + + if (begin == end) { + m_out.jump(fallThrough); + return; + } + + unsigned minLength = cases[begin].string->length(); + unsigned commonChars = minLength; + bool allLengthsEqual = true; + for (unsigned i = begin + 1; i < end; ++i) { + unsigned myCommonChars = numChecked; + unsigned limit = std::min(cases[begin].string->length(), cases[i].string->length()); + for (unsigned j = numChecked; j < limit; ++j) { + if (cases[begin].string->at(j) != cases[i].string->at(j)) + break; + myCommonChars++; + } + commonChars = std::min(commonChars, myCommonChars); + if (minLength != cases[i].string->length()) + allLengthsEqual = false; + minLength = std::min(minLength, cases[i].string->length()); + } + + if (checkedExactLength) { + DFG_ASSERT(m_graph, m_node, alreadyCheckedLength == minLength); + DFG_ASSERT(m_graph, m_node, allLengthsEqual); + } + + DFG_ASSERT(m_graph, m_node, minLength >= commonChars); + + if (!allLengthsEqual && alreadyCheckedLength < minLength) + m_out.check(m_out.below(length, m_out.constInt32(minLength)), unsure(fallThrough)); + if (allLengthsEqual && (alreadyCheckedLength < minLength || !checkedExactLength)) + m_out.check(m_out.notEqual(length, m_out.constInt32(minLength)), unsure(fallThrough)); + + for (unsigned i = numChecked; i < commonChars; ++i) { + m_out.check( + m_out.notEqual( + m_out.load8(buffer, m_heaps.characters8[i]), + m_out.constInt8(cases[begin].string->at(i))), + unsure(fallThrough)); + } + + if (minLength == commonChars) { + // This is the case where one of the cases is a prefix of all of the other cases. + // We've already checked that the input string is a prefix of all of the cases, + // so we just check length to jump to that case. + + DFG_ASSERT(m_graph, m_node, cases[begin].string->length() == commonChars); + for (unsigned i = begin + 1; i < end; ++i) + DFG_ASSERT(m_graph, m_node, cases[i].string->length() > commonChars); + + if (allLengthsEqual) { + DFG_ASSERT(m_graph, m_node, end == begin + 1); + m_out.jump(cases[begin].target); + return; + } + + m_out.check( + m_out.equal(length, m_out.constInt32(commonChars)), + unsure(cases[begin].target)); + + // We've checked if the length is >= minLength, and then we checked if the length is + // == commonChars. We get to this point if it is >= minLength but not == commonChars. + // Hence we know that it now must be > minLength, i.e. that it's >= minLength + 1. + switchStringRecurse( + data, buffer, length, cases, commonChars, begin + 1, end, minLength + 1, false); + return; + } + + // At this point we know that the string is longer than commonChars, and we've only verified + // commonChars. Use a binary switch on the next unchecked character, i.e. + // string[commonChars]. + + DFG_ASSERT(m_graph, m_node, end >= begin + 2); + + LValue uncheckedChar = m_out.load8(buffer, m_heaps.characters8[commonChars]); + + Vector<CharacterCase> characterCases; + CharacterCase currentCase(cases[begin].string->at(commonChars), begin, begin + 1); + for (unsigned i = begin + 1; i < end; ++i) { + LChar currentChar = cases[i].string->at(commonChars); + if (currentChar != currentCase.character) { + currentCase.end = i; + characterCases.append(currentCase); + currentCase = CharacterCase(currentChar, i, i + 1); + } else + currentCase.end = i + 1; + } + characterCases.append(currentCase); + + Vector<LBasicBlock> characterBlocks; + for (CharacterCase& myCase : characterCases) + characterBlocks.append(FTL_NEW_BLOCK(m_out, ("Switch/SwitchString case for ", myCase.character, " at index ", commonChars))); + + Vector<SwitchCase> switchCases; + for (unsigned i = 0; i < characterCases.size(); ++i) { + if (i) + DFG_ASSERT(m_graph, m_node, characterCases[i - 1].character < characterCases[i].character); + switchCases.append(SwitchCase( + m_out.constInt8(characterCases[i].character), characterBlocks[i], Weight())); + } + m_out.switchInstruction(uncheckedChar, switchCases, fallThrough, Weight()); + + LBasicBlock lastNext = m_out.m_nextBlock; + characterBlocks.append(lastNext); // Makes it convenient to set nextBlock. + for (unsigned i = 0; i < characterCases.size(); ++i) { + m_out.appendTo(characterBlocks[i], characterBlocks[i + 1]); + switchStringRecurse( + data, buffer, length, cases, commonChars + 1, + characterCases[i].begin, characterCases[i].end, minLength, allLengthsEqual); + } + + DFG_ASSERT(m_graph, m_node, m_out.m_nextBlock == lastNext); + } + + void switchStringSlow(SwitchData* data, LValue string) + { + // FIXME: We ought to be able to use computed gotos here. We would save the labels of the + // blocks we want to jump to, and then request their addresses after compilation completes. + // https://bugs.webkit.org/show_bug.cgi?id=144369 + + LValue branchOffset = vmCall( + m_out.operation(operationSwitchStringAndGetBranchOffset), + m_callFrame, m_out.constIntPtr(data->switchTableIndex), string); + + StringJumpTable& table = codeBlock()->stringSwitchJumpTable(data->switchTableIndex); + + Vector<SwitchCase> cases; + std::unordered_set<int32_t> alreadyHandled; // These may be negative, or zero, or probably other stuff, too. We don't want to mess with HashSet's corner cases and we don't really care about throughput here. + for (unsigned i = 0; i < data->cases.size(); ++i) { + // FIXME: The fact that we're using the bytecode's switch table means that the + // following DFG IR transformation would be invalid. + // + // Original code: + // switch (v) { + // case "foo": + // case "bar": + // things(); + // break; + // default: + // break; + // } + // + // New code: + // switch (v) { + // case "foo": + // instrumentFoo(); + // goto _things; + // case "bar": + // instrumentBar(); + // _things: + // things(); + // break; + // default: + // break; + // } + // + // Luckily, we don't currently do any such transformation. But it's kind of silly that + // this is an issue. + // https://bugs.webkit.org/show_bug.cgi?id=144635 + + DFG::SwitchCase myCase = data->cases[i]; + StringJumpTable::StringOffsetTable::iterator iter = + table.offsetTable.find(myCase.value.stringImpl()); + DFG_ASSERT(m_graph, m_node, iter != table.offsetTable.end()); + + if (!alreadyHandled.insert(iter->value.branchOffset).second) + continue; + + cases.append(SwitchCase( + m_out.constInt32(iter->value.branchOffset), + lowBlock(myCase.target.block), Weight(myCase.target.count))); + } + + m_out.switchInstruction( + branchOffset, cases, lowBlock(data->fallThrough.block), + Weight(data->fallThrough.count)); + } + + // Calls the functor at the point of code generation where we know what the result type is. + // You can emit whatever code you like at that point. Expects you to terminate the basic block. + // When buildTypeOf() returns, it will have terminated all basic blocks that it created. So, if + // you aren't using this as the terminator of a high-level block, you should create your own + // contination and set it as the nextBlock (m_out.insertNewBlocksBefore(continuation)) before + // calling this. For example: + // + // LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("My continuation")); + // LBasicBlock lastNext = m_out.insertNewBlocksBefore(continuation); + // buildTypeOf( + // child, value, + // [&] (TypeofType type) { + // do things; + // m_out.jump(continuation); + // }); + // m_out.appendTo(continuation, lastNext); + template<typename Functor> + void buildTypeOf(Edge child, LValue value, const Functor& functor) + { + JSGlobalObject* globalObject = m_graph.globalObjectFor(m_node->origin.semantic); + + // Implements the following branching structure: + // + // if (is cell) { + // if (is object) { + // if (is function) { + // return function; + // } else if (doesn't have call trap and doesn't masquerade as undefined) { + // return object + // } else { + // return slowPath(); + // } + // } else if (is string) { + // return string + // } else { + // return symbol + // } + // } else if (is number) { + // return number + // } else if (is null) { + // return object + // } else if (is boolean) { + // return boolean + // } else { + // return undefined + // } + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf cell case")); + LBasicBlock objectCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf object case")); + LBasicBlock functionCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf function case")); + LBasicBlock notFunctionCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf not function case")); + LBasicBlock reallyObjectCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf really object case")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("buildTypeOf slow path")); + LBasicBlock unreachable = FTL_NEW_BLOCK(m_out, ("buildTypeOf unreachable")); + LBasicBlock notObjectCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf not object case")); + LBasicBlock stringCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf string case")); + LBasicBlock symbolCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf symbol case")); + LBasicBlock notCellCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf not cell case")); + LBasicBlock numberCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf number case")); + LBasicBlock notNumberCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf not number case")); + LBasicBlock notNullCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf not null case")); + LBasicBlock booleanCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf boolean case")); + LBasicBlock undefinedCase = FTL_NEW_BLOCK(m_out, ("buildTypeOf undefined case")); + + m_out.branch(isCell(value, provenType(child)), unsure(cellCase), unsure(notCellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, objectCase); + m_out.branch(isObject(value, provenType(child)), unsure(objectCase), unsure(notObjectCase)); + + m_out.appendTo(objectCase, functionCase); + m_out.branch( + isFunction(value, provenType(child) & SpecObject), + unsure(functionCase), unsure(notFunctionCase)); + + m_out.appendTo(functionCase, notFunctionCase); + functor(TypeofType::Function); + + m_out.appendTo(notFunctionCase, reallyObjectCase); + m_out.branch( + isExoticForTypeof(value, provenType(child) & (SpecObject - SpecFunction)), + rarely(slowPath), usually(reallyObjectCase)); + + m_out.appendTo(reallyObjectCase, slowPath); + functor(TypeofType::Object); + + m_out.appendTo(slowPath, unreachable); + LValue result = vmCall( + m_out.operation(operationTypeOfObjectAsTypeofType), m_callFrame, + weakPointer(globalObject), value); + Vector<SwitchCase, 3> cases; + cases.append(SwitchCase(m_out.constInt32(static_cast<int32_t>(TypeofType::Undefined)), undefinedCase)); + cases.append(SwitchCase(m_out.constInt32(static_cast<int32_t>(TypeofType::Object)), reallyObjectCase)); + cases.append(SwitchCase(m_out.constInt32(static_cast<int32_t>(TypeofType::Function)), functionCase)); + m_out.switchInstruction(result, cases, unreachable, Weight()); + + m_out.appendTo(unreachable, notObjectCase); + m_out.unreachable(); + + m_out.appendTo(notObjectCase, stringCase); + m_out.branch( + isString(value, provenType(child) & (SpecCell - SpecObject)), + unsure(stringCase), unsure(symbolCase)); + + m_out.appendTo(stringCase, symbolCase); + functor(TypeofType::String); + + m_out.appendTo(symbolCase, notCellCase); + functor(TypeofType::Symbol); + + m_out.appendTo(notCellCase, numberCase); + m_out.branch( + isNumber(value, provenType(child) & ~SpecCell), + unsure(numberCase), unsure(notNumberCase)); + + m_out.appendTo(numberCase, notNumberCase); + functor(TypeofType::Number); + + m_out.appendTo(notNumberCase, notNullCase); + LValue isNull; + if (provenType(child) & SpecOther) + isNull = m_out.equal(value, m_out.constInt64(ValueNull)); + else + isNull = m_out.booleanFalse; + m_out.branch(isNull, unsure(reallyObjectCase), unsure(notNullCase)); + + m_out.appendTo(notNullCase, booleanCase); + m_out.branch( + isBoolean(value, provenType(child) & ~(SpecCell | SpecFullNumber)), + unsure(booleanCase), unsure(undefinedCase)); + + m_out.appendTo(booleanCase, undefinedCase); + functor(TypeofType::Boolean); + + m_out.appendTo(undefinedCase, lastNext); + functor(TypeofType::Undefined); + } + + LValue doubleToInt32(LValue doubleValue, double low, double high, bool isSigned = true) + { + LBasicBlock greatEnough = FTL_NEW_BLOCK(m_out, ("doubleToInt32 greatEnough")); + LBasicBlock withinRange = FTL_NEW_BLOCK(m_out, ("doubleToInt32 withinRange")); + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("doubleToInt32 slowPath")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("doubleToInt32 continuation")); + + Vector<ValueFromBlock, 2> results; + + m_out.branch( + m_out.doubleGreaterThanOrEqual(doubleValue, m_out.constDouble(low)), + unsure(greatEnough), unsure(slowPath)); + + LBasicBlock lastNext = m_out.appendTo(greatEnough, withinRange); + m_out.branch( + m_out.doubleLessThanOrEqual(doubleValue, m_out.constDouble(high)), + unsure(withinRange), unsure(slowPath)); + + m_out.appendTo(withinRange, slowPath); + LValue fastResult; + if (isSigned) + fastResult = m_out.fpToInt32(doubleValue); + else + fastResult = m_out.fpToUInt32(doubleValue); + results.append(m_out.anchor(fastResult)); + m_out.jump(continuation); + + m_out.appendTo(slowPath, continuation); + results.append(m_out.anchor(m_out.call(m_out.operation(toInt32), doubleValue))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(m_out.int32, results); + } + + LValue doubleToInt32(LValue doubleValue) + { + if (Output::hasSensibleDoubleToInt()) + return sensibleDoubleToInt32(doubleValue); + + double limit = pow(2, 31) - 1; + return doubleToInt32(doubleValue, -limit, limit); + } + + LValue sensibleDoubleToInt32(LValue doubleValue) + { + LBasicBlock slowPath = FTL_NEW_BLOCK(m_out, ("sensible doubleToInt32 slow path")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("sensible doubleToInt32 continuation")); + + ValueFromBlock fastResult = m_out.anchor( + m_out.sensibleDoubleToInt(doubleValue)); + m_out.branch( + m_out.equal(fastResult.value(), m_out.constInt32(0x80000000)), + rarely(slowPath), usually(continuation)); + + LBasicBlock lastNext = m_out.appendTo(slowPath, continuation); + ValueFromBlock slowResult = m_out.anchor( + m_out.call(m_out.operation(toInt32), doubleValue)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(m_out.int32, fastResult, slowResult); + } + + void speculate( + ExitKind kind, FormattedValue lowValue, Node* highValue, LValue failCondition) + { + appendOSRExit(kind, lowValue, highValue, failCondition); + } + + void terminate(ExitKind kind) + { + speculate(kind, noValue(), nullptr, m_out.booleanTrue); + didAlreadyTerminate(); + } + + void didAlreadyTerminate() + { + m_state.setIsValid(false); + } + + void typeCheck( + FormattedValue lowValue, Edge highValue, SpeculatedType typesPassedThrough, + LValue failCondition) + { + appendTypeCheck(lowValue, highValue, typesPassedThrough, failCondition); + } + + void appendTypeCheck( + FormattedValue lowValue, Edge highValue, SpeculatedType typesPassedThrough, + LValue failCondition) + { + if (!m_interpreter.needsTypeCheck(highValue, typesPassedThrough)) + return; + ASSERT(mayHaveTypeCheck(highValue.useKind())); + appendOSRExit(BadType, lowValue, highValue.node(), failCondition); + m_interpreter.filter(highValue, typesPassedThrough); + } + + LValue lowInt32(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || (edge.useKind() == Int32Use || edge.useKind() == KnownInt32Use)); + + if (edge->hasConstant()) { + JSValue value = edge->asJSValue(); + if (!value.isInt32()) { + terminate(Uncountable); + return m_out.int32Zero; + } + return m_out.constInt32(value.asInt32()); + } + + LoweredNodeValue value = m_int32Values.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_strictInt52Values.get(edge.node()); + if (isValid(value)) + return strictInt52ToInt32(edge, value.value()); + + value = m_int52Values.get(edge.node()); + if (isValid(value)) + return strictInt52ToInt32(edge, int52ToStrictInt52(value.value())); + + value = m_jsValueValues.get(edge.node()); + if (isValid(value)) { + LValue boxedResult = value.value(); + FTL_TYPE_CHECK( + jsValueValue(boxedResult), edge, SpecInt32, isNotInt32(boxedResult)); + LValue result = unboxInt32(boxedResult); + setInt32(edge.node(), result); + return result; + } + + DFG_ASSERT(m_graph, m_node, !(provenType(edge) & SpecInt32)); + terminate(Uncountable); + return m_out.int32Zero; + } + + enum Int52Kind { StrictInt52, Int52 }; + LValue lowInt52(Edge edge, Int52Kind kind) + { + DFG_ASSERT(m_graph, m_node, edge.useKind() == Int52RepUse); + + LoweredNodeValue value; + + switch (kind) { + case Int52: + value = m_int52Values.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_strictInt52Values.get(edge.node()); + if (isValid(value)) + return strictInt52ToInt52(value.value()); + break; + + case StrictInt52: + value = m_strictInt52Values.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_int52Values.get(edge.node()); + if (isValid(value)) + return int52ToStrictInt52(value.value()); + break; + } + + DFG_ASSERT(m_graph, m_node, !provenType(edge)); + terminate(Uncountable); + return m_out.int64Zero; + } + + LValue lowInt52(Edge edge) + { + return lowInt52(edge, Int52); + } + + LValue lowStrictInt52(Edge edge) + { + return lowInt52(edge, StrictInt52); + } + + bool betterUseStrictInt52(Node* node) + { + return !isValid(m_int52Values.get(node)); + } + bool betterUseStrictInt52(Edge edge) + { + return betterUseStrictInt52(edge.node()); + } + template<typename T> + Int52Kind bestInt52Kind(T node) + { + return betterUseStrictInt52(node) ? StrictInt52 : Int52; + } + Int52Kind opposite(Int52Kind kind) + { + switch (kind) { + case Int52: + return StrictInt52; + case StrictInt52: + return Int52; + } + DFG_CRASH(m_graph, m_node, "Bad use kind"); + return Int52; + } + + LValue lowWhicheverInt52(Edge edge, Int52Kind& kind) + { + kind = bestInt52Kind(edge); + return lowInt52(edge, kind); + } + + LValue lowCell(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + DFG_ASSERT(m_graph, m_node, mode == ManualOperandSpeculation || DFG::isCell(edge.useKind())); + + if (edge->op() == JSConstant) { + JSValue value = edge->asJSValue(); + if (!value.isCell()) { + terminate(Uncountable); + return m_out.intPtrZero; + } + return m_out.constIntPtr(value.asCell()); + } + + LoweredNodeValue value = m_jsValueValues.get(edge.node()); + if (isValid(value)) { + LValue uncheckedValue = value.value(); + FTL_TYPE_CHECK( + jsValueValue(uncheckedValue), edge, SpecCell, isNotCell(uncheckedValue)); + return uncheckedValue; + } + + DFG_ASSERT(m_graph, m_node, !(provenType(edge) & SpecCell)); + terminate(Uncountable); + return m_out.intPtrZero; + } + + LValue lowObject(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == ObjectUse); + + LValue result = lowCell(edge, mode); + speculateObject(edge, result); + return result; + } + + LValue lowString(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == StringUse || edge.useKind() == KnownStringUse || edge.useKind() == StringIdentUse); + + LValue result = lowCell(edge, mode); + speculateString(edge, result); + return result; + } + + LValue lowStringIdent(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == StringIdentUse); + + LValue string = lowString(edge, mode); + LValue stringImpl = m_out.loadPtr(string, m_heaps.JSString_value); + speculateStringIdent(edge, string, stringImpl); + return stringImpl; + } + + LValue lowSymbol(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == SymbolUse); + + LValue result = lowCell(edge, mode); + speculateSymbol(edge, result); + return result; + } + + LValue lowNonNullObject(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == ObjectUse); + + LValue result = lowCell(edge, mode); + speculateNonNullObject(edge, result); + return result; + } + + LValue lowBoolean(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + ASSERT_UNUSED(mode, mode == ManualOperandSpeculation || edge.useKind() == BooleanUse || edge.useKind() == KnownBooleanUse); + + if (edge->hasConstant()) { + JSValue value = edge->asJSValue(); + if (!value.isBoolean()) { + terminate(Uncountable); + return m_out.booleanFalse; + } + return m_out.constBool(value.asBoolean()); + } + + LoweredNodeValue value = m_booleanValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_jsValueValues.get(edge.node()); + if (isValid(value)) { + LValue unboxedResult = value.value(); + FTL_TYPE_CHECK( + jsValueValue(unboxedResult), edge, SpecBoolean, isNotBoolean(unboxedResult)); + LValue result = unboxBoolean(unboxedResult); + setBoolean(edge.node(), result); + return result; + } + + DFG_ASSERT(m_graph, m_node, !(provenType(edge) & SpecBoolean)); + terminate(Uncountable); + return m_out.booleanFalse; + } + + LValue lowDouble(Edge edge) + { + DFG_ASSERT(m_graph, m_node, isDouble(edge.useKind())); + + LoweredNodeValue value = m_doubleValues.get(edge.node()); + if (isValid(value)) + return value.value(); + DFG_ASSERT(m_graph, m_node, !provenType(edge)); + terminate(Uncountable); + return m_out.doubleZero; + } + + LValue lowJSValue(Edge edge, OperandSpeculationMode mode = AutomaticOperandSpeculation) + { + DFG_ASSERT(m_graph, m_node, mode == ManualOperandSpeculation || edge.useKind() == UntypedUse); + DFG_ASSERT(m_graph, m_node, !isDouble(edge.useKind())); + DFG_ASSERT(m_graph, m_node, edge.useKind() != Int52RepUse); + + if (edge->hasConstant()) + return m_out.constInt64(JSValue::encode(edge->asJSValue())); + + LoweredNodeValue value = m_jsValueValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + value = m_int32Values.get(edge.node()); + if (isValid(value)) { + LValue result = boxInt32(value.value()); + setJSValue(edge.node(), result); + return result; + } + + value = m_booleanValues.get(edge.node()); + if (isValid(value)) { + LValue result = boxBoolean(value.value()); + setJSValue(edge.node(), result); + return result; + } + + DFG_CRASH(m_graph, m_node, "Value not defined"); + return 0; + } + + LValue lowStorage(Edge edge) + { + LoweredNodeValue value = m_storageValues.get(edge.node()); + if (isValid(value)) + return value.value(); + + LValue result = lowCell(edge); + setStorage(edge.node(), result); + return result; + } + + LValue strictInt52ToInt32(Edge edge, LValue value) + { + LValue result = m_out.castToInt32(value); + FTL_TYPE_CHECK( + noValue(), edge, SpecInt32, + m_out.notEqual(m_out.signExt(result, m_out.int64), value)); + setInt32(edge.node(), result); + return result; + } + + LValue strictInt52ToDouble(LValue value) + { + return m_out.intToDouble(value); + } + + LValue strictInt52ToJSValue(LValue value) + { + LBasicBlock isInt32 = FTL_NEW_BLOCK(m_out, ("strictInt52ToJSValue isInt32 case")); + LBasicBlock isDouble = FTL_NEW_BLOCK(m_out, ("strictInt52ToJSValue isDouble case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("strictInt52ToJSValue continuation")); + + Vector<ValueFromBlock, 2> results; + + LValue int32Value = m_out.castToInt32(value); + m_out.branch( + m_out.equal(m_out.signExt(int32Value, m_out.int64), value), + unsure(isInt32), unsure(isDouble)); + + LBasicBlock lastNext = m_out.appendTo(isInt32, isDouble); + + results.append(m_out.anchor(boxInt32(int32Value))); + m_out.jump(continuation); + + m_out.appendTo(isDouble, continuation); + + results.append(m_out.anchor(boxDouble(m_out.intToDouble(value)))); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + return m_out.phi(m_out.int64, results); + } + + LValue strictInt52ToInt52(LValue value) + { + return m_out.shl(value, m_out.constInt64(JSValue::int52ShiftAmount)); + } + + LValue int52ToStrictInt52(LValue value) + { + return m_out.aShr(value, m_out.constInt64(JSValue::int52ShiftAmount)); + } + + LValue isInt32(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecInt32)) + return proven; + return m_out.aboveOrEqual(jsValue, m_tagTypeNumber); + } + LValue isNotInt32(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecInt32)) + return proven; + return m_out.below(jsValue, m_tagTypeNumber); + } + LValue unboxInt32(LValue jsValue) + { + return m_out.castToInt32(jsValue); + } + LValue boxInt32(LValue value) + { + return m_out.add(m_out.zeroExt(value, m_out.int64), m_tagTypeNumber); + } + + LValue isCellOrMisc(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecCell | SpecMisc)) + return proven; + return m_out.testIsZero64(jsValue, m_tagTypeNumber); + } + LValue isNotCellOrMisc(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~(SpecCell | SpecMisc))) + return proven; + return m_out.testNonZero64(jsValue, m_tagTypeNumber); + } + + LValue unboxDouble(LValue jsValue) + { + return m_out.bitCast(m_out.add(jsValue, m_tagTypeNumber), m_out.doubleType); + } + LValue boxDouble(LValue doubleValue) + { + return m_out.sub(m_out.bitCast(doubleValue, m_out.int64), m_tagTypeNumber); + } + + LValue jsValueToStrictInt52(Edge edge, LValue boxedValue) + { + LBasicBlock intCase = FTL_NEW_BLOCK(m_out, ("jsValueToInt52 unboxing int case")); + LBasicBlock doubleCase = FTL_NEW_BLOCK(m_out, ("jsValueToInt52 unboxing double case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("jsValueToInt52 unboxing continuation")); + + LValue isNotInt32; + if (!m_interpreter.needsTypeCheck(edge, SpecInt32)) + isNotInt32 = m_out.booleanFalse; + else if (!m_interpreter.needsTypeCheck(edge, ~SpecInt32)) + isNotInt32 = m_out.booleanTrue; + else + isNotInt32 = this->isNotInt32(boxedValue); + m_out.branch(isNotInt32, unsure(doubleCase), unsure(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, doubleCase); + + ValueFromBlock intToInt52 = m_out.anchor( + m_out.signExt(unboxInt32(boxedValue), m_out.int64)); + m_out.jump(continuation); + + m_out.appendTo(doubleCase, continuation); + + LValue possibleResult = m_out.call( + m_out.operation(operationConvertBoxedDoubleToInt52), boxedValue); + FTL_TYPE_CHECK( + jsValueValue(boxedValue), edge, SpecInt32 | SpecInt52AsDouble, + m_out.equal(possibleResult, m_out.constInt64(JSValue::notInt52))); + + ValueFromBlock doubleToInt52 = m_out.anchor(possibleResult); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + return m_out.phi(m_out.int64, intToInt52, doubleToInt52); + } + + LValue doubleToStrictInt52(Edge edge, LValue value) + { + LValue possibleResult = m_out.call( + m_out.operation(operationConvertDoubleToInt52), value); + FTL_TYPE_CHECK( + doubleValue(value), edge, SpecInt52AsDouble, + m_out.equal(possibleResult, m_out.constInt64(JSValue::notInt52))); + + return possibleResult; + } + + LValue convertDoubleToInt32(LValue value, bool shouldCheckNegativeZero) + { + LValue integerValue = m_out.fpToInt32(value); + LValue integerValueConvertedToDouble = m_out.intToDouble(integerValue); + LValue valueNotConvertibleToInteger = m_out.doubleNotEqualOrUnordered(value, integerValueConvertedToDouble); + speculate(Overflow, FormattedValue(ValueFormatDouble, value), m_node, valueNotConvertibleToInteger); + + if (shouldCheckNegativeZero) { + LBasicBlock valueIsZero = FTL_NEW_BLOCK(m_out, ("ConvertDoubleToInt32 on zero")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("ConvertDoubleToInt32 continuation")); + m_out.branch(m_out.isZero32(integerValue), unsure(valueIsZero), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(valueIsZero, continuation); + + LValue doubleBitcastToInt64 = m_out.bitCast(value, m_out.int64); + LValue signBitSet = m_out.lessThan(doubleBitcastToInt64, m_out.constInt64(0)); + + speculate(NegativeZero, FormattedValue(ValueFormatDouble, value), m_node, signBitSet); + m_out.jump(continuation); + m_out.appendTo(continuation, lastNext); + } + return integerValue; + } + + LValue isNumber(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecFullNumber)) + return proven; + return isNotCellOrMisc(jsValue); + } + LValue isNotNumber(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecFullNumber)) + return proven; + return isCellOrMisc(jsValue); + } + + LValue isNotCell(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecCell)) + return proven; + return m_out.testNonZero64(jsValue, m_tagMask); + } + + LValue isCell(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecCell)) + return proven; + return m_out.testIsZero64(jsValue, m_tagMask); + } + + LValue isNotMisc(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecMisc)) + return proven; + return m_out.above(value, m_out.constInt64(TagBitTypeOther | TagBitBool | TagBitUndefined)); + } + + LValue isMisc(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecMisc)) + return proven; + return m_out.bitNot(isNotMisc(value)); + } + + LValue isNotBoolean(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecBoolean)) + return proven; + return m_out.testNonZero64( + m_out.bitXor(jsValue, m_out.constInt64(ValueFalse)), + m_out.constInt64(~1)); + } + LValue isBoolean(LValue jsValue, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecBoolean)) + return proven; + return m_out.bitNot(isNotBoolean(jsValue)); + } + LValue unboxBoolean(LValue jsValue) + { + // We want to use a cast that guarantees that LLVM knows that even the integer + // value is just 0 or 1. But for now we do it the dumb way. + return m_out.notZero64(m_out.bitAnd(jsValue, m_out.constInt64(1))); + } + LValue boxBoolean(LValue value) + { + return m_out.select( + value, m_out.constInt64(ValueTrue), m_out.constInt64(ValueFalse)); + } + + LValue isNotOther(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, ~SpecOther)) + return proven; + return m_out.notEqual( + m_out.bitAnd(value, m_out.constInt64(~TagBitUndefined)), + m_out.constInt64(ValueNull)); + } + LValue isOther(LValue value, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type, SpecOther)) + return proven; + return m_out.equal( + m_out.bitAnd(value, m_out.constInt64(~TagBitUndefined)), + m_out.constInt64(ValueNull)); + } + + LValue isProvenValue(SpeculatedType provenType, SpeculatedType wantedType) + { + if (!(provenType & ~wantedType)) + return m_out.booleanTrue; + if (!(provenType & wantedType)) + return m_out.booleanFalse; + return nullptr; + } + + void speculate(Edge edge) + { + switch (edge.useKind()) { + case UntypedUse: + break; + case KnownInt32Use: + case KnownStringUse: + case DoubleRepUse: + case Int52RepUse: + ASSERT(!m_interpreter.needsTypeCheck(edge)); + break; + case Int32Use: + speculateInt32(edge); + break; + case CellUse: + speculateCell(edge); + break; + case KnownCellUse: + ASSERT(!m_interpreter.needsTypeCheck(edge)); + break; + case MachineIntUse: + speculateMachineInt(edge); + break; + case ObjectUse: + speculateObject(edge); + break; + case FunctionUse: + speculateFunction(edge); + break; + case ObjectOrOtherUse: + speculateObjectOrOther(edge); + break; + case FinalObjectUse: + speculateFinalObject(edge); + break; + case StringUse: + speculateString(edge); + break; + case StringIdentUse: + speculateStringIdent(edge); + break; + case SymbolUse: + speculateSymbol(edge); + break; + case StringObjectUse: + speculateStringObject(edge); + break; + case StringOrStringObjectUse: + speculateStringOrStringObject(edge); + break; + case NumberUse: + speculateNumber(edge); + break; + case RealNumberUse: + speculateRealNumber(edge); + break; + case DoubleRepRealUse: + speculateDoubleRepReal(edge); + break; + case DoubleRepMachineIntUse: + speculateDoubleRepMachineInt(edge); + break; + case BooleanUse: + speculateBoolean(edge); + break; + case NotStringVarUse: + speculateNotStringVar(edge); + break; + case NotCellUse: + speculateNotCell(edge); + break; + case OtherUse: + speculateOther(edge); + break; + case MiscUse: + speculateMisc(edge); + break; + default: + DFG_CRASH(m_graph, m_node, "Unsupported speculation use kind"); + } + } + + void speculate(Node*, Edge edge) + { + speculate(edge); + } + + void speculateInt32(Edge edge) + { + lowInt32(edge); + } + + void speculateCell(Edge edge) + { + lowCell(edge); + } + + void speculateMachineInt(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + jsValueToStrictInt52(edge, lowJSValue(edge, ManualOperandSpeculation)); + } + + LValue isObject(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecObject)) + return proven; + return m_out.aboveOrEqual( + m_out.load8(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt8(ObjectType)); + } + + LValue isNotObject(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecObject)) + return proven; + return m_out.below( + m_out.load8(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt8(ObjectType)); + } + + LValue isNotString(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecString)) + return proven; + return m_out.notEqual( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().stringStructure->id())); + } + + LValue isString(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecString)) + return proven; + return m_out.equal( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().stringStructure->id())); + } + + LValue isNotSymbol(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecSymbol)) + return proven; + return m_out.notEqual( + m_out.load32(cell, m_heaps.JSCell_structureID), + m_out.constInt32(vm().symbolStructure->id())); + } + + LValue isArrayType(LValue cell, ArrayMode arrayMode) + { + switch (arrayMode.type()) { + case Array::Int32: + case Array::Double: + case Array::Contiguous: { + LValue indexingType = m_out.load8(cell, m_heaps.JSCell_indexingType); + + switch (arrayMode.arrayClass()) { + case Array::OriginalArray: + DFG_CRASH(m_graph, m_node, "Unexpected original array"); + return 0; + + case Array::Array: + return m_out.equal( + m_out.bitAnd(indexingType, m_out.constInt8(IsArray | IndexingShapeMask)), + m_out.constInt8(IsArray | arrayMode.shapeMask())); + + case Array::NonArray: + case Array::OriginalNonArray: + return m_out.equal( + m_out.bitAnd(indexingType, m_out.constInt8(IsArray | IndexingShapeMask)), + m_out.constInt8(arrayMode.shapeMask())); + + case Array::PossiblyArray: + return m_out.equal( + m_out.bitAnd(indexingType, m_out.constInt8(IndexingShapeMask)), + m_out.constInt8(arrayMode.shapeMask())); + } + + DFG_CRASH(m_graph, m_node, "Corrupt array class"); + } + + case Array::DirectArguments: + return m_out.equal( + m_out.load8(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt8(DirectArgumentsType)); + + case Array::ScopedArguments: + return m_out.equal( + m_out.load8(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt8(ScopedArgumentsType)); + + default: + return m_out.equal( + m_out.load8(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt8(typeForTypedArrayType(arrayMode.typedArrayType()))); + } + } + + LValue isFunction(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, SpecFunction)) + return proven; + return isType(cell, JSFunctionType); + } + LValue isNotFunction(LValue cell, SpeculatedType type = SpecFullTop) + { + if (LValue proven = isProvenValue(type & SpecCell, ~SpecFunction)) + return proven; + return isNotType(cell, JSFunctionType); + } + + LValue isExoticForTypeof(LValue cell, SpeculatedType type = SpecFullTop) + { + if (!(type & SpecObjectOther)) + return m_out.booleanFalse; + return m_out.testNonZero8( + m_out.load8(cell, m_heaps.JSCell_typeInfoFlags), + m_out.constInt8(MasqueradesAsUndefined | TypeOfShouldCallGetCallData)); + } + + LValue isType(LValue cell, JSType type) + { + return m_out.equal( + m_out.load8(cell, m_heaps.JSCell_typeInfoType), + m_out.constInt8(type)); + } + + LValue isNotType(LValue cell, JSType type) + { + return m_out.bitNot(isType(cell, type)); + } + + void speculateObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecObject, isNotObject(cell)); + } + + void speculateObject(Edge edge) + { + speculateObject(edge, lowCell(edge)); + } + + void speculateFunction(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecFunction, isNotFunction(cell)); + } + + void speculateFunction(Edge edge) + { + speculateFunction(edge, lowCell(edge)); + } + + void speculateObjectOrOther(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + + LBasicBlock cellCase = FTL_NEW_BLOCK(m_out, ("speculateObjectOrOther cell case")); + LBasicBlock primitiveCase = FTL_NEW_BLOCK(m_out, ("speculateObjectOrOther primitive case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("speculateObjectOrOther continuation")); + + m_out.branch(isNotCell(value, provenType(edge)), unsure(primitiveCase), unsure(cellCase)); + + LBasicBlock lastNext = m_out.appendTo(cellCase, primitiveCase); + + FTL_TYPE_CHECK( + jsValueValue(value), edge, (~SpecCell) | SpecObject, isNotObject(value)); + + m_out.jump(continuation); + + m_out.appendTo(primitiveCase, continuation); + + FTL_TYPE_CHECK( + jsValueValue(value), edge, SpecCell | SpecOther, isNotOther(value)); + + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateFinalObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK( + jsValueValue(cell), edge, SpecFinalObject, isNotType(cell, FinalObjectType)); + } + + void speculateFinalObject(Edge edge) + { + speculateFinalObject(edge, lowCell(edge)); + } + + void speculateString(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecString | ~SpecCell, isNotString(cell)); + } + + void speculateString(Edge edge) + { + speculateString(edge, lowCell(edge)); + } + + void speculateStringIdent(Edge edge, LValue string, LValue stringImpl) + { + if (!m_interpreter.needsTypeCheck(edge, SpecStringIdent | ~SpecString)) + return; + + speculate(BadType, jsValueValue(string), edge.node(), m_out.isNull(stringImpl)); + speculate( + BadType, jsValueValue(string), edge.node(), + m_out.testIsZero32( + m_out.load32(stringImpl, m_heaps.StringImpl_hashAndFlags), + m_out.constInt32(StringImpl::flagIsAtomic()))); + m_interpreter.filter(edge, SpecStringIdent | ~SpecString); + } + + void speculateStringIdent(Edge edge) + { + lowStringIdent(edge); + } + + void speculateStringObject(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge, SpecStringObject)) + return; + + speculateStringObjectForCell(edge, lowCell(edge)); + m_interpreter.filter(edge, SpecStringObject); + } + + void speculateStringOrStringObject(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge, SpecString | SpecStringObject)) + return; + + LBasicBlock notString = FTL_NEW_BLOCK(m_out, ("Speculate StringOrStringObject not string case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("Speculate StringOrStringObject continuation")); + + LValue structureID = m_out.load32(lowCell(edge), m_heaps.JSCell_structureID); + m_out.branch( + m_out.equal(structureID, m_out.constInt32(vm().stringStructure->id())), + unsure(continuation), unsure(notString)); + + LBasicBlock lastNext = m_out.appendTo(notString, continuation); + speculateStringObjectForStructureID(edge, structureID); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + + m_interpreter.filter(edge, SpecString | SpecStringObject); + } + + void speculateStringObjectForCell(Edge edge, LValue cell) + { + speculateStringObjectForStructureID(edge, m_out.load32(cell, m_heaps.JSCell_structureID)); + } + + void speculateStringObjectForStructureID(Edge edge, LValue structureID) + { + Structure* stringObjectStructure = + m_graph.globalObjectFor(m_node->origin.semantic)->stringObjectStructure(); + + if (abstractStructure(edge).isSubsetOf(StructureSet(stringObjectStructure))) + return; + + speculate( + NotStringObject, noValue(), 0, + m_out.notEqual(structureID, weakStructureID(stringObjectStructure))); + } + + void speculateSymbol(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecSymbol | ~SpecCell, isNotSymbol(cell)); + } + + void speculateSymbol(Edge edge) + { + speculateSymbol(edge, lowCell(edge)); + } + + void speculateNonNullObject(Edge edge, LValue cell) + { + FTL_TYPE_CHECK(jsValueValue(cell), edge, SpecObject, isNotObject(cell)); + if (masqueradesAsUndefinedWatchpointIsStillValid()) + return; + + speculate( + BadType, jsValueValue(cell), edge.node(), + m_out.testNonZero8( + m_out.load8(cell, m_heaps.JSCell_typeInfoFlags), + m_out.constInt8(MasqueradesAsUndefined))); + } + + void speculateNumber(Edge edge) + { + LValue value = lowJSValue(edge, ManualOperandSpeculation); + FTL_TYPE_CHECK(jsValueValue(value), edge, SpecBytecodeNumber, isNotNumber(value)); + } + + void speculateRealNumber(Edge edge) + { + // Do an early return here because lowDouble() can create a lot of control flow. + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + LValue doubleValue = unboxDouble(value); + + LBasicBlock intCase = FTL_NEW_BLOCK(m_out, ("speculateRealNumber int case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("speculateRealNumber continuation")); + + m_out.branch( + m_out.doubleEqual(doubleValue, doubleValue), + usually(continuation), rarely(intCase)); + + LBasicBlock lastNext = m_out.appendTo(intCase, continuation); + + typeCheck( + jsValueValue(value), m_node->child1(), SpecBytecodeRealNumber, + isNotInt32(value, provenType(m_node->child1()) & ~SpecFullDouble)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateDoubleRepReal(Edge edge) + { + // Do an early return here because lowDouble() can create a lot of control flow. + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowDouble(edge); + FTL_TYPE_CHECK( + doubleValue(value), edge, SpecDoubleReal, + m_out.doubleNotEqualOrUnordered(value, value)); + } + + void speculateDoubleRepMachineInt(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + doubleToStrictInt52(edge, lowDouble(edge)); + } + + void speculateBoolean(Edge edge) + { + lowBoolean(edge); + } + + void speculateNotStringVar(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge, ~SpecStringVar)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + + LBasicBlock isCellCase = FTL_NEW_BLOCK(m_out, ("Speculate NotStringVar is cell case")); + LBasicBlock isStringCase = FTL_NEW_BLOCK(m_out, ("Speculate NotStringVar is string case")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("Speculate NotStringVar continuation")); + + m_out.branch(isCell(value, provenType(edge)), unsure(isCellCase), unsure(continuation)); + + LBasicBlock lastNext = m_out.appendTo(isCellCase, isStringCase); + m_out.branch(isString(value, provenType(edge)), unsure(isStringCase), unsure(continuation)); + + m_out.appendTo(isStringCase, continuation); + speculateStringIdent(edge, value, m_out.loadPtr(value, m_heaps.JSString_value)); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); + } + + void speculateNotCell(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + typeCheck(jsValueValue(value), edge, ~SpecCell, isCell(value)); + } + + void speculateOther(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + typeCheck(jsValueValue(value), edge, SpecOther, isNotOther(value)); + } + + void speculateMisc(Edge edge) + { + if (!m_interpreter.needsTypeCheck(edge)) + return; + + LValue value = lowJSValue(edge, ManualOperandSpeculation); + typeCheck(jsValueValue(value), edge, SpecMisc, isNotMisc(value)); + } + + bool masqueradesAsUndefinedWatchpointIsStillValid() + { + return m_graph.masqueradesAsUndefinedWatchpointIsStillValid(m_node->origin.semantic); + } + + LValue loadMarkByte(LValue base) + { + return m_out.load8(base, m_heaps.JSCell_gcData); + } + + void emitStoreBarrier(LValue base) + { +#if ENABLE(GGC) + LBasicBlock isMarkedAndNotRemembered = FTL_NEW_BLOCK(m_out, ("Store barrier is marked block")); + LBasicBlock bufferHasSpace = FTL_NEW_BLOCK(m_out, ("Store barrier buffer has space")); + LBasicBlock bufferIsFull = FTL_NEW_BLOCK(m_out, ("Store barrier buffer is full")); + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("Store barrier continuation")); + + // Check the mark byte. + m_out.branch( + m_out.notZero8(loadMarkByte(base)), usually(continuation), rarely(isMarkedAndNotRemembered)); + + // Append to the write barrier buffer. + LBasicBlock lastNext = m_out.appendTo(isMarkedAndNotRemembered, bufferHasSpace); + LValue currentBufferIndex = m_out.load32(m_out.absolute(vm().heap.writeBarrierBuffer().currentIndexAddress())); + LValue bufferCapacity = m_out.constInt32(vm().heap.writeBarrierBuffer().capacity()); + m_out.branch( + m_out.lessThan(currentBufferIndex, bufferCapacity), + usually(bufferHasSpace), rarely(bufferIsFull)); + + // Buffer has space, store to it. + m_out.appendTo(bufferHasSpace, bufferIsFull); + LValue writeBarrierBufferBase = m_out.constIntPtr(vm().heap.writeBarrierBuffer().buffer()); + m_out.storePtr(base, m_out.baseIndex(m_heaps.WriteBarrierBuffer_bufferContents, writeBarrierBufferBase, m_out.zeroExtPtr(currentBufferIndex))); + m_out.store32(m_out.add(currentBufferIndex, m_out.constInt32(1)), m_out.absolute(vm().heap.writeBarrierBuffer().currentIndexAddress())); + m_out.jump(continuation); + + // Buffer is out of space, flush it. + m_out.appendTo(bufferIsFull, continuation); + vmCallNoExceptions(m_out.operation(operationFlushWriteBarrierBuffer), m_callFrame, base); + m_out.jump(continuation); + + m_out.appendTo(continuation, lastNext); +#else + UNUSED_PARAM(base); +#endif + } + + template<typename... Args> + LValue vmCall(LValue function, Args... args) + { + callPreflight(); + LValue result = m_out.call(function, args...); + callCheck(); + return result; + } + + template<typename... Args> + LValue vmCallNoExceptions(LValue function, Args... args) + { + callPreflight(); + LValue result = m_out.call(function, args...); + return result; + } + + void callPreflight(CodeOrigin codeOrigin) + { + m_out.store32( + m_out.constInt32( + CallFrame::Location::encodeAsCodeOriginIndex( + m_ftlState.jitCode->common.addCodeOrigin(codeOrigin))), + tagFor(JSStack::ArgumentCount)); + } + void callPreflight() + { + callPreflight(m_node->origin.semantic); + } + + void callCheck() + { + if (Options::enableExceptionFuzz()) + m_out.call(m_out.operation(operationExceptionFuzz)); + + LBasicBlock continuation = FTL_NEW_BLOCK(m_out, ("Exception check continuation")); + + LValue exception = m_out.load64(m_out.absolute(vm().addressOfException())); + + m_out.branch( + m_out.notZero64(exception), rarely(m_handleExceptions), usually(continuation)); + + m_out.appendTo(continuation); + } + + LBasicBlock lowBlock(BasicBlock* block) + { + return m_blocks.get(block); + } + + void appendOSRExit( + ExitKind kind, FormattedValue lowValue, Node* highValue, LValue failCondition) + { + if (verboseCompilationEnabled()) { + dataLog(" OSR exit #", m_ftlState.jitCode->osrExit.size(), " with availability: ", availabilityMap(), "\n"); + if (!m_availableRecoveries.isEmpty()) + dataLog(" Available recoveries: ", listDump(m_availableRecoveries), "\n"); + } + + if (doOSRExitFuzzing()) { + LValue numberOfFuzzChecks = m_out.add( + m_out.load32(m_out.absolute(&g_numberOfOSRExitFuzzChecks)), + m_out.int32One); + + m_out.store32(numberOfFuzzChecks, m_out.absolute(&g_numberOfOSRExitFuzzChecks)); + + if (unsigned atOrAfter = Options::fireOSRExitFuzzAtOrAfter()) { + failCondition = m_out.bitOr( + failCondition, + m_out.aboveOrEqual(numberOfFuzzChecks, m_out.constInt32(atOrAfter))); + } + if (unsigned at = Options::fireOSRExitFuzzAt()) { + failCondition = m_out.bitOr( + failCondition, + m_out.equal(numberOfFuzzChecks, m_out.constInt32(at))); + } + } + + ASSERT(m_ftlState.jitCode->osrExit.size() == m_ftlState.finalizer->osrExit.size()); + + m_ftlState.jitCode->osrExit.append(OSRExit( + kind, lowValue.format(), m_graph.methodOfGettingAValueProfileFor(highValue), + m_codeOriginForExitTarget, m_codeOriginForExitProfile, + availabilityMap().m_locals.numberOfArguments(), + availabilityMap().m_locals.numberOfLocals())); + m_ftlState.finalizer->osrExit.append(OSRExitCompilationInfo()); + + OSRExit& exit = m_ftlState.jitCode->osrExit.last(); + + LBasicBlock lastNext = nullptr; + LBasicBlock continuation = nullptr; + + LBasicBlock failCase = FTL_NEW_BLOCK(m_out, ("OSR exit failCase for ", m_node)); + continuation = FTL_NEW_BLOCK(m_out, ("OSR exit continuation for ", m_node)); + + m_out.branch(failCondition, rarely(failCase), usually(continuation)); + + lastNext = m_out.appendTo(failCase, continuation); + + emitOSRExitCall(exit, lowValue); + + m_out.unreachable(); + + m_out.appendTo(continuation, lastNext); + } + + void emitOSRExitCall(OSRExit& exit, FormattedValue lowValue) + { + ExitArgumentList arguments; + + CodeOrigin codeOrigin = exit.m_codeOrigin; + + buildExitArguments(exit, arguments, lowValue, codeOrigin); + + callStackmap(exit, arguments); + } + + void buildExitArguments( + OSRExit& exit, ExitArgumentList& arguments, FormattedValue lowValue, + CodeOrigin codeOrigin) + { + if (!!lowValue) + arguments.append(lowValue.value()); + + AvailabilityMap availabilityMap = this->availabilityMap(); + availabilityMap.pruneByLiveness(m_graph, codeOrigin); + + HashMap<Node*, ExitTimeObjectMaterialization*> map; + availabilityMap.forEachAvailability( + [&] (Availability availability) { + if (!availability.shouldUseNode()) + return; + + Node* node = availability.node(); + if (!node->isPhantomAllocation()) + return; + + auto result = map.add(node, nullptr); + if (result.isNewEntry) { + result.iterator->value = + exit.m_materializations.add(node->op(), node->origin.semantic); + } + }); + + for (unsigned i = 0; i < exit.m_values.size(); ++i) { + int operand = exit.m_values.operandForIndex(i); + + Availability availability = availabilityMap.m_locals[i]; + + if (Options::validateFTLOSRExitLiveness()) { + DFG_ASSERT( + m_graph, m_node, + (!(availability.isDead() && m_graph.isLiveInBytecode(VirtualRegister(operand), codeOrigin))) || m_graph.m_plan.mode == FTLForOSREntryMode); + } + + exit.m_values[i] = exitValueForAvailability(arguments, map, availability); + } + + for (auto heapPair : availabilityMap.m_heap) { + Node* node = heapPair.key.base(); + ExitTimeObjectMaterialization* materialization = map.get(node); + materialization->add( + heapPair.key.descriptor(), + exitValueForAvailability(arguments, map, heapPair.value)); + } + + if (verboseCompilationEnabled()) { + dataLog(" Exit values: ", exit.m_values, "\n"); + if (!exit.m_materializations.isEmpty()) { + dataLog(" Materializations: \n"); + for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) + dataLog(" ", pointerDump(materialization), "\n"); + } + } + } + + void callStackmap(OSRExit& exit, ExitArgumentList& arguments) + { + exit.m_stackmapID = m_stackmapIDs++; + arguments.insert(0, m_out.constInt32(MacroAssembler::maxJumpReplacementSize())); + arguments.insert(0, m_out.constInt64(exit.m_stackmapID)); + + m_out.call(m_out.stackmapIntrinsic(), arguments); + } + + ExitValue exitValueForAvailability( + ExitArgumentList& arguments, const HashMap<Node*, ExitTimeObjectMaterialization*>& map, + Availability availability) + { + FlushedAt flush = availability.flushedAt(); + switch (flush.format()) { + case DeadFlush: + case ConflictingFlush: + if (availability.hasNode()) + return exitValueForNode(arguments, map, availability.node()); + + // This means that the value is dead. It could be dead in bytecode or it could have + // been killed by our DCE, which can sometimes kill things even if they were live in + // bytecode. + return ExitValue::dead(); + + case FlushedJSValue: + case FlushedCell: + case FlushedBoolean: + return ExitValue::inJSStack(flush.virtualRegister()); + + case FlushedInt32: + return ExitValue::inJSStackAsInt32(flush.virtualRegister()); + + case FlushedInt52: + return ExitValue::inJSStackAsInt52(flush.virtualRegister()); + + case FlushedDouble: + return ExitValue::inJSStackAsDouble(flush.virtualRegister()); + } + + DFG_CRASH(m_graph, m_node, "Invalid flush format"); + return ExitValue::dead(); + } + + ExitValue exitValueForNode( + ExitArgumentList& arguments, const HashMap<Node*, ExitTimeObjectMaterialization*>& map, + Node* node) + { + ASSERT(node->shouldGenerate()); + ASSERT(node->hasResult()); + + if (node) { + switch (node->op()) { + case BottomValue: + // This might arise in object materializations. I actually doubt that it would, + // but it seems worthwhile to be conservative. + return ExitValue::dead(); + + case JSConstant: + case Int52Constant: + case DoubleConstant: + return ExitValue::constant(node->asJSValue()); + + default: + if (node->isPhantomAllocation()) + return ExitValue::materializeNewObject(map.get(node)); + break; + } + } + + for (unsigned i = 0; i < m_availableRecoveries.size(); ++i) { + AvailableRecovery recovery = m_availableRecoveries[i]; + if (recovery.node() != node) + continue; + + ExitValue result = ExitValue::recovery( + recovery.opcode(), arguments.size(), arguments.size() + 1, + recovery.format()); + arguments.append(recovery.left()); + arguments.append(recovery.right()); + return result; + } + + LoweredNodeValue value = m_int32Values.get(node); + if (isValid(value)) + return exitArgument(arguments, ValueFormatInt32, value.value()); + + value = m_int52Values.get(node); + if (isValid(value)) + return exitArgument(arguments, ValueFormatInt52, value.value()); + + value = m_strictInt52Values.get(node); + if (isValid(value)) + return exitArgument(arguments, ValueFormatStrictInt52, value.value()); + + value = m_booleanValues.get(node); + if (isValid(value)) { + LValue valueToPass = m_out.zeroExt(value.value(), m_out.int32); + return exitArgument(arguments, ValueFormatBoolean, valueToPass); + } + + value = m_jsValueValues.get(node); + if (isValid(value)) + return exitArgument(arguments, ValueFormatJSValue, value.value()); + + value = m_doubleValues.get(node); + if (isValid(value)) + return exitArgument(arguments, ValueFormatDouble, value.value()); + + DFG_CRASH(m_graph, m_node, toCString("Cannot find value for node: ", node).data()); + return ExitValue::dead(); + } + + ExitValue exitArgument(ExitArgumentList& arguments, ValueFormat format, LValue value) + { + ExitValue result = ExitValue::exitArgument(ExitArgument(format, arguments.size())); + arguments.append(value); + return result; + } + + bool doesKill(Edge edge) + { + if (edge.doesNotKill()) + return false; + + if (edge->hasConstant()) + return false; + + return true; + } + + void addAvailableRecovery( + Node* node, RecoveryOpcode opcode, LValue left, LValue right, ValueFormat format) + { + m_availableRecoveries.append(AvailableRecovery(node, opcode, left, right, format)); + } + + void addAvailableRecovery( + Edge edge, RecoveryOpcode opcode, LValue left, LValue right, ValueFormat format) + { + addAvailableRecovery(edge.node(), opcode, left, right, format); + } + + void setInt32(Node* node, LValue value) + { + m_int32Values.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setInt52(Node* node, LValue value) + { + m_int52Values.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setStrictInt52(Node* node, LValue value) + { + m_strictInt52Values.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setInt52(Node* node, LValue value, Int52Kind kind) + { + switch (kind) { + case Int52: + setInt52(node, value); + return; + + case StrictInt52: + setStrictInt52(node, value); + return; + } + + DFG_CRASH(m_graph, m_node, "Corrupt int52 kind"); + } + void setJSValue(Node* node, LValue value) + { + m_jsValueValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setBoolean(Node* node, LValue value) + { + m_booleanValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setStorage(Node* node, LValue value) + { + m_storageValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + void setDouble(Node* node, LValue value) + { + m_doubleValues.set(node, LoweredNodeValue(value, m_highBlock)); + } + + void setInt32(LValue value) + { + setInt32(m_node, value); + } + void setInt52(LValue value) + { + setInt52(m_node, value); + } + void setStrictInt52(LValue value) + { + setStrictInt52(m_node, value); + } + void setInt52(LValue value, Int52Kind kind) + { + setInt52(m_node, value, kind); + } + void setJSValue(LValue value) + { + setJSValue(m_node, value); + } + void setBoolean(LValue value) + { + setBoolean(m_node, value); + } + void setStorage(LValue value) + { + setStorage(m_node, value); + } + void setDouble(LValue value) + { + setDouble(m_node, value); + } + + bool isValid(const LoweredNodeValue& value) + { + if (!value) + return false; + if (!m_graph.m_dominators.dominates(value.block(), m_highBlock)) + return false; + return true; + } + + void addWeakReference(JSCell* target) + { + m_graph.m_plan.weakReferences.addLazily(target); + } + + LValue loadStructure(LValue value) + { + LValue tableIndex = m_out.load32(value, m_heaps.JSCell_structureID); + LValue tableBase = m_out.loadPtr( + m_out.absolute(vm().heap.structureIDTable().base())); + TypedPointer address = m_out.baseIndex( + m_heaps.structureTable, tableBase, m_out.zeroExtPtr(tableIndex)); + return m_out.loadPtr(address); + } + + LValue weakPointer(JSCell* pointer) + { + addWeakReference(pointer); + return m_out.constIntPtr(pointer); + } + + LValue weakStructureID(Structure* structure) + { + addWeakReference(structure); + return m_out.constInt32(structure->id()); + } + + LValue weakStructure(Structure* structure) + { + return weakPointer(structure); + } + + TypedPointer addressFor(LValue base, int operand, ptrdiff_t offset = 0) + { + return m_out.address(base, m_heaps.variables[operand], offset); + } + TypedPointer payloadFor(LValue base, int operand) + { + return addressFor(base, operand, PayloadOffset); + } + TypedPointer tagFor(LValue base, int operand) + { + return addressFor(base, operand, TagOffset); + } + TypedPointer addressFor(int operand, ptrdiff_t offset = 0) + { + return addressFor(VirtualRegister(operand), offset); + } + TypedPointer addressFor(VirtualRegister operand, ptrdiff_t offset = 0) + { + if (operand.isLocal()) + return addressFor(m_captured, operand.offset(), offset); + return addressFor(m_callFrame, operand.offset(), offset); + } + TypedPointer payloadFor(int operand) + { + return payloadFor(VirtualRegister(operand)); + } + TypedPointer payloadFor(VirtualRegister operand) + { + return addressFor(operand, PayloadOffset); + } + TypedPointer tagFor(int operand) + { + return tagFor(VirtualRegister(operand)); + } + TypedPointer tagFor(VirtualRegister operand) + { + return addressFor(operand, TagOffset); + } + + AbstractValue abstractValue(Node* node) + { + return m_state.forNode(node); + } + AbstractValue abstractValue(Edge edge) + { + return abstractValue(edge.node()); + } + + SpeculatedType provenType(Node* node) + { + return abstractValue(node).m_type; + } + SpeculatedType provenType(Edge edge) + { + return provenType(edge.node()); + } + + JSValue provenValue(Node* node) + { + return abstractValue(node).m_value; + } + JSValue provenValue(Edge edge) + { + return provenValue(edge.node()); + } + + StructureAbstractValue abstractStructure(Node* node) + { + return abstractValue(node).m_structure; + } + StructureAbstractValue abstractStructure(Edge edge) + { + return abstractStructure(edge.node()); + } + + void crash() + { + crash(m_highBlock->index, m_node->index()); + } + void crash(BlockIndex blockIndex, unsigned nodeIndex) + { +#if ASSERT_DISABLED + m_out.call(m_out.operation(ftlUnreachable)); + UNUSED_PARAM(blockIndex); + UNUSED_PARAM(nodeIndex); +#else + m_out.call( + m_out.intToPtr( + m_out.constIntPtr(ftlUnreachable), + pointerType( + functionType( + m_out.voidType, m_out.intPtr, m_out.int32, m_out.int32))), + m_out.constIntPtr(codeBlock()), m_out.constInt32(blockIndex), + m_out.constInt32(nodeIndex)); +#endif + m_out.unreachable(); + } + + AvailabilityMap& availabilityMap() { return m_availabilityCalculator.m_availability; } + + VM& vm() { return m_graph.m_vm; } + CodeBlock* codeBlock() { return m_graph.m_codeBlock; } + + Graph& m_graph; + State& m_ftlState; + AbstractHeapRepository m_heaps; + Output m_out; + + LBasicBlock m_prologue; + LBasicBlock m_handleExceptions; + HashMap<BasicBlock*, LBasicBlock> m_blocks; + + LValue m_callFrame; + LValue m_captured; + LValue m_tagTypeNumber; + LValue m_tagMask; + + HashMap<Node*, LoweredNodeValue> m_int32Values; + HashMap<Node*, LoweredNodeValue> m_strictInt52Values; + HashMap<Node*, LoweredNodeValue> m_int52Values; + HashMap<Node*, LoweredNodeValue> m_jsValueValues; + HashMap<Node*, LoweredNodeValue> m_booleanValues; + HashMap<Node*, LoweredNodeValue> m_storageValues; + HashMap<Node*, LoweredNodeValue> m_doubleValues; + + // This is a bit of a hack. It prevents LLVM from having to do CSE on loading of arguments. + // It's nice to have these optimizations on our end because we can guarantee them a bit better. + // Probably also saves LLVM compile time. + HashMap<Node*, LValue> m_loadedArgumentValues; + + HashMap<Node*, LValue> m_phis; + + LocalOSRAvailabilityCalculator m_availabilityCalculator; + + Vector<AvailableRecovery, 3> m_availableRecoveries; + + InPlaceAbstractState m_state; + AbstractInterpreter<InPlaceAbstractState> m_interpreter; + BasicBlock* m_highBlock; + BasicBlock* m_nextHighBlock; + LBasicBlock m_nextLowBlock; + + CodeOrigin m_codeOriginForExitTarget; + CodeOrigin m_codeOriginForExitProfile; + unsigned m_nodeIndex; + Node* m_node; + + uint32_t m_stackmapIDs; + unsigned m_tbaaKind; + unsigned m_tbaaStructKind; +}; + +} // anonymous namespace + +void lowerDFGToLLVM(State& state) +{ + LowerDFGToLLVM lowering(state); + lowering.lower(); +} + +} } // namespace JSC::FTL + +#endif // ENABLE(FTL_JIT) + |