summaryrefslogtreecommitdiff
path: root/Source/JavaScriptCore/dfg/DFGOSRExitCompiler32_64.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Source/JavaScriptCore/dfg/DFGOSRExitCompiler32_64.cpp')
-rw-r--r--Source/JavaScriptCore/dfg/DFGOSRExitCompiler32_64.cpp391
1 files changed, 391 insertions, 0 deletions
diff --git a/Source/JavaScriptCore/dfg/DFGOSRExitCompiler32_64.cpp b/Source/JavaScriptCore/dfg/DFGOSRExitCompiler32_64.cpp
new file mode 100644
index 000000000..0851a58cf
--- /dev/null
+++ b/Source/JavaScriptCore/dfg/DFGOSRExitCompiler32_64.cpp
@@ -0,0 +1,391 @@
+/*
+ * Copyright (C) 2011, 2013-2015 Apple Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "DFGOSRExitCompiler.h"
+
+#if ENABLE(DFG_JIT) && USE(JSVALUE32_64)
+
+#include "DFGOperations.h"
+#include "DFGOSRExitCompilerCommon.h"
+#include "DFGSpeculativeJIT.h"
+#include "JSCInlines.h"
+#include <wtf/DataLog.h>
+
+namespace JSC { namespace DFG {
+
+void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
+{
+ // Pro-forma stuff.
+ if (Options::printEachOSRExit()) {
+ SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
+ debugInfo->codeBlock = m_jit.codeBlock();
+ debugInfo->kind = exit.m_kind;
+ debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex;
+
+ m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
+ }
+
+ // Perform speculation recovery. This only comes into play when an operation
+ // starts mutating state before verifying the speculation it has already made.
+
+ if (recovery) {
+ switch (recovery->type()) {
+ case SpeculativeAdd:
+ m_jit.sub32(recovery->src(), recovery->dest());
+ break;
+
+ case BooleanSpeculationCheck:
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Refine some value profile, if appropriate.
+
+ if (!!exit.m_jsValueSource) {
+ if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
+ // If the instruction that this originated from has an array profile, then
+ // refine it. If it doesn't, then do nothing. The latter could happen for
+ // hoisted checks, or checks emitted for operations that didn't have array
+ // profiling - either ops that aren't array accesses at all, or weren't
+ // known to be array acceses in the bytecode. The latter case is a FIXME
+ // while the former case is an outcome of a CheckStructure not knowing why
+ // it was emitted (could be either due to an inline cache of a property
+ // property access, or due to an array profile).
+
+ // Note: We are free to assume that the jsValueSource is already known to
+ // be a cell since both BadCache and BadIndexingType exits occur after
+ // the cell check would have already happened.
+
+ CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
+ if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
+ GPRReg usedRegister1;
+ GPRReg usedRegister2;
+ if (exit.m_jsValueSource.isAddress()) {
+ usedRegister1 = exit.m_jsValueSource.base();
+ usedRegister2 = InvalidGPRReg;
+ } else {
+ usedRegister1 = exit.m_jsValueSource.payloadGPR();
+ if (exit.m_jsValueSource.hasKnownTag())
+ usedRegister2 = InvalidGPRReg;
+ else
+ usedRegister2 = exit.m_jsValueSource.tagGPR();
+ }
+
+ GPRReg scratch1;
+ GPRReg scratch2;
+ scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2);
+ scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2, scratch1);
+
+ m_jit.push(scratch1);
+ m_jit.push(scratch2);
+
+ GPRReg value;
+ if (exit.m_jsValueSource.isAddress()) {
+ value = scratch1;
+ m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
+ } else
+ value = exit.m_jsValueSource.payloadGPR();
+
+ m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1);
+ m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructureID());
+ m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1);
+ m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
+ m_jit.lshift32(scratch1, scratch2);
+ m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
+
+ m_jit.pop(scratch2);
+ m_jit.pop(scratch1);
+ }
+ }
+
+ if (!!exit.m_valueProfile) {
+ EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
+
+ if (exit.m_jsValueSource.isAddress()) {
+ // Save a register so we can use it.
+ GPRReg scratch = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base());
+
+ m_jit.push(scratch);
+
+ m_jit.load32(exit.m_jsValueSource.asAddress(OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)), scratch);
+ m_jit.store32(scratch, &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag);
+ m_jit.load32(exit.m_jsValueSource.asAddress(OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload)), scratch);
+ m_jit.store32(scratch, &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload);
+
+ m_jit.pop(scratch);
+ } else if (exit.m_jsValueSource.hasKnownTag()) {
+ m_jit.store32(AssemblyHelpers::TrustedImm32(exit.m_jsValueSource.tag()), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag);
+ m_jit.store32(exit.m_jsValueSource.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload);
+ } else {
+ m_jit.store32(exit.m_jsValueSource.tagGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag);
+ m_jit.store32(exit.m_jsValueSource.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload);
+ }
+ }
+ }
+
+ // Do a simplified OSR exit. See DFGOSRExitCompiler64.cpp's comment regarding how and wny we
+ // do this simple approach.
+
+ // Save all state from GPRs into the scratch buffer.
+
+ ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
+ EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
+
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+
+ switch (recovery.technique()) {
+ case UnboxedInt32InGPR:
+ case UnboxedBooleanInGPR:
+ case UnboxedCellInGPR:
+ m_jit.store32(
+ recovery.gpr(),
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
+ break;
+
+ case InPair:
+ m_jit.store32(
+ recovery.tagGPR(),
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
+ m_jit.store32(
+ recovery.payloadGPR(),
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Now all GPRs are free to reuse.
+
+ // Save all state from FPRs into the scratch buffer.
+
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+
+ switch (recovery.technique()) {
+ case InFPR:
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
+ m_jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0));
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Now all FPRs are free to reuse.
+
+ // Save all state from the stack into the scratch buffer. For simplicity we
+ // do this even for state that's already in the right place on the stack.
+ // It makes things simpler later.
+
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+
+ switch (recovery.technique()) {
+ case DisplacedInJSStack:
+ case Int32DisplacedInJSStack:
+ case DoubleDisplacedInJSStack:
+ case CellDisplacedInJSStack:
+ case BooleanDisplacedInJSStack:
+ m_jit.load32(
+ AssemblyHelpers::tagFor(recovery.virtualRegister()),
+ GPRInfo::regT0);
+ m_jit.load32(
+ AssemblyHelpers::payloadFor(recovery.virtualRegister()),
+ GPRInfo::regT1);
+ m_jit.store32(
+ GPRInfo::regT0,
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
+ m_jit.store32(
+ GPRInfo::regT1,
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Need to ensure that the stack pointer accounts for the worst-case stack usage at exit. This
+ // could toast some stack that the DFG used. We need to do it before storing to stack offsets
+ // used by baseline.
+ m_jit.addPtr(
+ CCallHelpers::TrustedImm32(
+ -m_jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)),
+ CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister);
+
+ // Do all data format conversions and store the results into the stack.
+
+ for (size_t index = 0; index < operands.size(); ++index) {
+ const ValueRecovery& recovery = operands[index];
+ int operand = operands.operandForIndex(index);
+
+ switch (recovery.technique()) {
+ case InPair:
+ case DisplacedInJSStack:
+ m_jit.load32(
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag,
+ GPRInfo::regT0);
+ m_jit.load32(
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
+ GPRInfo::regT1);
+ m_jit.store32(
+ GPRInfo::regT0,
+ AssemblyHelpers::tagFor(operand));
+ m_jit.store32(
+ GPRInfo::regT1,
+ AssemblyHelpers::payloadFor(operand));
+ break;
+
+ case InFPR:
+ case DoubleDisplacedInJSStack:
+ m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
+ m_jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::fpRegT0);
+ m_jit.purifyNaN(FPRInfo::fpRegT0);
+ m_jit.storeDouble(FPRInfo::fpRegT0, AssemblyHelpers::addressFor(operand));
+ break;
+
+ case UnboxedInt32InGPR:
+ case Int32DisplacedInJSStack:
+ m_jit.load32(
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
+ GPRInfo::regT0);
+ m_jit.store32(
+ AssemblyHelpers::TrustedImm32(JSValue::Int32Tag),
+ AssemblyHelpers::tagFor(operand));
+ m_jit.store32(
+ GPRInfo::regT0,
+ AssemblyHelpers::payloadFor(operand));
+ break;
+
+ case UnboxedCellInGPR:
+ case CellDisplacedInJSStack:
+ m_jit.load32(
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
+ GPRInfo::regT0);
+ m_jit.store32(
+ AssemblyHelpers::TrustedImm32(JSValue::CellTag),
+ AssemblyHelpers::tagFor(operand));
+ m_jit.store32(
+ GPRInfo::regT0,
+ AssemblyHelpers::payloadFor(operand));
+ break;
+
+ case UnboxedBooleanInGPR:
+ case BooleanDisplacedInJSStack:
+ m_jit.load32(
+ &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
+ GPRInfo::regT0);
+ m_jit.store32(
+ AssemblyHelpers::TrustedImm32(JSValue::BooleanTag),
+ AssemblyHelpers::tagFor(operand));
+ m_jit.store32(
+ GPRInfo::regT0,
+ AssemblyHelpers::payloadFor(operand));
+ break;
+
+ case Constant:
+ m_jit.store32(
+ AssemblyHelpers::TrustedImm32(recovery.constant().tag()),
+ AssemblyHelpers::tagFor(operand));
+ m_jit.store32(
+ AssemblyHelpers::TrustedImm32(recovery.constant().payload()),
+ AssemblyHelpers::payloadFor(operand));
+ break;
+
+ case DirectArgumentsThatWereNotCreated:
+ case ClonedArgumentsThatWereNotCreated:
+ // Don't do this, yet.
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ // Now that things on the stack are recovered, do the arguments recovery. We assume that arguments
+ // recoveries don't recursively refer to each other. But, we don't try to assume that they only
+ // refer to certain ranges of locals. Hence why we need to do this here, once the stack is sensible.
+ // Note that we also roughly assume that the arguments might still be materialized outside of its
+ // inline call frame scope - but for now the DFG wouldn't do that.
+
+ emitRestoreArguments(operands);
+
+ // Adjust the old JIT's execute counter. Since we are exiting OSR, we know
+ // that all new calls into this code will go to the new JIT, so the execute
+ // counter only affects call frames that performed OSR exit and call frames
+ // that were still executing the old JIT at the time of another call frame's
+ // OSR exit. We want to ensure that the following is true:
+ //
+ // (a) Code the performs an OSR exit gets a chance to reenter optimized
+ // code eventually, since optimized code is faster. But we don't
+ // want to do such reentery too aggressively (see (c) below).
+ //
+ // (b) If there is code on the call stack that is still running the old
+ // JIT's code and has never OSR'd, then it should get a chance to
+ // perform OSR entry despite the fact that we've exited.
+ //
+ // (c) Code the performs an OSR exit should not immediately retry OSR
+ // entry, since both forms of OSR are expensive. OSR entry is
+ // particularly expensive.
+ //
+ // (d) Frequent OSR failures, even those that do not result in the code
+ // running in a hot loop, result in recompilation getting triggered.
+ //
+ // To ensure (c), we'd like to set the execute counter to
+ // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
+ // (a) and (b), since then every OSR exit would delay the opportunity for
+ // every call frame to perform OSR entry. Essentially, if OSR exit happens
+ // frequently and the function has few loops, then the counter will never
+ // become non-negative and OSR entry will never be triggered. OSR entry
+ // will only happen if a loop gets hot in the old JIT, which does a pretty
+ // good job of ensuring (a) and (b). But that doesn't take care of (d),
+ // since each speculation failure would reset the execute counter.
+ // So we check here if the number of speculation failures is significantly
+ // larger than the number of successes (we want 90% success rate), and if
+ // there have been a large enough number of failures. If so, we set the
+ // counter to 0; otherwise we set the counter to
+ // counterValueForOptimizeAfterWarmUp().
+
+ handleExitCounts(m_jit, exit);
+
+ // Reify inlined call frames.
+
+ reifyInlinedCallFrames(m_jit, exit);
+
+ // And finish.
+ adjustAndJumpToTarget(m_jit, exit);
+}
+
+} } // namespace JSC::DFG
+
+#endif // ENABLE(DFG_JIT) && USE(JSVALUE32_64)