summaryrefslogtreecommitdiff
path: root/libgo/go/old/regexp/regexp.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/old/regexp/regexp.go')
-rw-r--r--libgo/go/old/regexp/regexp.go1488
1 files changed, 0 insertions, 1488 deletions
diff --git a/libgo/go/old/regexp/regexp.go b/libgo/go/old/regexp/regexp.go
deleted file mode 100644
index d3044d0c1d..0000000000
--- a/libgo/go/old/regexp/regexp.go
+++ /dev/null
@@ -1,1488 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package regexp implements a simple regular expression library.
-//
-// The syntax of the regular expressions accepted is:
-//
-// regexp:
-// concatenation { '|' concatenation }
-// concatenation:
-// { closure }
-// closure:
-// term [ '*' | '+' | '?' ]
-// term:
-// '^'
-// '$'
-// '.'
-// character
-// '[' [ '^' ] { character-range } ']'
-// '(' regexp ')'
-// character-range:
-// character [ '-' character ]
-//
-// All characters are UTF-8-encoded code points. Backslashes escape special
-// characters, including inside character classes. The standard Go character
-// escapes are also recognized: \a \b \f \n \r \t \v.
-//
-// There are 16 methods of Regexp that match a regular expression and identify
-// the matched text. Their names are matched by this regular expression:
-//
-// Find(All)?(String)?(Submatch)?(Index)?
-//
-// If 'All' is present, the routine matches successive non-overlapping
-// matches of the entire expression. Empty matches abutting a preceding
-// match are ignored. The return value is a slice containing the successive
-// return values of the corresponding non-'All' routine. These routines take
-// an extra integer argument, n; if n >= 0, the function returns at most n
-// matches/submatches.
-//
-// If 'String' is present, the argument is a string; otherwise it is a slice
-// of bytes; return values are adjusted as appropriate.
-//
-// If 'Submatch' is present, the return value is a slice identifying the
-// successive submatches of the expression. Submatches are matches of
-// parenthesized subexpressions within the regular expression, numbered from
-// left to right in order of opening parenthesis. Submatch 0 is the match of
-// the entire expression, submatch 1 the match of the first parenthesized
-// subexpression, and so on.
-//
-// If 'Index' is present, matches and submatches are identified by byte index
-// pairs within the input string: result[2*n:2*n+1] identifies the indexes of
-// the nth submatch. The pair for n==0 identifies the match of the entire
-// expression. If 'Index' is not present, the match is identified by the
-// text of the match/submatch. If an index is negative, it means that
-// subexpression did not match any string in the input.
-//
-// There is also a subset of the methods that can be applied to text read
-// from a RuneReader:
-//
-// MatchReader, FindReaderIndex, FindReaderSubmatchIndex
-//
-// This set may grow. Note that regular expression matches may need to
-// examine text beyond the text returned by a match, so the methods that
-// match text from a RuneReader may read arbitrarily far into the input
-// before returning.
-//
-// (There are a few other methods that do not match this pattern.)
-//
-package regexp
-
-import (
- "bytes"
- "io"
- "strings"
- "unicode/utf8"
-)
-
-var debug = false
-
-// Error is the local type for a parsing error.
-type Error string
-
-func (e Error) Error() string {
- return string(e)
-}
-
-// Error codes returned by failures to parse an expression.
-var (
- ErrInternal = Error("regexp: internal error")
- ErrUnmatchedLpar = Error("regexp: unmatched '('")
- ErrUnmatchedRpar = Error("regexp: unmatched ')'")
- ErrUnmatchedLbkt = Error("regexp: unmatched '['")
- ErrUnmatchedRbkt = Error("regexp: unmatched ']'")
- ErrBadRange = Error("regexp: bad range in character class")
- ErrExtraneousBackslash = Error("regexp: extraneous backslash")
- ErrBadClosure = Error("regexp: repeated closure (**, ++, etc.)")
- ErrBareClosure = Error("regexp: closure applies to nothing")
- ErrBadBackslash = Error("regexp: illegal backslash escape")
-)
-
-const (
- iStart = iota // beginning of program
- iEnd // end of program: success
- iBOT // '^' beginning of text
- iEOT // '$' end of text
- iChar // 'a' regular character
- iCharClass // [a-z] character class
- iAny // '.' any character including newline
- iNotNL // [^\n] special case: any character but newline
- iBra // '(' parenthesized expression: 2*braNum for left, 2*braNum+1 for right
- iAlt // '|' alternation
- iNop // do nothing; makes it easy to link without patching
-)
-
-// An instruction executed by the NFA
-type instr struct {
- kind int // the type of this instruction: iChar, iAny, etc.
- index int // used only in debugging; could be eliminated
- next *instr // the instruction to execute after this one
- // Special fields valid only for some items.
- char rune // iChar
- braNum int // iBra, iEbra
- cclass *charClass // iCharClass
- left *instr // iAlt, other branch
-}
-
-func (i *instr) print() {
- switch i.kind {
- case iStart:
- print("start")
- case iEnd:
- print("end")
- case iBOT:
- print("bot")
- case iEOT:
- print("eot")
- case iChar:
- print("char ", string(i.char))
- case iCharClass:
- i.cclass.print()
- case iAny:
- print("any")
- case iNotNL:
- print("notnl")
- case iBra:
- if i.braNum&1 == 0 {
- print("bra", i.braNum/2)
- } else {
- print("ebra", i.braNum/2)
- }
- case iAlt:
- print("alt(", i.left.index, ")")
- case iNop:
- print("nop")
- }
-}
-
-// Regexp is the representation of a compiled regular expression.
-// The public interface is entirely through methods.
-// A Regexp is safe for concurrent use by multiple goroutines.
-type Regexp struct {
- expr string // the original expression
- prefix string // initial plain text string
- prefixBytes []byte // initial plain text bytes
- inst []*instr
- start *instr // first instruction of machine
- prefixStart *instr // where to start if there is a prefix
- nbra int // number of brackets in expression, for subexpressions
-}
-
-type charClass struct {
- negate bool // is character class negated? ([^a-z])
- // slice of int, stored pairwise: [a-z] is (a,z); x is (x,x):
- ranges []rune
- cmin, cmax rune
-}
-
-func (cclass *charClass) print() {
- print("charclass")
- if cclass.negate {
- print(" (negated)")
- }
- for i := 0; i < len(cclass.ranges); i += 2 {
- l := cclass.ranges[i]
- r := cclass.ranges[i+1]
- if l == r {
- print(" [", string(l), "]")
- } else {
- print(" [", string(l), "-", string(r), "]")
- }
- }
-}
-
-func (cclass *charClass) addRange(a, b rune) {
- // range is a through b inclusive
- cclass.ranges = append(cclass.ranges, a, b)
- if a < cclass.cmin {
- cclass.cmin = a
- }
- if b > cclass.cmax {
- cclass.cmax = b
- }
-}
-
-func (cclass *charClass) matches(c rune) bool {
- if c < cclass.cmin || c > cclass.cmax {
- return cclass.negate
- }
- ranges := cclass.ranges
- for i := 0; i < len(ranges); i = i + 2 {
- if ranges[i] <= c && c <= ranges[i+1] {
- return !cclass.negate
- }
- }
- return cclass.negate
-}
-
-func newCharClass() *instr {
- i := &instr{kind: iCharClass}
- i.cclass = new(charClass)
- i.cclass.ranges = make([]rune, 0, 4)
- i.cclass.cmin = 0x10FFFF + 1 // MaxRune + 1
- i.cclass.cmax = -1
- return i
-}
-
-func (re *Regexp) add(i *instr) *instr {
- i.index = len(re.inst)
- re.inst = append(re.inst, i)
- return i
-}
-
-type parser struct {
- re *Regexp
- nlpar int // number of unclosed lpars
- pos int
- ch rune
-}
-
-func (p *parser) error(err Error) {
- panic(err)
-}
-
-const endOfText = -1
-
-func (p *parser) c() rune { return p.ch }
-
-func (p *parser) nextc() rune {
- if p.pos >= len(p.re.expr) {
- p.ch = endOfText
- } else {
- c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:])
- p.ch = c
- p.pos += w
- }
- return p.ch
-}
-
-func newParser(re *Regexp) *parser {
- p := new(parser)
- p.re = re
- p.nextc() // load p.ch
- return p
-}
-
-func special(c rune) bool {
- for _, r := range `\.+*?()|[]^$` {
- if c == r {
- return true
- }
- }
- return false
-}
-
-func ispunct(c rune) bool {
- for _, r := range "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" {
- if c == r {
- return true
- }
- }
- return false
-}
-
-var escapes = []byte("abfnrtv")
-var escaped = []byte("\a\b\f\n\r\t\v")
-
-func escape(c rune) int {
- for i, b := range escapes {
- if rune(b) == c {
- return i
- }
- }
- return -1
-}
-
-func (p *parser) checkBackslash() rune {
- c := p.c()
- if c == '\\' {
- c = p.nextc()
- switch {
- case c == endOfText:
- p.error(ErrExtraneousBackslash)
- case ispunct(c):
- // c is as delivered
- case escape(c) >= 0:
- c = rune(escaped[escape(c)])
- default:
- p.error(ErrBadBackslash)
- }
- }
- return c
-}
-
-func (p *parser) charClass() *instr {
- i := newCharClass()
- cc := i.cclass
- if p.c() == '^' {
- cc.negate = true
- p.nextc()
- }
- left := rune(-1)
- for {
- switch c := p.c(); c {
- case ']', endOfText:
- if left >= 0 {
- p.error(ErrBadRange)
- }
- // Is it [^\n]?
- if cc.negate && len(cc.ranges) == 2 &&
- cc.ranges[0] == '\n' && cc.ranges[1] == '\n' {
- nl := &instr{kind: iNotNL}
- p.re.add(nl)
- return nl
- }
- // Special common case: "[a]" -> "a"
- if !cc.negate && len(cc.ranges) == 2 && cc.ranges[0] == cc.ranges[1] {
- c := &instr{kind: iChar, char: cc.ranges[0]}
- p.re.add(c)
- return c
- }
- p.re.add(i)
- return i
- case '-': // do this before backslash processing
- p.error(ErrBadRange)
- default:
- c = p.checkBackslash()
- p.nextc()
- switch {
- case left < 0: // first of pair
- if p.c() == '-' { // range
- p.nextc()
- left = c
- } else { // single char
- cc.addRange(c, c)
- }
- case left <= c: // second of pair
- cc.addRange(left, c)
- left = -1
- default:
- p.error(ErrBadRange)
- }
- }
- }
- panic("unreachable")
-}
-
-func (p *parser) term() (start, end *instr) {
- switch c := p.c(); c {
- case '|', endOfText:
- return nil, nil
- case '*', '+', '?':
- p.error(ErrBareClosure)
- case ')':
- if p.nlpar == 0 {
- p.error(ErrUnmatchedRpar)
- }
- return nil, nil
- case ']':
- p.error(ErrUnmatchedRbkt)
- case '^':
- p.nextc()
- start = p.re.add(&instr{kind: iBOT})
- return start, start
- case '$':
- p.nextc()
- start = p.re.add(&instr{kind: iEOT})
- return start, start
- case '.':
- p.nextc()
- start = p.re.add(&instr{kind: iAny})
- return start, start
- case '[':
- p.nextc()
- start = p.charClass()
- if p.c() != ']' {
- p.error(ErrUnmatchedLbkt)
- }
- p.nextc()
- return start, start
- case '(':
- p.nextc()
- p.nlpar++
- p.re.nbra++ // increment first so first subexpr is \1
- nbra := p.re.nbra
- start, end = p.regexp()
- if p.c() != ')' {
- p.error(ErrUnmatchedLpar)
- }
- p.nlpar--
- p.nextc()
- bra := &instr{kind: iBra, braNum: 2 * nbra}
- p.re.add(bra)
- ebra := &instr{kind: iBra, braNum: 2*nbra + 1}
- p.re.add(ebra)
- if start == nil {
- if end == nil {
- p.error(ErrInternal)
- return
- }
- start = ebra
- } else {
- end.next = ebra
- }
- bra.next = start
- return bra, ebra
- default:
- c = p.checkBackslash()
- p.nextc()
- start = &instr{kind: iChar, char: c}
- p.re.add(start)
- return start, start
- }
- panic("unreachable")
-}
-
-func (p *parser) closure() (start, end *instr) {
- start, end = p.term()
- if start == nil {
- return
- }
- switch p.c() {
- case '*':
- // (start,end)*:
- alt := &instr{kind: iAlt}
- p.re.add(alt)
- end.next = alt // after end, do alt
- alt.left = start // alternate brach: return to start
- start = alt // alt becomes new (start, end)
- end = alt
- case '+':
- // (start,end)+:
- alt := &instr{kind: iAlt}
- p.re.add(alt)
- end.next = alt // after end, do alt
- alt.left = start // alternate brach: return to start
- end = alt // start is unchanged; end is alt
- case '?':
- // (start,end)?:
- alt := &instr{kind: iAlt}
- p.re.add(alt)
- nop := &instr{kind: iNop}
- p.re.add(nop)
- alt.left = start // alternate branch is start
- alt.next = nop // follow on to nop
- end.next = nop // after end, go to nop
- start = alt // start is now alt
- end = nop // end is nop pointed to by both branches
- default:
- return
- }
- switch p.nextc() {
- case '*', '+', '?':
- p.error(ErrBadClosure)
- }
- return
-}
-
-func (p *parser) concatenation() (start, end *instr) {
- for {
- nstart, nend := p.closure()
- switch {
- case nstart == nil: // end of this concatenation
- if start == nil { // this is the empty string
- nop := p.re.add(&instr{kind: iNop})
- return nop, nop
- }
- return
- case start == nil: // this is first element of concatenation
- start, end = nstart, nend
- default:
- end.next = nstart
- end = nend
- }
- }
- panic("unreachable")
-}
-
-func (p *parser) regexp() (start, end *instr) {
- start, end = p.concatenation()
- for {
- switch p.c() {
- default:
- return
- case '|':
- p.nextc()
- nstart, nend := p.concatenation()
- alt := &instr{kind: iAlt}
- p.re.add(alt)
- alt.left = start
- alt.next = nstart
- nop := &instr{kind: iNop}
- p.re.add(nop)
- end.next = nop
- nend.next = nop
- start, end = alt, nop
- }
- }
- panic("unreachable")
-}
-
-func unNop(i *instr) *instr {
- for i.kind == iNop {
- i = i.next
- }
- return i
-}
-
-func (re *Regexp) eliminateNops() {
- for _, inst := range re.inst {
- if inst.kind == iEnd {
- continue
- }
- inst.next = unNop(inst.next)
- if inst.kind == iAlt {
- inst.left = unNop(inst.left)
- }
- }
-}
-
-func (re *Regexp) dump() {
- print("prefix <", re.prefix, ">\n")
- for _, inst := range re.inst {
- print(inst.index, ": ")
- inst.print()
- if inst.kind != iEnd {
- print(" -> ", inst.next.index)
- }
- print("\n")
- }
-}
-
-func (re *Regexp) doParse() {
- p := newParser(re)
- start := &instr{kind: iStart}
- re.add(start)
- s, e := p.regexp()
- start.next = s
- re.start = start
- e.next = re.add(&instr{kind: iEnd})
-
- if debug {
- re.dump()
- println()
- }
-
- re.eliminateNops()
- if debug {
- re.dump()
- println()
- }
- re.setPrefix()
- if debug {
- re.dump()
- println()
- }
-}
-
-// Extract regular text from the beginning of the pattern,
-// possibly after a leading iBOT.
-// That text can be used by doExecute to speed up matching.
-func (re *Regexp) setPrefix() {
- var b []byte
- var utf = make([]byte, utf8.UTFMax)
- var inst *instr
- // First instruction is start; skip that. Also skip any initial iBOT.
- inst = re.inst[0].next
- for inst.kind == iBOT {
- inst = inst.next
- }
-Loop:
- for ; inst.kind != iEnd; inst = inst.next {
- // stop if this is not a char
- if inst.kind != iChar {
- break
- }
- // stop if this char can be followed by a match for an empty string,
- // which includes closures, ^, and $.
- switch inst.next.kind {
- case iBOT, iEOT, iAlt:
- break Loop
- }
- n := utf8.EncodeRune(utf, inst.char)
- b = append(b, utf[0:n]...)
- }
- // point prefixStart instruction to first non-CHAR after prefix
- re.prefixStart = inst
- re.prefixBytes = b
- re.prefix = string(b)
-}
-
-// String returns the source text used to compile the regular expression.
-func (re *Regexp) String() string {
- return re.expr
-}
-
-// Compile parses a regular expression and returns, if successful, a Regexp
-// object that can be used to match against text.
-func Compile(str string) (regexp *Regexp, error error) {
- regexp = new(Regexp)
- // doParse will panic if there is a parse error.
- defer func() {
- if e := recover(); e != nil {
- regexp = nil
- error = e.(Error) // Will re-panic if error was not an Error, e.g. nil-pointer exception
- }
- }()
- regexp.expr = str
- regexp.inst = make([]*instr, 0, 10)
- regexp.doParse()
- return
-}
-
-// MustCompile is like Compile but panics if the expression cannot be parsed.
-// It simplifies safe initialization of global variables holding compiled regular
-// expressions.
-func MustCompile(str string) *Regexp {
- regexp, error := Compile(str)
- if error != nil {
- panic(`regexp: compiling "` + str + `": ` + error.Error())
- }
- return regexp
-}
-
-// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
-func (re *Regexp) NumSubexp() int { return re.nbra }
-
-// The match arena allows us to reduce the garbage generated by tossing
-// match vectors away as we execute. Matches are ref counted and returned
-// to a free list when no longer active. Increases a simple benchmark by 22X.
-type matchArena struct {
- head *matchVec
- len int // length of match vector
- pos int
- atBOT bool // whether we're at beginning of text
- atEOT bool // whether we're at end of text
-}
-
-type matchVec struct {
- m []int // pairs of bracketing submatches. 0th is start,end
- ref int
- next *matchVec
-}
-
-func (a *matchArena) new() *matchVec {
- if a.head == nil {
- const N = 10
- block := make([]matchVec, N)
- for i := 0; i < N; i++ {
- b := &block[i]
- b.next = a.head
- a.head = b
- }
- }
- m := a.head
- a.head = m.next
- m.ref = 0
- if m.m == nil {
- m.m = make([]int, a.len)
- }
- return m
-}
-
-func (a *matchArena) free(m *matchVec) {
- m.ref--
- if m.ref == 0 {
- m.next = a.head
- a.head = m
- }
-}
-
-func (a *matchArena) copy(m *matchVec) *matchVec {
- m1 := a.new()
- copy(m1.m, m.m)
- return m1
-}
-
-func (a *matchArena) noMatch() *matchVec {
- m := a.new()
- for i := range m.m {
- m.m[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac"
- }
- m.ref = 1
- return m
-}
-
-type state struct {
- inst *instr // next instruction to execute
- prefixed bool // this match began with a fixed prefix
- match *matchVec
-}
-
-// Append new state to to-do list. Leftmost-longest wins so avoid
-// adding a state that's already active. The matchVec will be inc-ref'ed
-// if it is assigned to a state.
-func (a *matchArena) addState(s []state, inst *instr, prefixed bool, match *matchVec) []state {
- switch inst.kind {
- case iBOT:
- if a.atBOT {
- s = a.addState(s, inst.next, prefixed, match)
- }
- return s
- case iEOT:
- if a.atEOT {
- s = a.addState(s, inst.next, prefixed, match)
- }
- return s
- case iBra:
- match.m[inst.braNum] = a.pos
- s = a.addState(s, inst.next, prefixed, match)
- return s
- }
- l := len(s)
- // States are inserted in order so it's sufficient to see if we have the same
- // instruction; no need to see if existing match is earlier (it is).
- for i := 0; i < l; i++ {
- if s[i].inst == inst {
- return s
- }
- }
- s = append(s, state{inst, prefixed, match})
- match.ref++
- if inst.kind == iAlt {
- s = a.addState(s, inst.left, prefixed, a.copy(match))
- // give other branch a copy of this match vector
- s = a.addState(s, inst.next, prefixed, a.copy(match))
- }
- return s
-}
-
-// input abstracts different representations of the input text. It provides
-// one-character lookahead.
-type input interface {
- step(pos int) (r rune, width int) // advance one rune
- canCheckPrefix() bool // can we look ahead without losing info?
- hasPrefix(re *Regexp) bool
- index(re *Regexp, pos int) int
-}
-
-// inputString scans a string.
-type inputString struct {
- str string
-}
-
-func newInputString(str string) *inputString {
- return &inputString{str: str}
-}
-
-func (i *inputString) step(pos int) (rune, int) {
- if pos < len(i.str) {
- return utf8.DecodeRuneInString(i.str[pos:len(i.str)])
- }
- return endOfText, 0
-}
-
-func (i *inputString) canCheckPrefix() bool {
- return true
-}
-
-func (i *inputString) hasPrefix(re *Regexp) bool {
- return strings.HasPrefix(i.str, re.prefix)
-}
-
-func (i *inputString) index(re *Regexp, pos int) int {
- return strings.Index(i.str[pos:], re.prefix)
-}
-
-// inputBytes scans a byte slice.
-type inputBytes struct {
- str []byte
-}
-
-func newInputBytes(str []byte) *inputBytes {
- return &inputBytes{str: str}
-}
-
-func (i *inputBytes) step(pos int) (rune, int) {
- if pos < len(i.str) {
- return utf8.DecodeRune(i.str[pos:len(i.str)])
- }
- return endOfText, 0
-}
-
-func (i *inputBytes) canCheckPrefix() bool {
- return true
-}
-
-func (i *inputBytes) hasPrefix(re *Regexp) bool {
- return bytes.HasPrefix(i.str, re.prefixBytes)
-}
-
-func (i *inputBytes) index(re *Regexp, pos int) int {
- return bytes.Index(i.str[pos:], re.prefixBytes)
-}
-
-// inputReader scans a RuneReader.
-type inputReader struct {
- r io.RuneReader
- atEOT bool
- pos int
-}
-
-func newInputReader(r io.RuneReader) *inputReader {
- return &inputReader{r: r}
-}
-
-func (i *inputReader) step(pos int) (rune, int) {
- if !i.atEOT && pos != i.pos {
- return endOfText, 0
-
- }
- r, w, err := i.r.ReadRune()
- if err != nil {
- i.atEOT = true
- return endOfText, 0
- }
- i.pos += w
- return r, w
-}
-
-func (i *inputReader) canCheckPrefix() bool {
- return false
-}
-
-func (i *inputReader) hasPrefix(re *Regexp) bool {
- return false
-}
-
-func (i *inputReader) index(re *Regexp, pos int) int {
- return -1
-}
-
-// Search match starting from pos bytes into the input.
-func (re *Regexp) doExecute(i input, pos int) []int {
- var s [2][]state
- s[0] = make([]state, 0, 10)
- s[1] = make([]state, 0, 10)
- in, out := 0, 1
- var final state
- found := false
- anchored := re.inst[0].next.kind == iBOT
- if anchored && pos > 0 {
- return nil
- }
- // fast check for initial plain substring
- if i.canCheckPrefix() && re.prefix != "" {
- advance := 0
- if anchored {
- if !i.hasPrefix(re) {
- return nil
- }
- } else {
- advance = i.index(re, pos)
- if advance == -1 {
- return nil
- }
- }
- pos += advance
- }
- // We look one character ahead so we can match $, which checks whether
- // we are at EOT.
- nextChar, nextWidth := i.step(pos)
- arena := &matchArena{
- len: 2 * (re.nbra + 1),
- pos: pos,
- atBOT: pos == 0,
- atEOT: nextChar == endOfText,
- }
- for c, startPos := rune(0), pos; c != endOfText; {
- if !found && (pos == startPos || !anchored) {
- // prime the pump if we haven't seen a match yet
- match := arena.noMatch()
- match.m[0] = pos
- s[out] = arena.addState(s[out], re.start.next, false, match)
- arena.free(match) // if addState saved it, ref was incremented
- } else if len(s[out]) == 0 {
- // machine has completed
- break
- }
- in, out = out, in // old out state is new in state
- // clear out old state
- old := s[out]
- for _, state := range old {
- arena.free(state.match)
- }
- s[out] = old[0:0] // truncate state vector
- c = nextChar
- thisPos := pos
- pos += nextWidth
- nextChar, nextWidth = i.step(pos)
- arena.atEOT = nextChar == endOfText
- arena.atBOT = false
- arena.pos = pos
- for _, st := range s[in] {
- switch st.inst.kind {
- case iBOT:
- case iEOT:
- case iChar:
- if c == st.inst.char {
- s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
- }
- case iCharClass:
- if st.inst.cclass.matches(c) {
- s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
- }
- case iAny:
- if c != endOfText {
- s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
- }
- case iNotNL:
- if c != endOfText && c != '\n' {
- s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match)
- }
- case iBra:
- case iAlt:
- case iEnd:
- // choose leftmost longest
- if !found || // first
- st.match.m[0] < final.match.m[0] || // leftmost
- (st.match.m[0] == final.match.m[0] && thisPos > final.match.m[1]) { // longest
- if final.match != nil {
- arena.free(final.match)
- }
- final = st
- final.match.ref++
- final.match.m[1] = thisPos
- }
- found = true
- default:
- st.inst.print()
- panic("unknown instruction in execute")
- }
- }
- }
- if final.match == nil {
- return nil
- }
- // if match found, back up start of match by width of prefix.
- if final.prefixed && len(final.match.m) > 0 {
- final.match.m[0] -= len(re.prefix)
- }
- return final.match.m
-}
-
-// LiteralPrefix returns a literal string that must begin any match
-// of the regular expression re. It returns the boolean true if the
-// literal string comprises the entire regular expression.
-func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
- c := make([]rune, len(re.inst)-2) // minus start and end.
- // First instruction is start; skip that.
- i := 0
- for inst := re.inst[0].next; inst.kind != iEnd; inst = inst.next {
- // stop if this is not a char
- if inst.kind != iChar {
- return string(c[:i]), false
- }
- c[i] = inst.char
- i++
- }
- return string(c[:i]), true
-}
-
-// MatchReader returns whether the Regexp matches the text read by the
-// RuneReader. The return value is a boolean: true for match, false for no
-// match.
-func (re *Regexp) MatchReader(r io.RuneReader) bool {
- return len(re.doExecute(newInputReader(r), 0)) > 0
-}
-
-// MatchString returns whether the Regexp matches the string s.
-// The return value is a boolean: true for match, false for no match.
-func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(newInputString(s), 0)) > 0 }
-
-// Match returns whether the Regexp matches the byte slice b.
-// The return value is a boolean: true for match, false for no match.
-func (re *Regexp) Match(b []byte) bool { return len(re.doExecute(newInputBytes(b), 0)) > 0 }
-
-// MatchReader checks whether a textual regular expression matches the text
-// read by the RuneReader. More complicated queries need to use Compile and
-// the full Regexp interface.
-func MatchReader(pattern string, r io.RuneReader) (matched bool, error error) {
- re, err := Compile(pattern)
- if err != nil {
- return false, err
- }
- return re.MatchReader(r), nil
-}
-
-// MatchString checks whether a textual regular expression
-// matches a string. More complicated queries need
-// to use Compile and the full Regexp interface.
-func MatchString(pattern string, s string) (matched bool, error error) {
- re, err := Compile(pattern)
- if err != nil {
- return false, err
- }
- return re.MatchString(s), nil
-}
-
-// Match checks whether a textual regular expression
-// matches a byte slice. More complicated queries need
-// to use Compile and the full Regexp interface.
-func Match(pattern string, b []byte) (matched bool, error error) {
- re, err := Compile(pattern)
- if err != nil {
- return false, err
- }
- return re.Match(b), nil
-}
-
-// ReplaceAllString returns a copy of src in which all matches for the Regexp
-// have been replaced by repl. No support is provided for expressions
-// (e.g. \1 or $1) in the replacement string.
-func (re *Regexp) ReplaceAllString(src, repl string) string {
- return re.ReplaceAllStringFunc(src, func(string) string { return repl })
-}
-
-// ReplaceAllStringFunc returns a copy of src in which all matches for the
-// Regexp have been replaced by the return value of of function repl (whose
-// first argument is the matched string). No support is provided for
-// expressions (e.g. \1 or $1) in the replacement string.
-func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
- lastMatchEnd := 0 // end position of the most recent match
- searchPos := 0 // position where we next look for a match
- buf := new(bytes.Buffer)
- for searchPos <= len(src) {
- a := re.doExecute(newInputString(src), searchPos)
- if len(a) == 0 {
- break // no more matches
- }
-
- // Copy the unmatched characters before this match.
- io.WriteString(buf, src[lastMatchEnd:a[0]])
-
- // Now insert a copy of the replacement string, but not for a
- // match of the empty string immediately after another match.
- // (Otherwise, we get double replacement for patterns that
- // match both empty and nonempty strings.)
- if a[1] > lastMatchEnd || a[0] == 0 {
- io.WriteString(buf, repl(src[a[0]:a[1]]))
- }
- lastMatchEnd = a[1]
-
- // Advance past this match; always advance at least one character.
- _, width := utf8.DecodeRuneInString(src[searchPos:])
- if searchPos+width > a[1] {
- searchPos += width
- } else if searchPos+1 > a[1] {
- // This clause is only needed at the end of the input
- // string. In that case, DecodeRuneInString returns width=0.
- searchPos++
- } else {
- searchPos = a[1]
- }
- }
-
- // Copy the unmatched characters after the last match.
- io.WriteString(buf, src[lastMatchEnd:])
-
- return buf.String()
-}
-
-// ReplaceAll returns a copy of src in which all matches for the Regexp
-// have been replaced by repl. No support is provided for expressions
-// (e.g. \1 or $1) in the replacement text.
-func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
- return re.ReplaceAllFunc(src, func([]byte) []byte { return repl })
-}
-
-// ReplaceAllFunc returns a copy of src in which all matches for the
-// Regexp have been replaced by the return value of of function repl (whose
-// first argument is the matched []byte). No support is provided for
-// expressions (e.g. \1 or $1) in the replacement string.
-func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
- lastMatchEnd := 0 // end position of the most recent match
- searchPos := 0 // position where we next look for a match
- buf := new(bytes.Buffer)
- for searchPos <= len(src) {
- a := re.doExecute(newInputBytes(src), searchPos)
- if len(a) == 0 {
- break // no more matches
- }
-
- // Copy the unmatched characters before this match.
- buf.Write(src[lastMatchEnd:a[0]])
-
- // Now insert a copy of the replacement string, but not for a
- // match of the empty string immediately after another match.
- // (Otherwise, we get double replacement for patterns that
- // match both empty and nonempty strings.)
- if a[1] > lastMatchEnd || a[0] == 0 {
- buf.Write(repl(src[a[0]:a[1]]))
- }
- lastMatchEnd = a[1]
-
- // Advance past this match; always advance at least one character.
- _, width := utf8.DecodeRune(src[searchPos:])
- if searchPos+width > a[1] {
- searchPos += width
- } else if searchPos+1 > a[1] {
- // This clause is only needed at the end of the input
- // string. In that case, DecodeRuneInString returns width=0.
- searchPos++
- } else {
- searchPos = a[1]
- }
- }
-
- // Copy the unmatched characters after the last match.
- buf.Write(src[lastMatchEnd:])
-
- return buf.Bytes()
-}
-
-// QuoteMeta returns a string that quotes all regular expression metacharacters
-// inside the argument text; the returned string is a regular expression matching
-// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
-func QuoteMeta(s string) string {
- b := make([]byte, 2*len(s))
-
- // A byte loop is correct because all metacharacters are ASCII.
- j := 0
- for i := 0; i < len(s); i++ {
- if special(rune(s[i])) {
- b[j] = '\\'
- j++
- }
- b[j] = s[i]
- j++
- }
- return string(b[0:j])
-}
-
-// Find matches in slice b if b is non-nil, otherwise find matches in string s.
-func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
- var end int
- if b == nil {
- end = len(s)
- } else {
- end = len(b)
- }
-
- for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
- var in input
- if b == nil {
- in = newInputString(s)
- } else {
- in = newInputBytes(b)
- }
- matches := re.doExecute(in, pos)
- if len(matches) == 0 {
- break
- }
-
- accept := true
- if matches[1] == pos {
- // We've found an empty match.
- if matches[0] == prevMatchEnd {
- // We don't allow an empty match right
- // after a previous match, so ignore it.
- accept = false
- }
- var width int
- // TODO: use step()
- if b == nil {
- _, width = utf8.DecodeRuneInString(s[pos:end])
- } else {
- _, width = utf8.DecodeRune(b[pos:end])
- }
- if width > 0 {
- pos += width
- } else {
- pos = end + 1
- }
- } else {
- pos = matches[1]
- }
- prevMatchEnd = matches[1]
-
- if accept {
- deliver(matches)
- i++
- }
- }
-}
-
-// Find returns a slice holding the text of the leftmost match in b of the regular expression.
-// A return value of nil indicates no match.
-func (re *Regexp) Find(b []byte) []byte {
- a := re.doExecute(newInputBytes(b), 0)
- if a == nil {
- return nil
- }
- return b[a[0]:a[1]]
-}
-
-// FindIndex returns a two-element slice of integers defining the location of
-// the leftmost match in b of the regular expression. The match itself is at
-// b[loc[0]:loc[1]].
-// A return value of nil indicates no match.
-func (re *Regexp) FindIndex(b []byte) (loc []int) {
- a := re.doExecute(newInputBytes(b), 0)
- if a == nil {
- return nil
- }
- return a[0:2]
-}
-
-// FindString returns a string holding the text of the leftmost match in s of the regular
-// expression. If there is no match, the return value is an empty string,
-// but it will also be empty if the regular expression successfully matches
-// an empty string. Use FindStringIndex or FindStringSubmatch if it is
-// necessary to distinguish these cases.
-func (re *Regexp) FindString(s string) string {
- a := re.doExecute(newInputString(s), 0)
- if a == nil {
- return ""
- }
- return s[a[0]:a[1]]
-}
-
-// FindStringIndex returns a two-element slice of integers defining the
-// location of the leftmost match in s of the regular expression. The match
-// itself is at s[loc[0]:loc[1]].
-// A return value of nil indicates no match.
-func (re *Regexp) FindStringIndex(s string) []int {
- a := re.doExecute(newInputString(s), 0)
- if a == nil {
- return nil
- }
- return a[0:2]
-}
-
-// FindReaderIndex returns a two-element slice of integers defining the
-// location of the leftmost match of the regular expression in text read from
-// the RuneReader. The match itself is at s[loc[0]:loc[1]]. A return
-// value of nil indicates no match.
-func (re *Regexp) FindReaderIndex(r io.RuneReader) []int {
- a := re.doExecute(newInputReader(r), 0)
- if a == nil {
- return nil
- }
- return a[0:2]
-}
-
-// FindSubmatch returns a slice of slices holding the text of the leftmost
-// match of the regular expression in b and the matches, if any, of its
-// subexpressions, as defined by the 'Submatch' descriptions in the package
-// comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindSubmatch(b []byte) [][]byte {
- a := re.doExecute(newInputBytes(b), 0)
- if a == nil {
- return nil
- }
- ret := make([][]byte, len(a)/2)
- for i := range ret {
- if a[2*i] >= 0 {
- ret[i] = b[a[2*i]:a[2*i+1]]
- }
- }
- return ret
-}
-
-// FindSubmatchIndex returns a slice holding the index pairs identifying the
-// leftmost match of the regular expression in b and the matches, if any, of
-// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
-// in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindSubmatchIndex(b []byte) []int {
- return re.doExecute(newInputBytes(b), 0)
-}
-
-// FindStringSubmatch returns a slice of strings holding the text of the
-// leftmost match of the regular expression in s and the matches, if any, of
-// its subexpressions, as defined by the 'Submatch' description in the
-// package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindStringSubmatch(s string) []string {
- a := re.doExecute(newInputString(s), 0)
- if a == nil {
- return nil
- }
- ret := make([]string, len(a)/2)
- for i := range ret {
- if a[2*i] >= 0 {
- ret[i] = s[a[2*i]:a[2*i+1]]
- }
- }
- return ret
-}
-
-// FindStringSubmatchIndex returns a slice holding the index pairs
-// identifying the leftmost match of the regular expression in s and the
-// matches, if any, of its subexpressions, as defined by the 'Submatch' and
-// 'Index' descriptions in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindStringSubmatchIndex(s string) []int {
- return re.doExecute(newInputString(s), 0)
-}
-
-// FindReaderSubmatchIndex returns a slice holding the index pairs
-// identifying the leftmost match of the regular expression of text read by
-// the RuneReader, and the matches, if any, of its subexpressions, as defined
-// by the 'Submatch' and 'Index' descriptions in the package comment. A
-// return value of nil indicates no match.
-func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
- return re.doExecute(newInputReader(r), 0)
-}
-
-const startSize = 10 // The size at which to start a slice in the 'All' routines.
-
-// FindAll is the 'All' version of Find; it returns a slice of all successive
-// matches of the expression, as defined by the 'All' description in the
-// package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAll(b []byte, n int) [][]byte {
- if n < 0 {
- n = len(b) + 1
- }
- result := make([][]byte, 0, startSize)
- re.allMatches("", b, n, func(match []int) {
- result = append(result, b[match[0]:match[1]])
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
-// successive matches of the expression, as defined by the 'All' description
-// in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
- if n < 0 {
- n = len(b) + 1
- }
- result := make([][]int, 0, startSize)
- re.allMatches("", b, n, func(match []int) {
- result = append(result, match[0:2])
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllString is the 'All' version of FindString; it returns a slice of all
-// successive matches of the expression, as defined by the 'All' description
-// in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllString(s string, n int) []string {
- if n < 0 {
- n = len(s) + 1
- }
- result := make([]string, 0, startSize)
- re.allMatches(s, nil, n, func(match []int) {
- result = append(result, s[match[0]:match[1]])
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
-// slice of all successive matches of the expression, as defined by the 'All'
-// description in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
- if n < 0 {
- n = len(s) + 1
- }
- result := make([][]int, 0, startSize)
- re.allMatches(s, nil, n, func(match []int) {
- result = append(result, match[0:2])
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
-// of all successive matches of the expression, as defined by the 'All'
-// description in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
- if n < 0 {
- n = len(b) + 1
- }
- result := make([][][]byte, 0, startSize)
- re.allMatches("", b, n, func(match []int) {
- slice := make([][]byte, len(match)/2)
- for j := range slice {
- if match[2*j] >= 0 {
- slice[j] = b[match[2*j]:match[2*j+1]]
- }
- }
- result = append(result, slice)
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
-// a slice of all successive matches of the expression, as defined by the
-// 'All' description in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
- if n < 0 {
- n = len(b) + 1
- }
- result := make([][]int, 0, startSize)
- re.allMatches("", b, n, func(match []int) {
- result = append(result, match)
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
-// returns a slice of all successive matches of the expression, as defined by
-// the 'All' description in the package comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
- if n < 0 {
- n = len(s) + 1
- }
- result := make([][]string, 0, startSize)
- re.allMatches(s, nil, n, func(match []int) {
- slice := make([]string, len(match)/2)
- for j := range slice {
- if match[2*j] >= 0 {
- slice[j] = s[match[2*j]:match[2*j+1]]
- }
- }
- result = append(result, slice)
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}
-
-// FindAllStringSubmatchIndex is the 'All' version of
-// FindStringSubmatchIndex; it returns a slice of all successive matches of
-// the expression, as defined by the 'All' description in the package
-// comment.
-// A return value of nil indicates no match.
-func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
- if n < 0 {
- n = len(s) + 1
- }
- result := make([][]int, 0, startSize)
- re.allMatches(s, nil, n, func(match []int) {
- result = append(result, match)
- })
- if len(result) == 0 {
- return nil
- }
- return result
-}