summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/jit/JITArithmetic32_64.cpp
diff options
context:
space:
mode:
authorLorry Tar Creator <lorry-tar-importer@lorry>2016-04-10 09:28:39 +0000
committerLorry Tar Creator <lorry-tar-importer@lorry>2016-04-10 09:28:39 +0000
commit32761a6cee1d0dee366b885b7b9c777e67885688 (patch)
treed6bec92bebfb216f4126356e55518842c2f476a1 /Source/JavaScriptCore/jit/JITArithmetic32_64.cpp
parenta4e969f4965059196ca948db781e52f7cfebf19e (diff)
downloadWebKitGtk-tarball-32761a6cee1d0dee366b885b7b9c777e67885688.tar.gz
webkitgtk-2.4.11webkitgtk-2.4.11
Diffstat (limited to 'Source/JavaScriptCore/jit/JITArithmetic32_64.cpp')
-rw-r--r--Source/JavaScriptCore/jit/JITArithmetic32_64.cpp781
1 files changed, 767 insertions, 14 deletions
diff --git a/Source/JavaScriptCore/jit/JITArithmetic32_64.cpp b/Source/JavaScriptCore/jit/JITArithmetic32_64.cpp
index 1fa14563a..53ac73894 100644
--- a/Source/JavaScriptCore/jit/JITArithmetic32_64.cpp
+++ b/Source/JavaScriptCore/jit/JITArithmetic32_64.cpp
@@ -1,5 +1,5 @@
/*
-* Copyright (C) 2008, 2015 Apple Inc. All rights reserved.
+* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@@ -31,10 +31,11 @@
#include "CodeBlock.h"
#include "JITInlines.h"
+#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
-#include "JSCInlines.h"
+#include "Operations.h"
#include "ResultType.h"
#include "SamplingTool.h"
#include "SlowPathCall.h"
@@ -42,13 +43,47 @@
namespace JSC {
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int src = currentInstruction[2].u.operand;
+
+ emitLoad(src, regT1, regT0);
+
+ Jump srcNotInt = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
+ addSlowCase(branchTest32(Zero, regT0, TrustedImm32(0x7fffffff)));
+ neg32(regT0);
+ emitStoreInt32(dst, regT0, (dst == src));
+
+ Jump end = jump();
+
+ srcNotInt.link(this);
+ addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
+
+ xor32(TrustedImm32(1 << 31), regT1);
+ store32(regT1, tagFor(dst));
+ if (dst != src)
+ store32(regT0, payloadFor(dst));
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ linkSlowCase(iter); // 0x7fffffff check
+ linkSlowCase(iter); // double check
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_negate);
+ slowPathCall.call();
+}
+
void JIT::emit_compareAndJump(OpcodeID opcode, int op1, int op2, unsigned target, RelationalCondition condition)
{
JumpList notInt32Op1;
JumpList notInt32Op2;
// Character less.
- if (isOperandConstantChar(op1)) {
+ if (isOperandConstantImmediateChar(op1)) {
emitLoad(op2, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
JumpList failures;
@@ -57,7 +92,7 @@ void JIT::emit_compareAndJump(OpcodeID opcode, int op1, int op2, unsigned target
addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
- if (isOperandConstantChar(op2)) {
+ if (isOperandConstantImmediateChar(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
JumpList failures;
@@ -66,11 +101,11 @@ void JIT::emit_compareAndJump(OpcodeID opcode, int op1, int op2, unsigned target
addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
- if (isOperandConstantInt(op1)) {
+ if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(commute(condition), regT2, Imm32(getConstantOperand(op1).asInt32())), target);
- } else if (isOperandConstantInt(op2)) {
+ } else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(condition, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
@@ -89,28 +124,28 @@ void JIT::emit_compareAndJump(OpcodeID opcode, int op1, int op2, unsigned target
Jump end = jump();
// Double less.
- emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantInt(op1), isOperandConstantInt(op1) || !isOperandConstantInt(op2));
+ emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
end.link(this);
}
void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
- if (isOperandConstantChar(op1) || isOperandConstantChar(op2)) {
+ if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
} else {
if (!supportsFloatingPoint()) {
- if (!isOperandConstantInt(op1) && !isOperandConstantInt(op2))
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
- if (!isOperandConstantInt(op1)) {
+ if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // double check
linkSlowCase(iter); // int32 check
}
- if (isOperandConstantInt(op1) || !isOperandConstantInt(op2))
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
linkSlowCase(iter); // double check
}
}
@@ -120,6 +155,155 @@ void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondi
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
}
+// LeftShift (<<)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+ emitStoreInt32(dst, regT0, dst == op1);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+ lshift32(regT2, regT0);
+ emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_lshift);
+ slowPathCall.call();
+}
+
+// RightShift (>>) and UnsignedRightShift (>>>) helper
+
+void JIT::emitRightShift(Instruction* currentInstruction, bool isUnsigned)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ // Slow case of rshift makes assumptions about what registers hold the
+ // shift arguments, so any changes must be updated there as well.
+ if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ int shift = getConstantOperand(op2).asInt32() & 0x1f;
+ if (shift) {
+ if (isUnsigned)
+ urshift32(Imm32(shift), regT0);
+ else
+ rshift32(Imm32(shift), regT0);
+ }
+ emitStoreInt32(dst, regT0, dst == op1);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+ if (isUnsigned)
+ urshift32(regT2, regT0);
+ else
+ rshift32(regT2, regT0);
+ emitStoreInt32(dst, regT0, dst == op1);
+ }
+}
+
+void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool isUnsigned)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ if (isOperandConstantImmediateInt(op2)) {
+ int shift = getConstantOperand(op2).asInt32() & 0x1f;
+ // op1 = regT1:regT0
+ linkSlowCase(iter); // int32 check
+ if (supportsFloatingPointTruncate()) {
+ JumpList failures;
+ failures.append(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag)));
+ emitLoadDouble(op1, fpRegT0);
+ failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ if (shift) {
+ if (isUnsigned)
+ urshift32(Imm32(shift), regT0);
+ else
+ rshift32(Imm32(shift), regT0);
+ }
+ move(TrustedImm32(JSValue::Int32Tag), regT1);
+ emitStoreInt32(dst, regT0, false);
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
+ failures.link(this);
+ }
+ } else {
+ // op1 = regT1:regT0
+ // op2 = regT3:regT2
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // int32 check -- op1 is not an int
+ if (supportsFloatingPointTruncate()) {
+ JumpList failures;
+ failures.append(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); // op1 is not a double
+ emitLoadDouble(op1, fpRegT0);
+ failures.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // op2 is not an int
+ failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ if (isUnsigned)
+ urshift32(regT2, regT0);
+ else
+ rshift32(regT2, regT0);
+ move(TrustedImm32(JSValue::Int32Tag), regT1);
+ emitStoreInt32(dst, regT0, false);
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
+ failures.link(this);
+ }
+ }
+
+ linkSlowCase(iter); // int32 check - op2 is not an int
+ }
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, isUnsigned ? slow_path_urshift : slow_path_rshift);
+ slowPathCall.call();
+}
+
+// RightShift (>>)
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+ emitRightShift(currentInstruction, false);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ emitRightShiftSlowCase(currentInstruction, iter, false);
+}
+
+// UnsignedRightShift (>>>)
+
+void JIT::emit_op_urshift(Instruction* currentInstruction)
+{
+ emitRightShift(currentInstruction, true);
+}
+
+void JIT::emitSlow_op_urshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ emitRightShiftSlowCase(currentInstruction, iter, true);
+}
+
void JIT::emit_op_unsigned(Instruction* currentInstruction)
{
int result = currentInstruction[1].u.operand;
@@ -141,6 +325,120 @@ void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector<SlowCaseE
slowPathCall.call();
}
+// BitAnd (&)
+
+void JIT::emit_op_bitand(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ int op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ and32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, dst == op);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+ and32(regT2, regT0);
+ emitStoreInt32(dst, regT0, op1 == dst || op2 == dst);
+}
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitand);
+ slowPathCall.call();
+}
+
+// BitOr (|)
+
+void JIT::emit_op_bitor(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ int op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ or32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, op == dst);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+ or32(regT2, regT0);
+ emitStoreInt32(dst, regT0, op1 == dst || op2 == dst);
+}
+
+void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitor);
+ slowPathCall.call();
+}
+
+// BitXor (^)
+
+void JIT::emit_op_bitxor(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ int op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ xor32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, op == dst);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+ xor32(regT2, regT0);
+ emitStoreInt32(dst, regT0, op1 == dst || op2 == dst);
+}
+
+void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_bitxor);
+ slowPathCall.call();
+}
+
void JIT::emit_op_inc(Instruction* currentInstruction)
{
int srcDst = currentInstruction[1].u.operand;
@@ -181,6 +479,218 @@ void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>
slowPathCall.call();
}
+// Addition (+)
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ addSlowCase();
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add);
+ slowPathCall.call();
+ return;
+ }
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ int op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second());
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ addSlowCase(branchAdd32(Overflow, regT2, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitAdd32Constant(int dst, int op, int32_t constant, ResultType opType)
+{
+ // Int32 case.
+ emitLoad(op, regT1, regT2);
+ Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
+ addSlowCase(branchAdd32(Overflow, regT2, Imm32(constant), regT0));
+ emitStoreInt32(dst, regT0, (op == dst));
+
+ // Double case.
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32);
+ return;
+ }
+ Jump end = jump();
+
+ notInt32.link(this);
+ if (!opType.definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
+ move(Imm32(constant), regT2);
+ convertInt32ToDouble(regT2, fpRegT0);
+ emitLoadDouble(op, fpRegT1);
+ addDouble(fpRegT1, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ linkDummySlowCase(iter);
+ return;
+ }
+
+ int op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint())
+ linkSlowCase(iter); // non-sse case
+ else {
+ ResultType opType = op == op1 ? types.first() : types.second();
+ if (!opType.definitelyIsNumber())
+ linkSlowCase(iter); // double check
+ }
+ } else {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+ }
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_add);
+ slowPathCall.call();
+}
+
+// Subtraction (-)
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first());
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ addSlowCase(branchSub32(Overflow, regT2, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSub32Constant(int dst, int op, int32_t constant, ResultType opType)
+{
+ // Int32 case.
+ emitLoad(op, regT1, regT0);
+ Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
+ addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2, regT3));
+ emitStoreInt32(dst, regT2, (op == dst));
+
+ // Double case.
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32);
+ return;
+ }
+ Jump end = jump();
+
+ notInt32.link(this);
+ if (!opType.definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
+ move(Imm32(constant), regT2);
+ convertInt32ToDouble(regT2, fpRegT0);
+ emitLoadDouble(op, fpRegT1);
+ subDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint() || !types.first().definitelyIsNumber())
+ linkSlowCase(iter); // int32 or double check
+ } else {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+ }
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_sub);
+ slowPathCall.call();
+}
+
void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, int dst, int op1, int op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
{
JumpList end;
@@ -213,6 +723,50 @@ void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, int dst, int op1, int op2, Opera
// Do the math.
doTheMath.link(this);
switch (opcodeID) {
+ case op_mul:
+ emitLoadDouble(op1, fpRegT2);
+ mulDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_add:
+ emitLoadDouble(op1, fpRegT2);
+ addDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_sub:
+ emitLoadDouble(op1, fpRegT1);
+ subDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+ break;
+ case op_div: {
+ emitLoadDouble(op1, fpRegT1);
+ divDouble(fpRegT0, fpRegT1);
+
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT1, regT2, notInteger, fpRegT0);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitStoreInt32(dst, regT2);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
+ emitStoreDouble(dst, fpRegT1);
+ isInteger.link(this);
+ break;
+ }
case op_jless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
@@ -270,6 +824,49 @@ void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, int dst, int op1, int op2, Opera
// Do the math.
switch (opcodeID) {
+ case op_mul:
+ emitLoadDouble(op2, fpRegT2);
+ mulDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_add:
+ emitLoadDouble(op2, fpRegT2);
+ addDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_sub:
+ emitLoadDouble(op2, fpRegT2);
+ subDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_div: {
+ emitLoadDouble(op2, fpRegT2);
+ divDouble(fpRegT2, fpRegT0);
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitStoreInt32(dst, regT2);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
+ emitStoreDouble(dst, fpRegT0);
+ isInteger.link(this);
+ break;
+ }
case op_jless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
@@ -310,13 +907,169 @@ void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, int dst, int op1, int op2, Opera
end.link(this);
}
+// Multiplication (*)
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ move(regT0, regT3);
+ addSlowCase(branchMul32(Overflow, regT2, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ Jump overflow = getSlowCase(iter); // overflow check
+ linkSlowCase(iter); // zero result check
+
+ Jump negZero = branchOr32(Signed, regT2, regT3);
+ emitStoreInt32(dst, TrustedImm32(0), (op1 == dst || op2 == dst));
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
+
+ negZero.link(this);
+ // We only get here if we have a genuine negative zero. Record this,
+ // so that the speculative JIT knows that we failed speculation
+ // because of a negative zero.
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
+ overflow.link(this);
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ }
+
+ if (supportsFloatingPoint()) {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mul);
+ slowPathCall.call();
+}
+
+// Division (/)
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+ int dst = currentInstruction[1].u.operand;
+ int op1 = currentInstruction[2].u.operand;
+ int op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(jump());
+ return;
+ }
+
+ // Int32 divide.
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ JumpList end;
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+
+ notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
+
+ convertInt32ToDouble(regT0, fpRegT0);
+ convertInt32ToDouble(regT2, fpRegT1);
+ divDouble(fpRegT1, fpRegT0);
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitStoreInt32(dst, regT2);
+ end.append(jump());
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
+ emitStoreDouble(dst, fpRegT0);
+ end.append(jump());
+
+ // Double divide.
+ emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!supportsFloatingPoint())
+ linkSlowCase(iter);
+ else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+
+ JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_div);
+ slowPathCall.call();
+}
+
// Mod (%)
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
void JIT::emit_op_mod(Instruction* currentInstruction)
{
-#if CPU(X86)
+#if CPU(X86) || CPU(X86_64)
int dst = currentInstruction[1].u.operand;
int op1 = currentInstruction[2].u.operand;
int op2 = currentInstruction[3].u.operand;
@@ -336,8 +1089,8 @@ void JIT::emit_op_mod(Instruction* currentInstruction)
Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
denominatorNotNeg1.link(this);
- x86ConvertToDoubleWord32();
- x86Div32(regT2);
+ m_assembler.cdq();
+ m_assembler.idivl_r(regT2);
Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
addSlowCase(branchTest32(Zero, regT1));
numeratorPositive.link(this);