diff options
author | Lorry Tar Creator <lorry-tar-importer@lorry> | 2015-10-15 09:45:50 +0000 |
---|---|---|
committer | Lorry Tar Creator <lorry-tar-importer@lorry> | 2015-10-15 09:45:50 +0000 |
commit | e15dd966d523731101f70ccf768bba12435a0208 (patch) | |
tree | ae9cb828a24ded2585a41af3f21411523b47897d /Source/JavaScriptCore/jit/JITArithmetic.cpp | |
download | WebKitGtk-tarball-e15dd966d523731101f70ccf768bba12435a0208.tar.gz |
webkitgtk-2.10.2webkitgtk-2.10.2
Diffstat (limited to 'Source/JavaScriptCore/jit/JITArithmetic.cpp')
-rw-r--r-- | Source/JavaScriptCore/jit/JITArithmetic.cpp | 1002 |
1 files changed, 1002 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/jit/JITArithmetic.cpp b/Source/JavaScriptCore/jit/JITArithmetic.cpp new file mode 100644 index 000000000..167e41301 --- /dev/null +++ b/Source/JavaScriptCore/jit/JITArithmetic.cpp @@ -0,0 +1,1002 @@ +/* + * Copyright (C) 2008 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "config.h" + +#if ENABLE(JIT) +#include "JIT.h" + +#include "CodeBlock.h" +#include "JITInlines.h" +#include "JITOperations.h" +#include "JITStubs.h" +#include "JSArray.h" +#include "JSFunction.h" +#include "Interpreter.h" +#include "JSCInlines.h" +#include "ResultType.h" +#include "SamplingTool.h" +#include "SlowPathCall.h" + + +namespace JSC { + +void JIT::emit_op_jless(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jless, op1, op2, target, LessThan); +} + +void JIT::emit_op_jlesseq(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jlesseq, op1, op2, target, LessThanOrEqual); +} + +void JIT::emit_op_jgreater(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jgreater, op1, op2, target, GreaterThan); +} + +void JIT::emit_op_jgreatereq(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jgreatereq, op1, op2, target, GreaterThanOrEqual); +} + +void JIT::emit_op_jnless(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jnless, op1, op2, target, GreaterThanOrEqual); +} + +void JIT::emit_op_jnlesseq(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jnlesseq, op1, op2, target, GreaterThan); +} + +void JIT::emit_op_jngreater(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jngreater, op1, op2, target, LessThanOrEqual); +} + +void JIT::emit_op_jngreatereq(Instruction* currentInstruction) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJump(op_jngreatereq, op1, op2, target, LessThan); +} + +void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThan, operationCompareLess, false, iter); +} + +void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqual, operationCompareLessEq, false, iter); +} + +void JIT::emitSlow_op_jgreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThan, operationCompareGreater, false, iter); +} + +void JIT::emitSlow_op_jgreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqual, operationCompareGreaterEq, false, iter); +} + +void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrEqualOrUnordered, operationCompareLess, true, iter); +} + +void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleGreaterThanOrUnordered, operationCompareLessEq, true, iter); +} + +void JIT::emitSlow_op_jngreater(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrEqualOrUnordered, operationCompareGreater, true, iter); +} + +void JIT::emitSlow_op_jngreatereq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[1].u.operand; + int op2 = currentInstruction[2].u.operand; + unsigned target = currentInstruction[3].u.operand; + + emit_compareAndJumpSlow(op1, op2, target, DoubleLessThanOrUnordered, operationCompareGreaterEq, true, iter); +} + +#if USE(JSVALUE64) + +void JIT::emit_op_negate(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int src = currentInstruction[2].u.operand; + + emitGetVirtualRegister(src, regT0); + + Jump srcNotInt = emitJumpIfNotImmediateInteger(regT0); + addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff))); + neg32(regT0); + emitFastArithReTagImmediate(regT0, regT0); + + Jump end = jump(); + + srcNotInt.link(this); + emitJumpSlowCaseIfNotImmediateNumber(regT0); + + move(TrustedImm64((int64_t)0x8000000000000000ull), regT1); + xor64(regT1, regT0); + + end.link(this); + emitPutVirtualRegister(dst); +} + +void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); // 0x7fffffff check + linkSlowCase(iter); // double check + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_negate); + slowPathCall.call(); +} + +void JIT::emit_op_lshift(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + + emitGetVirtualRegisters(op1, regT0, op2, regT2); + // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent. + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + emitFastArithImmToInt(regT0); + emitFastArithImmToInt(regT2); + lshift32(regT2, regT0); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_lshift); + slowPathCall.call(); +} + +void JIT::emit_op_rshift(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) { + // isOperandConstantImmediateInt(op2) => 1 SlowCase + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + // Mask with 0x1f as per ecma-262 11.7.2 step 7. + rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT2); + if (supportsFloatingPointTruncate()) { + Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); + // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases + addSlowCase(emitJumpIfNotImmediateNumber(regT0)); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); + lhsIsInt.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } else { + // !supportsFloatingPoint() => 2 SlowCases + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } + emitFastArithImmToInt(regT2); + rshift32(regT2, regT0); + } + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) + linkSlowCase(iter); + + else { + if (supportsFloatingPointTruncate()) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + } + } + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_rshift); + slowPathCall.call(); +} + +void JIT::emit_op_urshift(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) { + // isOperandConstantImmediateInt(op2) => 1 SlowCase + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + // Mask with 0x1f as per ecma-262 11.7.2 step 7. + urshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT2); + if (supportsFloatingPointTruncate()) { + Jump lhsIsInt = emitJumpIfImmediateInteger(regT0); + // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases + addSlowCase(emitJumpIfNotImmediateNumber(regT0)); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0)); + lhsIsInt.link(this); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } else { + // !supportsFloatingPoint() => 2 SlowCases + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + } + emitFastArithImmToInt(regT2); + urshift32(regT2, regT0); + } + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op2)) + linkSlowCase(iter); + + else { + if (supportsFloatingPointTruncate()) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + } else { + linkSlowCase(iter); + linkSlowCase(iter); + } + } + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_urshift); + slowPathCall.call(); +} + +void JIT::emit_op_unsigned(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); + emitFastArithReTagImmediate(regT0, regT0); + emitPutVirtualRegister(result, regT0); +} + +void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_unsigned); + slowPathCall.call(); +} + +void JIT::emit_compareAndJump(OpcodeID, int op1, int op2, unsigned target, RelationalCondition condition) +{ + // We generate inline code for the following cases in the fast path: + // - int immediate to constant int immediate + // - constant int immediate to int immediate + // - int immediate to int immediate + + if (isOperandConstantImmediateChar(op1)) { + emitGetVirtualRegister(op2, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateChar(op2)) { + emitGetVirtualRegister(op1, regT0); + addSlowCase(emitJumpIfNotJSCell(regT0)); + JumpList failures; + emitLoadCharacterString(regT0, regT0, failures); + addSlowCase(failures); + addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + return; + } + if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t op2imm = getConstantOperandImmediateInt(op2); + addJump(branch32(condition, regT0, Imm32(op2imm)), target); + } else if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + int32_t op1imm = getConstantOperandImmediateInt(op1); + addJump(branch32(commute(condition), regT1, Imm32(op1imm)), target); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + + addJump(branch32(condition, regT0, regT1), target); + } +} + +void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition condition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector<SlowCaseEntry>::iterator& iter) +{ + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jlesseq), OPCODE_LENGTH_op_jlesseq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnless), OPCODE_LENGTH_op_jnless_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jnlesseq), OPCODE_LENGTH_op_jnlesseq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreater), OPCODE_LENGTH_op_jgreater_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jgreatereq), OPCODE_LENGTH_op_jgreatereq_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreater), OPCODE_LENGTH_op_jngreater_equals_op_jless); + COMPILE_ASSERT(OPCODE_LENGTH(op_jless) == OPCODE_LENGTH(op_jngreatereq), OPCODE_LENGTH_op_jngreatereq_equals_op_jless); + + // We generate inline code for the following cases in the slow path: + // - floating-point number to constant int immediate + // - constant int immediate to floating-point number + // - floating-point number to floating-point number. + if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + + emitGetVirtualRegister(op1, argumentGPR0); + emitGetVirtualRegister(op2, argumentGPR1); + callOperation(operation, argumentGPR0, argumentGPR1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + return; + } + + if (isOperandConstantImmediateInt(op2)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + + int32_t op2imm = getConstantOperand(op2).asInt32(); + + move(Imm32(op2imm), regT1); + convertInt32ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + } + + emitGetVirtualRegister(op2, regT1); + callOperation(operation, regT0, regT1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + } else if (isOperandConstantImmediateInt(op1)) { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT1); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT1); + + int32_t op1imm = getConstantOperand(op1).asInt32(); + + move(Imm32(op1imm), regT0); + convertInt32ToDouble(regT0, fpRegT0); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + } + + emitGetVirtualRegister(op1, regT2); + callOperation(operation, regT2, regT1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + } else { + linkSlowCase(iter); + + if (supportsFloatingPoint()) { + Jump fail1 = emitJumpIfNotImmediateNumber(regT0); + Jump fail2 = emitJumpIfNotImmediateNumber(regT1); + Jump fail3 = emitJumpIfImmediateInteger(regT1); + add64(tagTypeNumberRegister, regT0); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT0, fpRegT0); + move64ToDouble(regT1, fpRegT1); + + emitJumpSlowToHot(branchDouble(condition, fpRegT0, fpRegT1), target); + + emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jless)); + + fail1.link(this); + fail2.link(this); + fail3.link(this); + } + + linkSlowCase(iter); + callOperation(operation, regT0, regT1); + emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target); + } +} + +void JIT::emit_op_bitand(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t imm = getConstantOperandImmediateInt(op1); + and64(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + int32_t imm = getConstantOperandImmediateInt(op2); + and64(Imm32(imm), regT0); + if (imm >= 0) + emitFastArithIntToImmNoCheck(regT0, regT0); + } else { + emitGetVirtualRegisters(op1, regT0, op2, regT1); + and64(regT1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + } + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); + + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitand); + slowPathCall.call(); +} + +void JIT::emit_op_inc(Instruction* currentInstruction) +{ + int srcDst = currentInstruction[1].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_inc); + slowPathCall.call(); +} + +void JIT::emit_op_dec(Instruction* currentInstruction) +{ + int srcDst = currentInstruction[1].u.operand; + + emitGetVirtualRegister(srcDst, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); + emitFastArithIntToImmNoCheck(regT0, regT0); + emitPutVirtualRegister(srcDst); +} + +void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_dec); + slowPathCall.call(); +} + +/* ------------------------------ BEGIN: OP_MOD ------------------------------ */ + +#if CPU(X86) || CPU(X86_64) + +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + + // Make sure registers are correct for x86 IDIV instructions. + ASSERT(regT0 == X86Registers::eax); + ASSERT(regT1 == X86Registers::edx); + ASSERT(regT2 == X86Registers::ecx); + + emitGetVirtualRegisters(op1, regT3, op2, regT2); + emitJumpSlowCaseIfNotImmediateInteger(regT3); + emitJumpSlowCaseIfNotImmediateInteger(regT2); + + move(regT3, regT0); + addSlowCase(branchTest32(Zero, regT2)); + Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1)); + addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1))); + denominatorNotNeg1.link(this); + m_assembler.cdq(); + m_assembler.idivl_r(regT2); + Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); + addSlowCase(branchTest32(Zero, regT1)); + numeratorPositive.link(this); + emitFastArithReTagImmediate(regT1, regT0); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod); + slowPathCall.call(); +} + +#else // CPU(X86) || CPU(X86_64) + +void JIT::emit_op_mod(Instruction* currentInstruction) +{ + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod); + slowPathCall.call(); +} + +void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&) +{ + UNREACHABLE_FOR_PLATFORM(); +} + +#endif // CPU(X86) || CPU(X86_64) + +/* ------------------------------ END: OP_MOD ------------------------------ */ + +/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */ + +void JIT::compileBinaryArithOp(OpcodeID opcodeID, int, int op1, int op2, OperandTypes) +{ + emitGetVirtualRegisters(op1, regT0, op2, regT1); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT1); + RareCaseProfile* profile = m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); + if (opcodeID == op_add) + addSlowCase(branchAdd32(Overflow, regT1, regT0)); + else if (opcodeID == op_sub) + addSlowCase(branchSub32(Overflow, regT1, regT0)); + else { + ASSERT(opcodeID == op_mul); + if (shouldEmitProfiling()) { + // We want to be able to measure if this is taking the slow case just + // because of negative zero. If this produces positive zero, then we + // don't want the slow case to be taken because that will throw off + // speculative compilation. + move(regT0, regT2); + addSlowCase(branchMul32(Overflow, regT1, regT2)); + JumpList done; + done.append(branchTest32(NonZero, regT2)); + Jump negativeZero = branch32(LessThan, regT0, TrustedImm32(0)); + done.append(branch32(GreaterThanOrEqual, regT1, TrustedImm32(0))); + negativeZero.link(this); + // We only get here if we have a genuine negative zero. Record this, + // so that the speculative JIT knows that we failed speculation + // because of a negative zero. + add32(TrustedImm32(1), AbsoluteAddress(&profile->m_counter)); + addSlowCase(jump()); + done.link(this); + move(regT2, regT0); + } else { + addSlowCase(branchMul32(Overflow, regT1, regT0)); + addSlowCase(branchTest32(Zero, regT0)); + } + } + emitFastArithIntToImmNoCheck(regT0, regT0); +} + +void JIT::compileBinaryArithOpSlowCase(Instruction* currentInstruction, OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, int result, int op1, int op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase) +{ + // We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset. + COMPILE_ASSERT(((TagTypeNumber + DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0); + + Jump notImm1; + Jump notImm2; + if (op1HasImmediateIntFastCase) { + notImm2 = getSlowCase(iter); + } else if (op2HasImmediateIntFastCase) { + notImm1 = getSlowCase(iter); + } else { + notImm1 = getSlowCase(iter); + notImm2 = getSlowCase(iter); + } + + linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare. + if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number. + linkSlowCase(iter); + + Label stubFunctionCall(this); + + JITSlowPathCall slowPathCall(this, currentInstruction, opcodeID == op_add ? slow_path_add : opcodeID == op_sub ? slow_path_sub : slow_path_mul); + slowPathCall.call(); + Jump end = jump(); + + if (op1HasImmediateIntFastCase) { + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op1, regT1); + convertInt32ToDouble(regT1, fpRegT1); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT2); + } else if (op2HasImmediateIntFastCase) { + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + emitGetVirtualRegister(op2, regT1); + convertInt32ToDouble(regT1, fpRegT1); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT2); + } else { + // if we get here, eax is not an int32, edx not yet checked. + notImm1.link(this); + if (!types.first().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT1); + Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT2); + Jump op2wasInteger = jump(); + + // if we get here, eax IS an int32, edx is not. + notImm2.link(this); + if (!types.second().definitelyIsNumber()) + emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this); + convertInt32ToDouble(regT0, fpRegT1); + op2isDouble.link(this); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT2); + op2wasInteger.link(this); + } + + if (opcodeID == op_add) + addDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_sub) + subDouble(fpRegT2, fpRegT1); + else if (opcodeID == op_mul) + mulDouble(fpRegT2, fpRegT1); + else { + ASSERT(opcodeID == op_div); + divDouble(fpRegT2, fpRegT1); + } + moveDoubleTo64(fpRegT1, regT0); + sub64(tagTypeNumberRegister, regT0); + emitPutVirtualRegister(result, regT0); + + end.link(this); +} + +void JIT::emit_op_add(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + addSlowCase(); + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add); + slowPathCall.call(); + return; + } + + if (isOperandConstantImmediateInt(op1)) { + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op1)), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT0); + } else if (isOperandConstantImmediateInt(op2)) { + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchAdd32(Overflow, regT0, Imm32(getConstantOperandImmediateInt(op2)), regT1)); + emitFastArithIntToImmNoCheck(regT1, regT0); + } else + compileBinaryArithOp(op_add, result, op1, op2, types); + + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + linkDummySlowCase(iter); + return; + } + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1); + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2); + compileBinaryArithOpSlowCase(currentInstruction, op_add, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); +} + +void JIT::emit_op_mul(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + // For now, only plant a fast int case if the constant operand is greater than zero. + int32_t value; + if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) { + // Add a special fast case profile because the DFG JIT will expect one. + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); + emitGetVirtualRegister(op2, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); + emitFastArithReTagImmediate(regT1, regT0); + } else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) { + // Add a special fast case profile because the DFG JIT will expect one. + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); + emitGetVirtualRegister(op1, regT0); + emitJumpSlowCaseIfNotImmediateInteger(regT0); + addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT1)); + emitFastArithReTagImmediate(regT1, regT0); + } else + compileBinaryArithOp(op_mul, result, op1, op2, types); + + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0; + bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0; + compileBinaryArithOpSlowCase(currentInstruction, op_mul, iter, result, op1, op2, types, op1HasImmediateIntFastCase, op2HasImmediateIntFastCase); +} + +void JIT::emit_op_div(Instruction* currentInstruction) +{ + int dst = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + if (isOperandConstantImmediateDouble(op1)) { + emitGetVirtualRegister(op1, regT0); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + } else if (isOperandConstantImmediateInt(op1)) { + emitLoadInt32ToDouble(op1, fpRegT0); + } else { + emitGetVirtualRegister(op1, regT0); + if (!types.first().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT0); + Jump notInt = emitJumpIfNotImmediateInteger(regT0); + convertInt32ToDouble(regT0, fpRegT0); + Jump skipDoubleLoad = jump(); + notInt.link(this); + add64(tagTypeNumberRegister, regT0); + move64ToDouble(regT0, fpRegT0); + skipDoubleLoad.link(this); + } + + if (isOperandConstantImmediateDouble(op2)) { + emitGetVirtualRegister(op2, regT1); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT1); + } else if (isOperandConstantImmediateInt(op2)) { + emitLoadInt32ToDouble(op2, fpRegT1); + } else { + emitGetVirtualRegister(op2, regT1); + if (!types.second().definitelyIsNumber()) + emitJumpSlowCaseIfNotImmediateNumber(regT1); + Jump notInt = emitJumpIfNotImmediateInteger(regT1); + convertInt32ToDouble(regT1, fpRegT1); + Jump skipDoubleLoad = jump(); + notInt.link(this); + add64(tagTypeNumberRegister, regT1); + move64ToDouble(regT1, fpRegT1); + skipDoubleLoad.link(this); + } + divDouble(fpRegT1, fpRegT0); + + // Is the result actually an integer? The DFG JIT would really like to know. If it's + // not an integer, we increment a count. If this together with the slow case counter + // are below threshold then the DFG JIT will compile this division with a specualtion + // that the remainder is zero. + + // As well, there are cases where a double result here would cause an important field + // in the heap to sometimes have doubles in it, resulting in double predictions getting + // propagated to a use site where it might cause damage (such as the index to an array + // access). So if we are DFG compiling anything in the program, we want this code to + // ensure that it produces integers whenever possible. + + JumpList notInteger; + branchConvertDoubleToInt32(fpRegT0, regT0, notInteger, fpRegT1); + // If we've got an integer, we might as well make that the result of the division. + emitFastArithReTagImmediate(regT0, regT0); + Jump isInteger = jump(); + notInteger.link(this); + moveDoubleTo64(fpRegT0, regT0); + Jump doubleZero = branchTest64(Zero, regT0); + add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset)->m_counter)); + sub64(tagTypeNumberRegister, regT0); + Jump trueDouble = jump(); + doubleZero.link(this); + move(tagTypeNumberRegister, regT0); + trueDouble.link(this); + isInteger.link(this); + + emitPutVirtualRegister(dst, regT0); +} + +void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) { + if (!ASSERT_DISABLED) + abortWithReason(JITDivOperandsAreNotNumbers); + return; + } + if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) { + if (!types.first().definitelyIsNumber()) + linkSlowCase(iter); + } + if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) { + if (!types.second().definitelyIsNumber()) + linkSlowCase(iter); + } + // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0. + JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_div); + slowPathCall.call(); +} + +void JIT::emit_op_sub(Instruction* currentInstruction) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOp(op_sub, result, op1, op2, types); + emitPutVirtualRegister(result); +} + +void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) +{ + int result = currentInstruction[1].u.operand; + int op1 = currentInstruction[2].u.operand; + int op2 = currentInstruction[3].u.operand; + OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); + + compileBinaryArithOpSlowCase(currentInstruction, op_sub, iter, result, op1, op2, types, false, false); +} + +/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */ + +#endif // USE(JSVALUE64) + +} // namespace JSC + +#endif // ENABLE(JIT) |