1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
|
from __future__ import absolute_import
from .Errors import error, message
from . import ExprNodes
from . import Nodes
from . import Builtin
from . import PyrexTypes
from .. import Utils
from .PyrexTypes import py_object_type, unspecified_type
from .Visitor import CythonTransform, EnvTransform
try:
reduce
except NameError:
from functools import reduce
class TypedExprNode(ExprNodes.ExprNode):
# Used for declaring assignments of a specified type without a known entry.
subexprs = []
def __init__(self, type, pos=None):
super(TypedExprNode, self).__init__(pos, type=type)
object_expr = TypedExprNode(py_object_type)
class MarkParallelAssignments(EnvTransform):
# Collects assignments inside parallel blocks prange, with parallel.
# Perhaps it's better to move it to ControlFlowAnalysis.
# tells us whether we're in a normal loop
in_loop = False
parallel_errors = False
def __init__(self, context):
# Track the parallel block scopes (with parallel, for i in prange())
self.parallel_block_stack = []
super(MarkParallelAssignments, self).__init__(context)
def mark_assignment(self, lhs, rhs, inplace_op=None):
if isinstance(lhs, (ExprNodes.NameNode, Nodes.PyArgDeclNode)):
if lhs.entry is None:
# TODO: This shouldn't happen...
return
if self.parallel_block_stack:
parallel_node = self.parallel_block_stack[-1]
previous_assignment = parallel_node.assignments.get(lhs.entry)
# If there was a previous assignment to the variable, keep the
# previous assignment position
if previous_assignment:
pos, previous_inplace_op = previous_assignment
if (inplace_op and previous_inplace_op and
inplace_op != previous_inplace_op):
# x += y; x *= y
t = (inplace_op, previous_inplace_op)
error(lhs.pos,
"Reduction operator '%s' is inconsistent "
"with previous reduction operator '%s'" % t)
else:
pos = lhs.pos
parallel_node.assignments[lhs.entry] = (pos, inplace_op)
parallel_node.assigned_nodes.append(lhs)
elif isinstance(lhs, ExprNodes.SequenceNode):
for i, arg in enumerate(lhs.args):
if not rhs or arg.is_starred:
item_node = None
else:
item_node = rhs.inferable_item_node(i)
self.mark_assignment(arg, item_node)
else:
# Could use this info to infer cdef class attributes...
pass
def visit_WithTargetAssignmentStatNode(self, node):
self.mark_assignment(node.lhs, node.with_node.enter_call)
self.visitchildren(node)
return node
def visit_SingleAssignmentNode(self, node):
self.mark_assignment(node.lhs, node.rhs)
self.visitchildren(node)
return node
def visit_CascadedAssignmentNode(self, node):
for lhs in node.lhs_list:
self.mark_assignment(lhs, node.rhs)
self.visitchildren(node)
return node
def visit_InPlaceAssignmentNode(self, node):
self.mark_assignment(node.lhs, node.create_binop_node(), node.operator)
self.visitchildren(node)
return node
def visit_ForInStatNode(self, node):
# TODO: Remove redundancy with range optimization...
is_special = False
sequence = node.iterator.sequence
target = node.target
iterator_scope = node.iterator.expr_scope or self.current_env()
if isinstance(sequence, ExprNodes.SimpleCallNode):
function = sequence.function
if sequence.self is None and function.is_name:
entry = iterator_scope.lookup(function.name)
if not entry or entry.is_builtin:
if function.name == 'reversed' and len(sequence.args) == 1:
sequence = sequence.args[0]
elif function.name == 'enumerate' and len(sequence.args) == 1:
if target.is_sequence_constructor and len(target.args) == 2:
iterator = sequence.args[0]
if iterator.is_name:
iterator_type = iterator.infer_type(iterator_scope)
if iterator_type.is_builtin_type:
# assume that builtin types have a length within Py_ssize_t
self.mark_assignment(
target.args[0],
ExprNodes.IntNode(target.pos, value='PY_SSIZE_T_MAX',
type=PyrexTypes.c_py_ssize_t_type))
target = target.args[1]
sequence = sequence.args[0]
if isinstance(sequence, ExprNodes.SimpleCallNode):
function = sequence.function
if sequence.self is None and function.is_name:
entry = iterator_scope.lookup(function.name)
if not entry or entry.is_builtin:
if function.name in ('range', 'xrange'):
is_special = True
for arg in sequence.args[:2]:
self.mark_assignment(target, arg)
if len(sequence.args) > 2:
self.mark_assignment(
target,
ExprNodes.binop_node(node.pos,
'+',
sequence.args[0],
sequence.args[2]))
if not is_special:
# A for-loop basically translates to subsequent calls to
# __getitem__(), so using an IndexNode here allows us to
# naturally infer the base type of pointers, C arrays,
# Python strings, etc., while correctly falling back to an
# object type when the base type cannot be handled.
self.mark_assignment(target, ExprNodes.IndexNode(
node.pos,
base=sequence,
index=ExprNodes.IntNode(target.pos, value='PY_SSIZE_T_MAX',
type=PyrexTypes.c_py_ssize_t_type)))
self.visitchildren(node)
return node
def visit_ForFromStatNode(self, node):
self.mark_assignment(node.target, node.bound1)
if node.step is not None:
self.mark_assignment(node.target,
ExprNodes.binop_node(node.pos,
'+',
node.bound1,
node.step))
self.visitchildren(node)
return node
def visit_WhileStatNode(self, node):
self.visitchildren(node)
return node
def visit_ExceptClauseNode(self, node):
if node.target is not None:
self.mark_assignment(node.target, object_expr)
self.visitchildren(node)
return node
def visit_FromCImportStatNode(self, node):
return node # Can't be assigned to...
def visit_FromImportStatNode(self, node):
for name, target in node.items:
if name != "*":
self.mark_assignment(target, object_expr)
self.visitchildren(node)
return node
def visit_DefNode(self, node):
# use fake expressions with the right result type
if node.star_arg:
self.mark_assignment(
node.star_arg, TypedExprNode(Builtin.tuple_type, node.pos))
if node.starstar_arg:
self.mark_assignment(
node.starstar_arg, TypedExprNode(Builtin.dict_type, node.pos))
EnvTransform.visit_FuncDefNode(self, node)
return node
def visit_DelStatNode(self, node):
for arg in node.args:
self.mark_assignment(arg, arg)
self.visitchildren(node)
return node
def visit_ParallelStatNode(self, node):
if self.parallel_block_stack:
node.parent = self.parallel_block_stack[-1]
else:
node.parent = None
nested = False
if node.is_prange:
if not node.parent:
node.is_parallel = True
else:
node.is_parallel = (node.parent.is_prange or not
node.parent.is_parallel)
nested = node.parent.is_prange
else:
node.is_parallel = True
# Note: nested with parallel() blocks are handled by
# ParallelRangeTransform!
# nested = node.parent
nested = node.parent and node.parent.is_prange
self.parallel_block_stack.append(node)
nested = nested or len(self.parallel_block_stack) > 2
if not self.parallel_errors and nested and not node.is_prange:
error(node.pos, "Only prange() may be nested")
self.parallel_errors = True
if node.is_prange:
child_attrs = node.child_attrs
node.child_attrs = ['body', 'target', 'args']
self.visitchildren(node)
node.child_attrs = child_attrs
self.parallel_block_stack.pop()
if node.else_clause:
node.else_clause = self.visit(node.else_clause)
else:
self.visitchildren(node)
self.parallel_block_stack.pop()
self.parallel_errors = False
return node
def visit_YieldExprNode(self, node):
if self.parallel_block_stack:
error(node.pos, "'%s' not allowed in parallel sections" % node.expr_keyword)
return node
def visit_ReturnStatNode(self, node):
node.in_parallel = bool(self.parallel_block_stack)
return node
class MarkOverflowingArithmetic(CythonTransform):
# It may be possible to integrate this with the above for
# performance improvements (though likely not worth it).
might_overflow = False
def __call__(self, root):
self.env_stack = []
self.env = root.scope
return super(MarkOverflowingArithmetic, self).__call__(root)
def visit_safe_node(self, node):
self.might_overflow, saved = False, self.might_overflow
self.visitchildren(node)
self.might_overflow = saved
return node
def visit_neutral_node(self, node):
self.visitchildren(node)
return node
def visit_dangerous_node(self, node):
self.might_overflow, saved = True, self.might_overflow
self.visitchildren(node)
self.might_overflow = saved
return node
def visit_FuncDefNode(self, node):
self.env_stack.append(self.env)
self.env = node.local_scope
self.visit_safe_node(node)
self.env = self.env_stack.pop()
return node
def visit_NameNode(self, node):
if self.might_overflow:
entry = node.entry or self.env.lookup(node.name)
if entry:
entry.might_overflow = True
return node
def visit_BinopNode(self, node):
if node.operator in '&|^':
return self.visit_neutral_node(node)
else:
return self.visit_dangerous_node(node)
def visit_SimpleCallNode(self, node):
if node.function.is_name and node.function.name == 'abs':
# Overflows for minimum value of fixed size ints.
return self.visit_dangerous_node(node)
else:
return self.visit_neutral_node(node)
visit_UnopNode = visit_neutral_node
visit_UnaryMinusNode = visit_dangerous_node
visit_InPlaceAssignmentNode = visit_dangerous_node
visit_Node = visit_safe_node
def visit_assignment(self, lhs, rhs):
if (isinstance(rhs, ExprNodes.IntNode)
and isinstance(lhs, ExprNodes.NameNode)
and Utils.long_literal(rhs.value)):
entry = lhs.entry or self.env.lookup(lhs.name)
if entry:
entry.might_overflow = True
def visit_SingleAssignmentNode(self, node):
self.visit_assignment(node.lhs, node.rhs)
self.visitchildren(node)
return node
def visit_CascadedAssignmentNode(self, node):
for lhs in node.lhs_list:
self.visit_assignment(lhs, node.rhs)
self.visitchildren(node)
return node
class PyObjectTypeInferer(object):
"""
If it's not declared, it's a PyObject.
"""
def infer_types(self, scope):
"""
Given a dict of entries, map all unspecified types to a specified type.
"""
for name, entry in scope.entries.items():
if entry.type is unspecified_type:
entry.type = py_object_type
class SimpleAssignmentTypeInferer(object):
"""
Very basic type inference.
Note: in order to support cross-closure type inference, this must be
applies to nested scopes in top-down order.
"""
def set_entry_type(self, entry, entry_type, scope):
for e in entry.all_entries():
e.type = entry_type
if e.type.is_memoryviewslice:
# memoryview slices crash if they don't get initialized
e.init = e.type.default_value
if e.type.is_cpp_class:
if scope.directives['cpp_locals']:
e.make_cpp_optional()
else:
e.type.check_nullary_constructor(entry.pos)
def infer_types(self, scope):
enabled = scope.directives['infer_types']
verbose = scope.directives['infer_types.verbose']
if enabled == True:
spanning_type = aggressive_spanning_type
elif enabled is None: # safe mode
spanning_type = safe_spanning_type
else:
for entry in scope.entries.values():
if entry.type is unspecified_type:
self.set_entry_type(entry, py_object_type, scope)
return
# Set of assignments
assignments = set()
assmts_resolved = set()
dependencies = {}
assmt_to_names = {}
for name, entry in scope.entries.items():
for assmt in entry.cf_assignments:
names = assmt.type_dependencies()
assmt_to_names[assmt] = names
assmts = set()
for node in names:
assmts.update(node.cf_state)
dependencies[assmt] = assmts
if entry.type is unspecified_type:
assignments.update(entry.cf_assignments)
else:
assmts_resolved.update(entry.cf_assignments)
def infer_name_node_type(node):
types = [assmt.inferred_type for assmt in node.cf_state]
if not types:
node_type = py_object_type
else:
entry = node.entry
node_type = spanning_type(
types, entry.might_overflow, scope)
node.inferred_type = node_type
def infer_name_node_type_partial(node):
types = [assmt.inferred_type for assmt in node.cf_state
if assmt.inferred_type is not None]
if not types:
return
entry = node.entry
return spanning_type(types, entry.might_overflow, scope)
def inferred_types(entry):
has_none = False
has_pyobjects = False
types = []
for assmt in entry.cf_assignments:
if assmt.rhs.is_none:
has_none = True
else:
rhs_type = assmt.inferred_type
if rhs_type and rhs_type.is_pyobject:
has_pyobjects = True
types.append(rhs_type)
# Ignore None assignments as long as there are concrete Python type assignments.
# but include them if None is the only assigned Python object.
if has_none and not has_pyobjects:
types.append(py_object_type)
return types
def resolve_assignments(assignments):
resolved = set()
for assmt in assignments:
deps = dependencies[assmt]
# All assignments are resolved
if assmts_resolved.issuperset(deps):
for node in assmt_to_names[assmt]:
infer_name_node_type(node)
# Resolve assmt
inferred_type = assmt.infer_type()
assmts_resolved.add(assmt)
resolved.add(assmt)
assignments.difference_update(resolved)
return resolved
def partial_infer(assmt):
partial_types = []
for node in assmt_to_names[assmt]:
partial_type = infer_name_node_type_partial(node)
if partial_type is None:
return False
partial_types.append((node, partial_type))
for node, partial_type in partial_types:
node.inferred_type = partial_type
assmt.infer_type()
return True
partial_assmts = set()
def resolve_partial(assignments):
# try to handle circular references
partials = set()
for assmt in assignments:
if assmt in partial_assmts:
continue
if partial_infer(assmt):
partials.add(assmt)
assmts_resolved.add(assmt)
partial_assmts.update(partials)
return partials
# Infer assignments
while True:
if not resolve_assignments(assignments):
if not resolve_partial(assignments):
break
inferred = set()
# First pass
for entry in scope.entries.values():
if entry.type is not unspecified_type:
continue
entry_type = py_object_type
if assmts_resolved.issuperset(entry.cf_assignments):
types = inferred_types(entry)
if types and all(types):
entry_type = spanning_type(
types, entry.might_overflow, scope)
inferred.add(entry)
self.set_entry_type(entry, entry_type, scope)
def reinfer():
dirty = False
for entry in inferred:
for assmt in entry.cf_assignments:
assmt.infer_type()
types = inferred_types(entry)
new_type = spanning_type(types, entry.might_overflow, scope)
if new_type != entry.type:
self.set_entry_type(entry, new_type, scope)
dirty = True
return dirty
# types propagation
while reinfer():
pass
if verbose:
for entry in inferred:
message(entry.pos, "inferred '%s' to be of type '%s'" % (
entry.name, entry.type))
def find_spanning_type(type1, type2):
if type1 is type2:
result_type = type1
elif type1 is PyrexTypes.c_bint_type or type2 is PyrexTypes.c_bint_type:
# type inference can break the coercion back to a Python bool
# if it returns an arbitrary int type here
return py_object_type
else:
result_type = PyrexTypes.spanning_type(type1, type2)
if result_type in (PyrexTypes.c_double_type, PyrexTypes.c_float_type,
Builtin.float_type):
# Python's float type is just a C double, so it's safe to
# use the C type instead
return PyrexTypes.c_double_type
return result_type
def simply_type(result_type):
if result_type.is_reference:
result_type = result_type.ref_base_type
if result_type.is_cv_qualified:
result_type = result_type.cv_base_type
if result_type.is_array:
result_type = PyrexTypes.c_ptr_type(result_type.base_type)
return result_type
def aggressive_spanning_type(types, might_overflow, scope):
return simply_type(reduce(find_spanning_type, types))
def safe_spanning_type(types, might_overflow, scope):
result_type = simply_type(reduce(find_spanning_type, types))
if result_type.is_pyobject:
# In theory, any specific Python type is always safe to
# infer. However, inferring str can cause some existing code
# to break, since we are also now much more strict about
# coercion from str to char *. See trac #553.
if result_type.name == 'str':
return py_object_type
else:
return result_type
elif (result_type is PyrexTypes.c_double_type or
result_type is PyrexTypes.c_float_type):
# Python's float type is just a C double, so it's safe to use
# the C type instead. Similarly if given a C float, it leads to
# a small loss of precision vs Python but is otherwise the same
return result_type
elif result_type is PyrexTypes.c_bint_type:
# find_spanning_type() only returns 'bint' for clean boolean
# operations without other int types, so this is safe, too
return result_type
elif result_type.is_pythran_expr:
return result_type
elif result_type.is_ptr:
# Any pointer except (signed|unsigned|) char* can't implicitly
# become a PyObject, and inferring char* is now accepted, too.
return result_type
elif result_type.is_cpp_class:
# These can't implicitly become Python objects either.
return result_type
elif result_type.is_struct:
# Though we have struct -> object for some structs, this is uncommonly
# used, won't arise in pure Python, and there shouldn't be side
# effects, so I'm declaring this safe.
return result_type
elif result_type.is_memoryviewslice:
return result_type
elif result_type is PyrexTypes.soft_complex_type:
return result_type
elif result_type == PyrexTypes.c_double_complex_type:
return result_type
elif (result_type.is_int or result_type.is_enum) and not might_overflow:
return result_type
elif (not result_type.can_coerce_to_pyobject(scope)
and not result_type.is_error):
return result_type
return py_object_type
def get_type_inferer():
return SimpleAssignmentTypeInferer()
|