summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/proc.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/runtime/proc.go')
-rw-r--r--libgo/go/runtime/proc.go2890
1 files changed, 2890 insertions, 0 deletions
diff --git a/libgo/go/runtime/proc.go b/libgo/go/runtime/proc.go
new file mode 100644
index 0000000000..ea7f84e9b7
--- /dev/null
+++ b/libgo/go/runtime/proc.go
@@ -0,0 +1,2890 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime
+
+import (
+ "runtime/internal/atomic"
+ "unsafe"
+)
+
+// Functions temporarily called by C code.
+//go:linkname newextram runtime.newextram
+//go:linkname acquirep runtime.acquirep
+//go:linkname releasep runtime.releasep
+//go:linkname incidlelocked runtime.incidlelocked
+//go:linkname checkdead runtime.checkdead
+//go:linkname sysmon runtime.sysmon
+//go:linkname schedtrace runtime.schedtrace
+//go:linkname allgadd runtime.allgadd
+//go:linkname mcommoninit runtime.mcommoninit
+//go:linkname ready runtime.ready
+//go:linkname gcprocs runtime.gcprocs
+//go:linkname needaddgcproc runtime.needaddgcproc
+//go:linkname stopm runtime.stopm
+//go:linkname handoffp runtime.handoffp
+//go:linkname wakep runtime.wakep
+//go:linkname stoplockedm runtime.stoplockedm
+//go:linkname schedule runtime.schedule
+//go:linkname execute runtime.execute
+//go:linkname gfput runtime.gfput
+//go:linkname gfget runtime.gfget
+//go:linkname lockOSThread runtime.lockOSThread
+//go:linkname unlockOSThread runtime.unlockOSThread
+//go:linkname procresize runtime.procresize
+//go:linkname helpgc runtime.helpgc
+//go:linkname stopTheWorldWithSema runtime.stopTheWorldWithSema
+//go:linkname startTheWorldWithSema runtime.startTheWorldWithSema
+//go:linkname mput runtime.mput
+//go:linkname mget runtime.mget
+//go:linkname globrunqput runtime.globrunqput
+//go:linkname pidleget runtime.pidleget
+//go:linkname runqempty runtime.runqempty
+//go:linkname runqput runtime.runqput
+
+// Function called by misc/cgo/test.
+//go:linkname lockedOSThread runtime.lockedOSThread
+
+// Functions temporarily in C that have not yet been ported.
+func allocm(*p, bool, *unsafe.Pointer, *uintptr) *m
+func malg(bool, bool, *unsafe.Pointer, *uintptr) *g
+func startm(*p, bool)
+func newm(unsafe.Pointer, *p)
+func gchelper()
+func getfingwait() bool
+func getfingwake() bool
+func wakefing() *g
+
+// C functions for ucontext management.
+func gogo(*g)
+func setGContext()
+func makeGContext(*g, unsafe.Pointer, uintptr)
+func getTraceback(me, gp *g)
+
+// main_init_done is a signal used by cgocallbackg that initialization
+// has been completed. It is made before _cgo_notify_runtime_init_done,
+// so all cgo calls can rely on it existing. When main_init is complete,
+// it is closed, meaning cgocallbackg can reliably receive from it.
+var main_init_done chan bool
+
+func goready(gp *g, traceskip int) {
+ systemstack(func() {
+ ready(gp, traceskip, true)
+ })
+}
+
+//go:nosplit
+func acquireSudog() *sudog {
+ // Delicate dance: the semaphore implementation calls
+ // acquireSudog, acquireSudog calls new(sudog),
+ // new calls malloc, malloc can call the garbage collector,
+ // and the garbage collector calls the semaphore implementation
+ // in stopTheWorld.
+ // Break the cycle by doing acquirem/releasem around new(sudog).
+ // The acquirem/releasem increments m.locks during new(sudog),
+ // which keeps the garbage collector from being invoked.
+ mp := acquirem()
+ pp := mp.p.ptr()
+ if len(pp.sudogcache) == 0 {
+ lock(&sched.sudoglock)
+ // First, try to grab a batch from central cache.
+ for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
+ s := sched.sudogcache
+ sched.sudogcache = s.next
+ s.next = nil
+ pp.sudogcache = append(pp.sudogcache, s)
+ }
+ unlock(&sched.sudoglock)
+ // If the central cache is empty, allocate a new one.
+ if len(pp.sudogcache) == 0 {
+ pp.sudogcache = append(pp.sudogcache, new(sudog))
+ }
+ }
+ n := len(pp.sudogcache)
+ s := pp.sudogcache[n-1]
+ pp.sudogcache[n-1] = nil
+ pp.sudogcache = pp.sudogcache[:n-1]
+ if s.elem != nil {
+ throw("acquireSudog: found s.elem != nil in cache")
+ }
+ releasem(mp)
+ return s
+}
+
+//go:nosplit
+func releaseSudog(s *sudog) {
+ if s.elem != nil {
+ throw("runtime: sudog with non-nil elem")
+ }
+ if s.selectdone != nil {
+ throw("runtime: sudog with non-nil selectdone")
+ }
+ if s.next != nil {
+ throw("runtime: sudog with non-nil next")
+ }
+ if s.prev != nil {
+ throw("runtime: sudog with non-nil prev")
+ }
+ if s.waitlink != nil {
+ throw("runtime: sudog with non-nil waitlink")
+ }
+ if s.c != nil {
+ throw("runtime: sudog with non-nil c")
+ }
+ gp := getg()
+ if gp.param != nil {
+ throw("runtime: releaseSudog with non-nil gp.param")
+ }
+ mp := acquirem() // avoid rescheduling to another P
+ pp := mp.p.ptr()
+ if len(pp.sudogcache) == cap(pp.sudogcache) {
+ // Transfer half of local cache to the central cache.
+ var first, last *sudog
+ for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
+ n := len(pp.sudogcache)
+ p := pp.sudogcache[n-1]
+ pp.sudogcache[n-1] = nil
+ pp.sudogcache = pp.sudogcache[:n-1]
+ if first == nil {
+ first = p
+ } else {
+ last.next = p
+ }
+ last = p
+ }
+ lock(&sched.sudoglock)
+ last.next = sched.sudogcache
+ sched.sudogcache = first
+ unlock(&sched.sudoglock)
+ }
+ pp.sudogcache = append(pp.sudogcache, s)
+ releasem(mp)
+}
+
+// funcPC returns the entry PC of the function f.
+// It assumes that f is a func value. Otherwise the behavior is undefined.
+// For gccgo here unless and until we port proc.go.
+// Note that this differs from the gc implementation; the gc implementation
+// adds sys.PtrSize to the address of the interface value, but GCC's
+// alias analysis decides that that can not be a reference to the second
+// field of the interface, and in some cases it drops the initialization
+// of the second field as a dead store.
+//go:nosplit
+func funcPC(f interface{}) uintptr {
+ i := (*iface)(unsafe.Pointer(&f))
+ return **(**uintptr)(i.data)
+}
+
+func lockedOSThread() bool {
+ gp := getg()
+ return gp.lockedm != nil && gp.m.lockedg != nil
+}
+
+var (
+ allgs []*g
+ allglock mutex
+)
+
+func allgadd(gp *g) {
+ if readgstatus(gp) == _Gidle {
+ throw("allgadd: bad status Gidle")
+ }
+
+ lock(&allglock)
+ allgs = append(allgs, gp)
+ allglen = uintptr(len(allgs))
+
+ // Grow GC rescan list if necessary.
+ if len(allgs) > cap(work.rescan.list) {
+ lock(&work.rescan.lock)
+ l := work.rescan.list
+ // Let append do the heavy lifting, but keep the
+ // length the same.
+ work.rescan.list = append(l[:cap(l)], 0)[:len(l)]
+ unlock(&work.rescan.lock)
+ }
+ unlock(&allglock)
+}
+
+func dumpgstatus(gp *g) {
+ _g_ := getg()
+ print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
+}
+
+func checkmcount() {
+ // sched lock is held
+ if sched.mcount > sched.maxmcount {
+ print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
+ throw("thread exhaustion")
+ }
+}
+
+func mcommoninit(mp *m) {
+ _g_ := getg()
+
+ // g0 stack won't make sense for user (and is not necessary unwindable).
+ if _g_ != _g_.m.g0 {
+ callers(1, mp.createstack[:])
+ }
+
+ mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
+ if mp.fastrand == 0 {
+ mp.fastrand = 0x49f6428a
+ }
+
+ lock(&sched.lock)
+ mp.id = sched.mcount
+ sched.mcount++
+ checkmcount()
+ mpreinit(mp)
+
+ // Add to allm so garbage collector doesn't free g->m
+ // when it is just in a register or thread-local storage.
+ mp.alllink = allm
+
+ // NumCgoCall() iterates over allm w/o schedlock,
+ // so we need to publish it safely.
+ atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
+ unlock(&sched.lock)
+}
+
+// Mark gp ready to run.
+func ready(gp *g, traceskip int, next bool) {
+ if trace.enabled {
+ traceGoUnpark(gp, traceskip)
+ }
+
+ status := readgstatus(gp)
+
+ // Mark runnable.
+ _g_ := getg()
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ if status&^_Gscan != _Gwaiting {
+ dumpgstatus(gp)
+ throw("bad g->status in ready")
+ }
+
+ // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ runqput(_g_.m.p.ptr(), gp, next)
+ if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
+ wakep()
+ }
+ _g_.m.locks--
+}
+
+func gcprocs() int32 {
+ // Figure out how many CPUs to use during GC.
+ // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
+ lock(&sched.lock)
+ n := gomaxprocs
+ if n > ncpu {
+ n = ncpu
+ }
+ if n > _MaxGcproc {
+ n = _MaxGcproc
+ }
+ if n > sched.nmidle+1 { // one M is currently running
+ n = sched.nmidle + 1
+ }
+ unlock(&sched.lock)
+ return n
+}
+
+func needaddgcproc() bool {
+ lock(&sched.lock)
+ n := gomaxprocs
+ if n > ncpu {
+ n = ncpu
+ }
+ if n > _MaxGcproc {
+ n = _MaxGcproc
+ }
+ n -= sched.nmidle + 1 // one M is currently running
+ unlock(&sched.lock)
+ return n > 0
+}
+
+func helpgc(nproc int32) {
+ _g_ := getg()
+ lock(&sched.lock)
+ pos := 0
+ for n := int32(1); n < nproc; n++ { // one M is currently running
+ if allp[pos].mcache == _g_.m.mcache {
+ pos++
+ }
+ mp := mget()
+ if mp == nil {
+ throw("gcprocs inconsistency")
+ }
+ mp.helpgc = n
+ mp.p.set(allp[pos])
+ mp.mcache = allp[pos].mcache
+ pos++
+ notewakeup(&mp.park)
+ }
+ unlock(&sched.lock)
+}
+
+// freezeStopWait is a large value that freezetheworld sets
+// sched.stopwait to in order to request that all Gs permanently stop.
+const freezeStopWait = 0x7fffffff
+
+// freezing is set to non-zero if the runtime is trying to freeze the
+// world.
+var freezing uint32
+
+// Similar to stopTheWorld but best-effort and can be called several times.
+// There is no reverse operation, used during crashing.
+// This function must not lock any mutexes.
+func freezetheworld() {
+ atomic.Store(&freezing, 1)
+ // stopwait and preemption requests can be lost
+ // due to races with concurrently executing threads,
+ // so try several times
+ for i := 0; i < 5; i++ {
+ // this should tell the scheduler to not start any new goroutines
+ sched.stopwait = freezeStopWait
+ atomic.Store(&sched.gcwaiting, 1)
+ // this should stop running goroutines
+ if !preemptall() {
+ break // no running goroutines
+ }
+ usleep(1000)
+ }
+ // to be sure
+ usleep(1000)
+ preemptall()
+ usleep(1000)
+}
+
+func isscanstatus(status uint32) bool {
+ if status == _Gscan {
+ throw("isscanstatus: Bad status Gscan")
+ }
+ return status&_Gscan == _Gscan
+}
+
+// All reads and writes of g's status go through readgstatus, casgstatus
+// castogscanstatus, casfrom_Gscanstatus.
+//go:nosplit
+func readgstatus(gp *g) uint32 {
+ return atomic.Load(&gp.atomicstatus)
+}
+
+// Ownership of gcscanvalid:
+//
+// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
+// then gp owns gp.gcscanvalid, and other goroutines must not modify it.
+//
+// Otherwise, a second goroutine can lock the scan state by setting _Gscan
+// in the status bit and then modify gcscanvalid, and then unlock the scan state.
+//
+// Note that the first condition implies an exception to the second:
+// if a second goroutine changes gp's status to _Grunning|_Gscan,
+// that second goroutine still does not have the right to modify gcscanvalid.
+
+// The Gscanstatuses are acting like locks and this releases them.
+// If it proves to be a performance hit we should be able to make these
+// simple atomic stores but for now we are going to throw if
+// we see an inconsistent state.
+func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
+ success := false
+
+ // Check that transition is valid.
+ switch oldval {
+ default:
+ print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ throw("casfrom_Gscanstatus:top gp->status is not in scan state")
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscanrunning,
+ _Gscansyscall:
+ if newval == oldval&^_Gscan {
+ success = atomic.Cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ if !success {
+ print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ throw("casfrom_Gscanstatus: gp->status is not in scan state")
+ }
+}
+
+// This will return false if the gp is not in the expected status and the cas fails.
+// This acts like a lock acquire while the casfromgstatus acts like a lock release.
+func castogscanstatus(gp *g, oldval, newval uint32) bool {
+ switch oldval {
+ case _Grunnable,
+ _Grunning,
+ _Gwaiting,
+ _Gsyscall:
+ if newval == oldval|_Gscan {
+ return atomic.Cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ throw("castogscanstatus")
+ panic("not reached")
+}
+
+// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
+// and casfrom_Gscanstatus instead.
+// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
+// put it in the Gscan state is finished.
+//go:nosplit
+func casgstatus(gp *g, oldval, newval uint32) {
+ if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
+ systemstack(func() {
+ print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ throw("casgstatus: bad incoming values")
+ })
+ }
+
+ if oldval == _Grunning && gp.gcscanvalid {
+ // If oldvall == _Grunning, then the actual status must be
+ // _Grunning or _Grunning|_Gscan; either way,
+ // we own gp.gcscanvalid, so it's safe to read.
+ // gp.gcscanvalid must not be true when we are running.
+ print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
+ throw("casgstatus")
+ }
+
+ // See http://golang.org/cl/21503 for justification of the yield delay.
+ const yieldDelay = 5 * 1000
+ var nextYield int64
+
+ // loop if gp->atomicstatus is in a scan state giving
+ // GC time to finish and change the state to oldval.
+ for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
+ if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
+ systemstack(func() {
+ throw("casgstatus: waiting for Gwaiting but is Grunnable")
+ })
+ }
+ // Help GC if needed.
+ // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
+ // gp.preemptscan = false
+ // systemstack(func() {
+ // gcphasework(gp)
+ // })
+ // }
+ // But meanwhile just yield.
+ if i == 0 {
+ nextYield = nanotime() + yieldDelay
+ }
+ if nanotime() < nextYield {
+ for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
+ procyield(1)
+ }
+ } else {
+ osyield()
+ nextYield = nanotime() + yieldDelay/2
+ }
+ }
+ if newval == _Grunning && gp.gcscanvalid {
+ // Run queueRescan on the system stack so it has more space.
+ systemstack(func() { queueRescan(gp) })
+ }
+}
+
+// stopTheWorld stops all P's from executing goroutines, interrupting
+// all goroutines at GC safe points and records reason as the reason
+// for the stop. On return, only the current goroutine's P is running.
+// stopTheWorld must not be called from a system stack and the caller
+// must not hold worldsema. The caller must call startTheWorld when
+// other P's should resume execution.
+//
+// stopTheWorld is safe for multiple goroutines to call at the
+// same time. Each will execute its own stop, and the stops will
+// be serialized.
+//
+// This is also used by routines that do stack dumps. If the system is
+// in panic or being exited, this may not reliably stop all
+// goroutines.
+func stopTheWorld(reason string) {
+ semacquire(&worldsema, 0)
+ getg().m.preemptoff = reason
+ systemstack(stopTheWorldWithSema)
+}
+
+// startTheWorld undoes the effects of stopTheWorld.
+func startTheWorld() {
+ systemstack(startTheWorldWithSema)
+ // worldsema must be held over startTheWorldWithSema to ensure
+ // gomaxprocs cannot change while worldsema is held.
+ semrelease(&worldsema)
+ getg().m.preemptoff = ""
+}
+
+// Holding worldsema grants an M the right to try to stop the world
+// and prevents gomaxprocs from changing concurrently.
+var worldsema uint32 = 1
+
+// stopTheWorldWithSema is the core implementation of stopTheWorld.
+// The caller is responsible for acquiring worldsema and disabling
+// preemption first and then should stopTheWorldWithSema on the system
+// stack:
+//
+// semacquire(&worldsema, 0)
+// m.preemptoff = "reason"
+// systemstack(stopTheWorldWithSema)
+//
+// When finished, the caller must either call startTheWorld or undo
+// these three operations separately:
+//
+// m.preemptoff = ""
+// systemstack(startTheWorldWithSema)
+// semrelease(&worldsema)
+//
+// It is allowed to acquire worldsema once and then execute multiple
+// startTheWorldWithSema/stopTheWorldWithSema pairs.
+// Other P's are able to execute between successive calls to
+// startTheWorldWithSema and stopTheWorldWithSema.
+// Holding worldsema causes any other goroutines invoking
+// stopTheWorld to block.
+func stopTheWorldWithSema() {
+ _g_ := getg()
+
+ // If we hold a lock, then we won't be able to stop another M
+ // that is blocked trying to acquire the lock.
+ if _g_.m.locks > 0 {
+ throw("stopTheWorld: holding locks")
+ }
+
+ lock(&sched.lock)
+ sched.stopwait = gomaxprocs
+ atomic.Store(&sched.gcwaiting, 1)
+ preemptall()
+ // stop current P
+ _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
+ sched.stopwait--
+ // try to retake all P's in Psyscall status
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ s := p.status
+ if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
+ if trace.enabled {
+ traceGoSysBlock(p)
+ traceProcStop(p)
+ }
+ p.syscalltick++
+ sched.stopwait--
+ }
+ }
+ // stop idle P's
+ for {
+ p := pidleget()
+ if p == nil {
+ break
+ }
+ p.status = _Pgcstop
+ sched.stopwait--
+ }
+ wait := sched.stopwait > 0
+ unlock(&sched.lock)
+
+ // wait for remaining P's to stop voluntarily
+ if wait {
+ for {
+ // wait for 100us, then try to re-preempt in case of any races
+ if notetsleep(&sched.stopnote, 100*1000) {
+ noteclear(&sched.stopnote)
+ break
+ }
+ preemptall()
+ }
+ }
+
+ // sanity checks
+ bad := ""
+ if sched.stopwait != 0 {
+ bad = "stopTheWorld: not stopped (stopwait != 0)"
+ } else {
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ if p.status != _Pgcstop {
+ bad = "stopTheWorld: not stopped (status != _Pgcstop)"
+ }
+ }
+ }
+ if atomic.Load(&freezing) != 0 {
+ // Some other thread is panicking. This can cause the
+ // sanity checks above to fail if the panic happens in
+ // the signal handler on a stopped thread. Either way,
+ // we should halt this thread.
+ lock(&deadlock)
+ lock(&deadlock)
+ }
+ if bad != "" {
+ throw(bad)
+ }
+}
+
+func mhelpgc() {
+ _g_ := getg()
+ _g_.m.helpgc = -1
+}
+
+func startTheWorldWithSema() {
+ _g_ := getg()
+
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ gp := netpoll(false) // non-blocking
+ injectglist(gp)
+ add := needaddgcproc()
+ lock(&sched.lock)
+
+ procs := gomaxprocs
+ if newprocs != 0 {
+ procs = newprocs
+ newprocs = 0
+ }
+ p1 := procresize(procs)
+ sched.gcwaiting = 0
+ if sched.sysmonwait != 0 {
+ sched.sysmonwait = 0
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+
+ for p1 != nil {
+ p := p1
+ p1 = p1.link.ptr()
+ if p.m != 0 {
+ mp := p.m.ptr()
+ p.m = 0
+ if mp.nextp != 0 {
+ throw("startTheWorld: inconsistent mp->nextp")
+ }
+ mp.nextp.set(p)
+ notewakeup(&mp.park)
+ } else {
+ // Start M to run P. Do not start another M below.
+ newm(nil, p)
+ add = false
+ }
+ }
+
+ // Wakeup an additional proc in case we have excessive runnable goroutines
+ // in local queues or in the global queue. If we don't, the proc will park itself.
+ // If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
+ if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
+ wakep()
+ }
+
+ if add {
+ // If GC could have used another helper proc, start one now,
+ // in the hope that it will be available next time.
+ // It would have been even better to start it before the collection,
+ // but doing so requires allocating memory, so it's tricky to
+ // coordinate. This lazy approach works out in practice:
+ // we don't mind if the first couple gc rounds don't have quite
+ // the maximum number of procs.
+ newm(unsafe.Pointer(funcPC(mhelpgc)), nil)
+ }
+ _g_.m.locks--
+}
+
+// forEachP calls fn(p) for every P p when p reaches a GC safe point.
+// If a P is currently executing code, this will bring the P to a GC
+// safe point and execute fn on that P. If the P is not executing code
+// (it is idle or in a syscall), this will call fn(p) directly while
+// preventing the P from exiting its state. This does not ensure that
+// fn will run on every CPU executing Go code, but it acts as a global
+// memory barrier. GC uses this as a "ragged barrier."
+//
+// The caller must hold worldsema.
+//
+//go:systemstack
+func forEachP(fn func(*p)) {
+ mp := acquirem()
+ _p_ := getg().m.p.ptr()
+
+ lock(&sched.lock)
+ if sched.safePointWait != 0 {
+ throw("forEachP: sched.safePointWait != 0")
+ }
+ sched.safePointWait = gomaxprocs - 1
+ sched.safePointFn = fn
+
+ // Ask all Ps to run the safe point function.
+ for _, p := range allp[:gomaxprocs] {
+ if p != _p_ {
+ atomic.Store(&p.runSafePointFn, 1)
+ }
+ }
+ preemptall()
+
+ // Any P entering _Pidle or _Psyscall from now on will observe
+ // p.runSafePointFn == 1 and will call runSafePointFn when
+ // changing its status to _Pidle/_Psyscall.
+
+ // Run safe point function for all idle Ps. sched.pidle will
+ // not change because we hold sched.lock.
+ for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
+ if atomic.Cas(&p.runSafePointFn, 1, 0) {
+ fn(p)
+ sched.safePointWait--
+ }
+ }
+
+ wait := sched.safePointWait > 0
+ unlock(&sched.lock)
+
+ // Run fn for the current P.
+ fn(_p_)
+
+ // Force Ps currently in _Psyscall into _Pidle and hand them
+ // off to induce safe point function execution.
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ s := p.status
+ if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
+ if trace.enabled {
+ traceGoSysBlock(p)
+ traceProcStop(p)
+ }
+ p.syscalltick++
+ handoffp(p)
+ }
+ }
+
+ // Wait for remaining Ps to run fn.
+ if wait {
+ for {
+ // Wait for 100us, then try to re-preempt in
+ // case of any races.
+ //
+ // Requires system stack.
+ if notetsleep(&sched.safePointNote, 100*1000) {
+ noteclear(&sched.safePointNote)
+ break
+ }
+ preemptall()
+ }
+ }
+ if sched.safePointWait != 0 {
+ throw("forEachP: not done")
+ }
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ if p.runSafePointFn != 0 {
+ throw("forEachP: P did not run fn")
+ }
+ }
+
+ lock(&sched.lock)
+ sched.safePointFn = nil
+ unlock(&sched.lock)
+ releasem(mp)
+}
+
+// runSafePointFn runs the safe point function, if any, for this P.
+// This should be called like
+//
+// if getg().m.p.runSafePointFn != 0 {
+// runSafePointFn()
+// }
+//
+// runSafePointFn must be checked on any transition in to _Pidle or
+// _Psyscall to avoid a race where forEachP sees that the P is running
+// just before the P goes into _Pidle/_Psyscall and neither forEachP
+// nor the P run the safe-point function.
+func runSafePointFn() {
+ p := getg().m.p.ptr()
+ // Resolve the race between forEachP running the safe-point
+ // function on this P's behalf and this P running the
+ // safe-point function directly.
+ if !atomic.Cas(&p.runSafePointFn, 1, 0) {
+ return
+ }
+ sched.safePointFn(p)
+ lock(&sched.lock)
+ sched.safePointWait--
+ if sched.safePointWait == 0 {
+ notewakeup(&sched.safePointNote)
+ }
+ unlock(&sched.lock)
+}
+
+// needm is called when a cgo callback happens on a
+// thread without an m (a thread not created by Go).
+// In this case, needm is expected to find an m to use
+// and return with m, g initialized correctly.
+// Since m and g are not set now (likely nil, but see below)
+// needm is limited in what routines it can call. In particular
+// it can only call nosplit functions (textflag 7) and cannot
+// do any scheduling that requires an m.
+//
+// In order to avoid needing heavy lifting here, we adopt
+// the following strategy: there is a stack of available m's
+// that can be stolen. Using compare-and-swap
+// to pop from the stack has ABA races, so we simulate
+// a lock by doing an exchange (via casp) to steal the stack
+// head and replace the top pointer with MLOCKED (1).
+// This serves as a simple spin lock that we can use even
+// without an m. The thread that locks the stack in this way
+// unlocks the stack by storing a valid stack head pointer.
+//
+// In order to make sure that there is always an m structure
+// available to be stolen, we maintain the invariant that there
+// is always one more than needed. At the beginning of the
+// program (if cgo is in use) the list is seeded with a single m.
+// If needm finds that it has taken the last m off the list, its job
+// is - once it has installed its own m so that it can do things like
+// allocate memory - to create a spare m and put it on the list.
+//
+// Each of these extra m's also has a g0 and a curg that are
+// pressed into service as the scheduling stack and current
+// goroutine for the duration of the cgo callback.
+//
+// When the callback is done with the m, it calls dropm to
+// put the m back on the list.
+//go:nosplit
+func needm(x byte) {
+ if iscgo && !cgoHasExtraM {
+ // Can happen if C/C++ code calls Go from a global ctor.
+ // Can not throw, because scheduler is not initialized yet.
+ write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
+ exit(1)
+ }
+
+ // Lock extra list, take head, unlock popped list.
+ // nilokay=false is safe here because of the invariant above,
+ // that the extra list always contains or will soon contain
+ // at least one m.
+ mp := lockextra(false)
+
+ // Set needextram when we've just emptied the list,
+ // so that the eventual call into cgocallbackg will
+ // allocate a new m for the extra list. We delay the
+ // allocation until then so that it can be done
+ // after exitsyscall makes sure it is okay to be
+ // running at all (that is, there's no garbage collection
+ // running right now).
+ mp.needextram = mp.schedlink == 0
+ unlockextra(mp.schedlink.ptr())
+
+ // Save and block signals before installing g.
+ // Once g is installed, any incoming signals will try to execute,
+ // but we won't have the sigaltstack settings and other data
+ // set up appropriately until the end of minit, which will
+ // unblock the signals. This is the same dance as when
+ // starting a new m to run Go code via newosproc.
+ msigsave(mp)
+ sigblock()
+
+ // Install g (= m->curg).
+ setg(mp.curg)
+ atomic.Store(&mp.curg.atomicstatus, _Gsyscall)
+ setGContext()
+
+ // Initialize this thread to use the m.
+ minit()
+}
+
+var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
+
+// newextram allocates m's and puts them on the extra list.
+// It is called with a working local m, so that it can do things
+// like call schedlock and allocate.
+func newextram() {
+ c := atomic.Xchg(&extraMWaiters, 0)
+ if c > 0 {
+ for i := uint32(0); i < c; i++ {
+ oneNewExtraM()
+ }
+ } else {
+ // Make sure there is at least one extra M.
+ mp := lockextra(true)
+ unlockextra(mp)
+ if mp == nil {
+ oneNewExtraM()
+ }
+ }
+}
+
+// oneNewExtraM allocates an m and puts it on the extra list.
+func oneNewExtraM() {
+ // Create extra goroutine locked to extra m.
+ // The goroutine is the context in which the cgo callback will run.
+ // The sched.pc will never be returned to, but setting it to
+ // goexit makes clear to the traceback routines where
+ // the goroutine stack ends.
+ var g0SP unsafe.Pointer
+ var g0SPSize uintptr
+ mp := allocm(nil, true, &g0SP, &g0SPSize)
+ gp := malg(true, false, nil, nil)
+ gp.gcscanvalid = true // fresh G, so no dequeueRescan necessary
+ gp.gcscandone = true
+ gp.gcRescan = -1
+
+ // malg returns status as Gidle, change to Gdead before adding to allg
+ // where GC will see it.
+ // gccgo uses Gdead here, not Gsyscall, because the split
+ // stack context is not initialized.
+ casgstatus(gp, _Gidle, _Gdead)
+ gp.m = mp
+ mp.curg = gp
+ mp.locked = _LockInternal
+ mp.lockedg = gp
+ gp.lockedm = mp
+ gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
+ // put on allg for garbage collector
+ allgadd(gp)
+
+ // The context for gp will be set up in needm.
+ // Here we need to set the context for g0.
+ makeGContext(mp.g0, g0SP, g0SPSize)
+
+ // Add m to the extra list.
+ mnext := lockextra(true)
+ mp.schedlink.set(mnext)
+ unlockextra(mp)
+}
+
+// dropm is called when a cgo callback has called needm but is now
+// done with the callback and returning back into the non-Go thread.
+// It puts the current m back onto the extra list.
+//
+// The main expense here is the call to signalstack to release the
+// m's signal stack, and then the call to needm on the next callback
+// from this thread. It is tempting to try to save the m for next time,
+// which would eliminate both these costs, but there might not be
+// a next time: the current thread (which Go does not control) might exit.
+// If we saved the m for that thread, there would be an m leak each time
+// such a thread exited. Instead, we acquire and release an m on each
+// call. These should typically not be scheduling operations, just a few
+// atomics, so the cost should be small.
+//
+// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
+// variable using pthread_key_create. Unlike the pthread keys we already use
+// on OS X, this dummy key would never be read by Go code. It would exist
+// only so that we could register at thread-exit-time destructor.
+// That destructor would put the m back onto the extra list.
+// This is purely a performance optimization. The current version,
+// in which dropm happens on each cgo call, is still correct too.
+// We may have to keep the current version on systems with cgo
+// but without pthreads, like Windows.
+func dropm() {
+ // Clear m and g, and return m to the extra list.
+ // After the call to setg we can only call nosplit functions
+ // with no pointer manipulation.
+ mp := getg().m
+
+ // Block signals before unminit.
+ // Unminit unregisters the signal handling stack (but needs g on some systems).
+ // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
+ // It's important not to try to handle a signal between those two steps.
+ sigmask := mp.sigmask
+ sigblock()
+ unminit()
+
+ // gccgo sets the stack to Gdead here, because the splitstack
+ // context is not initialized.
+ mp.curg.atomicstatus = _Gdead
+ mp.curg.gcstack = nil
+ mp.curg.gcnextsp = nil
+
+ mnext := lockextra(true)
+ mp.schedlink.set(mnext)
+
+ setg(nil)
+
+ // Commit the release of mp.
+ unlockextra(mp)
+
+ msigrestore(sigmask)
+}
+
+// A helper function for EnsureDropM.
+func getm() uintptr {
+ return uintptr(unsafe.Pointer(getg().m))
+}
+
+var extram uintptr
+var extraMWaiters uint32
+
+// lockextra locks the extra list and returns the list head.
+// The caller must unlock the list by storing a new list head
+// to extram. If nilokay is true, then lockextra will
+// return a nil list head if that's what it finds. If nilokay is false,
+// lockextra will keep waiting until the list head is no longer nil.
+//go:nosplit
+func lockextra(nilokay bool) *m {
+ const locked = 1
+
+ incr := false
+ for {
+ old := atomic.Loaduintptr(&extram)
+ if old == locked {
+ yield := osyield
+ yield()
+ continue
+ }
+ if old == 0 && !nilokay {
+ if !incr {
+ // Add 1 to the number of threads
+ // waiting for an M.
+ // This is cleared by newextram.
+ atomic.Xadd(&extraMWaiters, 1)
+ incr = true
+ }
+ usleep(1)
+ continue
+ }
+ if atomic.Casuintptr(&extram, old, locked) {
+ return (*m)(unsafe.Pointer(old))
+ }
+ yield := osyield
+ yield()
+ continue
+ }
+}
+
+//go:nosplit
+func unlockextra(mp *m) {
+ atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
+}
+
+// Stops execution of the current m until new work is available.
+// Returns with acquired P.
+func stopm() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ throw("stopm holding locks")
+ }
+ if _g_.m.p != 0 {
+ throw("stopm holding p")
+ }
+ if _g_.m.spinning {
+ throw("stopm spinning")
+ }
+
+retry:
+ lock(&sched.lock)
+ mput(_g_.m)
+ unlock(&sched.lock)
+ notesleep(&_g_.m.park)
+ noteclear(&_g_.m.park)
+ if _g_.m.helpgc != 0 {
+ gchelper()
+ _g_.m.helpgc = 0
+ _g_.m.mcache = nil
+ _g_.m.p = 0
+ goto retry
+ }
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+}
+
+// Hands off P from syscall or locked M.
+// Always runs without a P, so write barriers are not allowed.
+//go:nowritebarrierrec
+func handoffp(_p_ *p) {
+ // handoffp must start an M in any situation where
+ // findrunnable would return a G to run on _p_.
+
+ // if it has local work, start it straight away
+ if !runqempty(_p_) || sched.runqsize != 0 {
+ startm(_p_, false)
+ return
+ }
+ // if it has GC work, start it straight away
+ if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
+ startm(_p_, false)
+ return
+ }
+ // no local work, check that there are no spinning/idle M's,
+ // otherwise our help is not required
+ if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
+ startm(_p_, true)
+ return
+ }
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 {
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ return
+ }
+ if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
+ sched.safePointFn(_p_)
+ sched.safePointWait--
+ if sched.safePointWait == 0 {
+ notewakeup(&sched.safePointNote)
+ }
+ }
+ if sched.runqsize != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ // If this is the last running P and nobody is polling network,
+ // need to wakeup another M to poll network.
+ if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ pidleput(_p_)
+ unlock(&sched.lock)
+}
+
+// Tries to add one more P to execute G's.
+// Called when a G is made runnable (newproc, ready).
+func wakep() {
+ // be conservative about spinning threads
+ if !atomic.Cas(&sched.nmspinning, 0, 1) {
+ return
+ }
+ startm(nil, true)
+}
+
+// Stops execution of the current m that is locked to a g until the g is runnable again.
+// Returns with acquired P.
+func stoplockedm() {
+ _g_ := getg()
+
+ if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
+ throw("stoplockedm: inconsistent locking")
+ }
+ if _g_.m.p != 0 {
+ // Schedule another M to run this p.
+ _p_ := releasep()
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ // Wait until another thread schedules lockedg again.
+ notesleep(&_g_.m.park)
+ noteclear(&_g_.m.park)
+ status := readgstatus(_g_.m.lockedg)
+ if status&^_Gscan != _Grunnable {
+ print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
+ dumpgstatus(_g_)
+ throw("stoplockedm: not runnable")
+ }
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+}
+
+// Schedules the locked m to run the locked gp.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func startlockedm(gp *g) {
+ _g_ := getg()
+
+ mp := gp.lockedm
+ if mp == _g_.m {
+ throw("startlockedm: locked to me")
+ }
+ if mp.nextp != 0 {
+ throw("startlockedm: m has p")
+ }
+ // directly handoff current P to the locked m
+ incidlelocked(-1)
+ _p_ := releasep()
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+ stopm()
+}
+
+// Stops the current m for stopTheWorld.
+// Returns when the world is restarted.
+func gcstopm() {
+ _g_ := getg()
+
+ if sched.gcwaiting == 0 {
+ throw("gcstopm: not waiting for gc")
+ }
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ // OK to just drop nmspinning here,
+ // startTheWorld will unpark threads as necessary.
+ if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
+ throw("gcstopm: negative nmspinning")
+ }
+ }
+ _p_ := releasep()
+ lock(&sched.lock)
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ stopm()
+}
+
+// Schedules gp to run on the current M.
+// If inheritTime is true, gp inherits the remaining time in the
+// current time slice. Otherwise, it starts a new time slice.
+// Never returns.
+//
+// Write barriers are allowed because this is called immediately after
+// acquiring a P in several places.
+//
+//go:yeswritebarrierrec
+func execute(gp *g, inheritTime bool) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunnable, _Grunning)
+ gp.waitsince = 0
+ gp.preempt = false
+ if !inheritTime {
+ _g_.m.p.ptr().schedtick++
+ }
+ _g_.m.curg = gp
+ gp.m = _g_.m
+
+ // Check whether the profiler needs to be turned on or off.
+ hz := sched.profilehz
+ if _g_.m.profilehz != hz {
+ resetcpuprofiler(hz)
+ }
+
+ if trace.enabled {
+ // GoSysExit has to happen when we have a P, but before GoStart.
+ // So we emit it here.
+ if gp.syscallsp != 0 && gp.sysblocktraced {
+ traceGoSysExit(gp.sysexitticks)
+ }
+ traceGoStart()
+ }
+
+ gogo(gp)
+}
+
+// Finds a runnable goroutine to execute.
+// Tries to steal from other P's, get g from global queue, poll network.
+func findrunnable() (gp *g, inheritTime bool) {
+ _g_ := getg()
+
+ // The conditions here and in handoffp must agree: if
+ // findrunnable would return a G to run, handoffp must start
+ // an M.
+
+top:
+ _p_ := _g_.m.p.ptr()
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if _p_.runSafePointFn != 0 {
+ runSafePointFn()
+ }
+ if getfingwait() && getfingwake() {
+ if gp := wakefing(); gp != nil {
+ ready(gp, 0, true)
+ }
+ }
+
+ // local runq
+ if gp, inheritTime := runqget(_p_); gp != nil {
+ return gp, inheritTime
+ }
+
+ // global runq
+ if sched.runqsize != 0 {
+ lock(&sched.lock)
+ gp := globrunqget(_p_, 0)
+ unlock(&sched.lock)
+ if gp != nil {
+ return gp, false
+ }
+ }
+
+ // Poll network.
+ // This netpoll is only an optimization before we resort to stealing.
+ // We can safely skip it if there a thread blocked in netpoll already.
+ // If there is any kind of logical race with that blocked thread
+ // (e.g. it has already returned from netpoll, but does not set lastpoll yet),
+ // this thread will do blocking netpoll below anyway.
+ if netpollinited() && sched.lastpoll != 0 {
+ if gp := netpoll(false); gp != nil { // non-blocking
+ // netpoll returns list of goroutines linked by schedlink.
+ injectglist(gp.schedlink.ptr())
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ }
+
+ // Steal work from other P's.
+ procs := uint32(gomaxprocs)
+ if atomic.Load(&sched.npidle) == procs-1 {
+ // Either GOMAXPROCS=1 or everybody, except for us, is idle already.
+ // New work can appear from returning syscall/cgocall, network or timers.
+ // Neither of that submits to local run queues, so no point in stealing.
+ goto stop
+ }
+ // If number of spinning M's >= number of busy P's, block.
+ // This is necessary to prevent excessive CPU consumption
+ // when GOMAXPROCS>>1 but the program parallelism is low.
+ if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
+ goto stop
+ }
+ if !_g_.m.spinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+ for i := 0; i < 4; i++ {
+ for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
+ if sched.gcwaiting != 0 {
+ goto top
+ }
+ stealRunNextG := i > 2 // first look for ready queues with more than 1 g
+ if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
+ return gp, false
+ }
+ }
+ }
+
+stop:
+
+ // We have nothing to do. If we're in the GC mark phase, can
+ // safely scan and blacken objects, and have work to do, run
+ // idle-time marking rather than give up the P.
+ if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
+ _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
+ gp := _p_.gcBgMarkWorker.ptr()
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+
+ // return P and block
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
+ unlock(&sched.lock)
+ goto top
+ }
+ if sched.runqsize != 0 {
+ gp := globrunqget(_p_, 0)
+ unlock(&sched.lock)
+ return gp, false
+ }
+ if releasep() != _p_ {
+ throw("findrunnable: wrong p")
+ }
+ pidleput(_p_)
+ unlock(&sched.lock)
+
+ // Delicate dance: thread transitions from spinning to non-spinning state,
+ // potentially concurrently with submission of new goroutines. We must
+ // drop nmspinning first and then check all per-P queues again (with
+ // #StoreLoad memory barrier in between). If we do it the other way around,
+ // another thread can submit a goroutine after we've checked all run queues
+ // but before we drop nmspinning; as the result nobody will unpark a thread
+ // to run the goroutine.
+ // If we discover new work below, we need to restore m.spinning as a signal
+ // for resetspinning to unpark a new worker thread (because there can be more
+ // than one starving goroutine). However, if after discovering new work
+ // we also observe no idle Ps, it is OK to just park the current thread:
+ // the system is fully loaded so no spinning threads are required.
+ // Also see "Worker thread parking/unparking" comment at the top of the file.
+ wasSpinning := _g_.m.spinning
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
+ throw("findrunnable: negative nmspinning")
+ }
+ }
+
+ // check all runqueues once again
+ for i := 0; i < int(gomaxprocs); i++ {
+ _p_ := allp[i]
+ if _p_ != nil && !runqempty(_p_) {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ if wasSpinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+ goto top
+ }
+ break
+ }
+ }
+
+ // Check for idle-priority GC work again.
+ if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ if _p_ != nil && _p_.gcBgMarkWorker == 0 {
+ pidleput(_p_)
+ _p_ = nil
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ if wasSpinning {
+ _g_.m.spinning = true
+ atomic.Xadd(&sched.nmspinning, 1)
+ }
+ // Go back to idle GC check.
+ goto stop
+ }
+ }
+
+ // poll network
+ if netpollinited() && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
+ if _g_.m.p != 0 {
+ throw("findrunnable: netpoll with p")
+ }
+ if _g_.m.spinning {
+ throw("findrunnable: netpoll with spinning")
+ }
+ gp := netpoll(true) // block until new work is available
+ atomic.Store64(&sched.lastpoll, uint64(nanotime()))
+ if gp != nil {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ injectglist(gp.schedlink.ptr())
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ injectglist(gp)
+ }
+ }
+ stopm()
+ goto top
+}
+
+// pollWork returns true if there is non-background work this P could
+// be doing. This is a fairly lightweight check to be used for
+// background work loops, like idle GC. It checks a subset of the
+// conditions checked by the actual scheduler.
+func pollWork() bool {
+ if sched.runqsize != 0 {
+ return true
+ }
+ p := getg().m.p.ptr()
+ if !runqempty(p) {
+ return true
+ }
+ if netpollinited() && sched.lastpoll != 0 {
+ if gp := netpoll(false); gp != nil {
+ injectglist(gp)
+ return true
+ }
+ }
+ return false
+}
+
+func resetspinning() {
+ _g_ := getg()
+ if !_g_.m.spinning {
+ throw("resetspinning: not a spinning m")
+ }
+ _g_.m.spinning = false
+ nmspinning := atomic.Xadd(&sched.nmspinning, -1)
+ if int32(nmspinning) < 0 {
+ throw("findrunnable: negative nmspinning")
+ }
+ // M wakeup policy is deliberately somewhat conservative, so check if we
+ // need to wakeup another P here. See "Worker thread parking/unparking"
+ // comment at the top of the file for details.
+ if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
+ wakep()
+ }
+}
+
+// Injects the list of runnable G's into the scheduler.
+// Can run concurrently with GC.
+func injectglist(glist *g) {
+ if glist == nil {
+ return
+ }
+ if trace.enabled {
+ for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
+ traceGoUnpark(gp, 0)
+ }
+ }
+ lock(&sched.lock)
+ var n int
+ for n = 0; glist != nil; n++ {
+ gp := glist
+ glist = gp.schedlink.ptr()
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ globrunqput(gp)
+ }
+ unlock(&sched.lock)
+ for ; n != 0 && sched.npidle != 0; n-- {
+ startm(nil, false)
+ }
+}
+
+// One round of scheduler: find a runnable goroutine and execute it.
+// Never returns.
+func schedule() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ throw("schedule: holding locks")
+ }
+
+ if _g_.m.lockedg != nil {
+ stoplockedm()
+ execute(_g_.m.lockedg, false) // Never returns.
+ }
+
+top:
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if _g_.m.p.ptr().runSafePointFn != 0 {
+ runSafePointFn()
+ }
+
+ var gp *g
+ var inheritTime bool
+ if trace.enabled || trace.shutdown {
+ gp = traceReader()
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ traceGoUnpark(gp, 0)
+ }
+ }
+ if gp == nil && gcBlackenEnabled != 0 {
+ gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
+ }
+ if gp == nil {
+ // Check the global runnable queue once in a while to ensure fairness.
+ // Otherwise two goroutines can completely occupy the local runqueue
+ // by constantly respawning each other.
+ if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
+ lock(&sched.lock)
+ gp = globrunqget(_g_.m.p.ptr(), 1)
+ unlock(&sched.lock)
+ }
+ }
+ if gp == nil {
+ gp, inheritTime = runqget(_g_.m.p.ptr())
+ if gp != nil && _g_.m.spinning {
+ throw("schedule: spinning with local work")
+ }
+
+ // Because gccgo does not implement preemption as a stack check,
+ // we need to check for preemption here for fairness.
+ // Otherwise goroutines on the local queue may starve
+ // goroutines on the global queue.
+ // Since we preempt by storing the goroutine on the global
+ // queue, this is the only place we need to check preempt.
+ if gp != nil && gp.preempt {
+ gp.preempt = false
+ lock(&sched.lock)
+ globrunqput(gp)
+ unlock(&sched.lock)
+ goto top
+ }
+ }
+ if gp == nil {
+ gp, inheritTime = findrunnable() // blocks until work is available
+ }
+
+ // This thread is going to run a goroutine and is not spinning anymore,
+ // so if it was marked as spinning we need to reset it now and potentially
+ // start a new spinning M.
+ if _g_.m.spinning {
+ resetspinning()
+ }
+
+ if gp.lockedm != nil {
+ // Hands off own p to the locked m,
+ // then blocks waiting for a new p.
+ startlockedm(gp)
+ goto top
+ }
+
+ execute(gp, inheritTime)
+}
+
+// dropg removes the association between m and the current goroutine m->curg (gp for short).
+// Typically a caller sets gp's status away from Grunning and then
+// immediately calls dropg to finish the job. The caller is also responsible
+// for arranging that gp will be restarted using ready at an
+// appropriate time. After calling dropg and arranging for gp to be
+// readied later, the caller can do other work but eventually should
+// call schedule to restart the scheduling of goroutines on this m.
+func dropg() {
+ _g_ := getg()
+
+ setMNoWB(&_g_.m.curg.m, nil)
+ setGNoWB(&_g_.m.curg, nil)
+}
+
+func beforefork() {
+ gp := getg().m.curg
+
+ // Fork can hang if preempted with signals frequently enough (see issue 5517).
+ // Ensure that we stay on the same M where we disable profiling.
+ gp.m.locks++
+ if gp.m.profilehz != 0 {
+ resetcpuprofiler(0)
+ }
+}
+
+// Called from syscall package before fork.
+//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
+//go:nosplit
+func syscall_runtime_BeforeFork() {
+ systemstack(beforefork)
+}
+
+func afterfork() {
+ gp := getg().m.curg
+
+ hz := sched.profilehz
+ if hz != 0 {
+ resetcpuprofiler(hz)
+ }
+ gp.m.locks--
+}
+
+// Called from syscall package after fork in parent.
+//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
+//go:nosplit
+func syscall_runtime_AfterFork() {
+ systemstack(afterfork)
+}
+
+// Put on gfree list.
+// If local list is too long, transfer a batch to the global list.
+func gfput(_p_ *p, gp *g) {
+ if readgstatus(gp) != _Gdead {
+ throw("gfput: bad status (not Gdead)")
+ }
+
+ gp.schedlink.set(_p_.gfree)
+ _p_.gfree = gp
+ _p_.gfreecnt++
+ if _p_.gfreecnt >= 64 {
+ lock(&sched.gflock)
+ for _p_.gfreecnt >= 32 {
+ _p_.gfreecnt--
+ gp = _p_.gfree
+ _p_.gfree = gp.schedlink.ptr()
+ gp.schedlink.set(sched.gfree)
+ sched.gfree = gp
+ sched.ngfree++
+ }
+ unlock(&sched.gflock)
+ }
+}
+
+// Get from gfree list.
+// If local list is empty, grab a batch from global list.
+func gfget(_p_ *p) *g {
+retry:
+ gp := _p_.gfree
+ if gp == nil && sched.gfree != nil {
+ lock(&sched.gflock)
+ for _p_.gfreecnt < 32 {
+ if sched.gfree != nil {
+ gp = sched.gfree
+ sched.gfree = gp.schedlink.ptr()
+ } else {
+ break
+ }
+ _p_.gfreecnt++
+ sched.ngfree--
+ gp.schedlink.set(_p_.gfree)
+ _p_.gfree = gp
+ }
+ unlock(&sched.gflock)
+ goto retry
+ }
+ if gp != nil {
+ _p_.gfree = gp.schedlink.ptr()
+ _p_.gfreecnt--
+ }
+ return gp
+}
+
+// Purge all cached G's from gfree list to the global list.
+func gfpurge(_p_ *p) {
+ lock(&sched.gflock)
+ for _p_.gfreecnt != 0 {
+ _p_.gfreecnt--
+ gp := _p_.gfree
+ _p_.gfree = gp.schedlink.ptr()
+ gp.schedlink.set(sched.gfree)
+ sched.gfree = gp
+ sched.ngfree++
+ }
+ unlock(&sched.gflock)
+}
+
+// dolockOSThread is called by LockOSThread and lockOSThread below
+// after they modify m.locked. Do not allow preemption during this call,
+// or else the m might be different in this function than in the caller.
+//go:nosplit
+func dolockOSThread() {
+ _g_ := getg()
+ _g_.m.lockedg = _g_
+ _g_.lockedm = _g_.m
+}
+
+//go:nosplit
+
+// LockOSThread wires the calling goroutine to its current operating system thread.
+// Until the calling goroutine exits or calls UnlockOSThread, it will always
+// execute in that thread, and no other goroutine can.
+func LockOSThread() {
+ getg().m.locked |= _LockExternal
+ dolockOSThread()
+}
+
+//go:nosplit
+func lockOSThread() {
+ getg().m.locked += _LockInternal
+ dolockOSThread()
+}
+
+// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
+// after they update m->locked. Do not allow preemption during this call,
+// or else the m might be in different in this function than in the caller.
+//go:nosplit
+func dounlockOSThread() {
+ _g_ := getg()
+ if _g_.m.locked != 0 {
+ return
+ }
+ _g_.m.lockedg = nil
+ _g_.lockedm = nil
+}
+
+//go:nosplit
+
+// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
+// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
+func UnlockOSThread() {
+ getg().m.locked &^= _LockExternal
+ dounlockOSThread()
+}
+
+//go:nosplit
+func unlockOSThread() {
+ _g_ := getg()
+ if _g_.m.locked < _LockInternal {
+ systemstack(badunlockosthread)
+ }
+ _g_.m.locked -= _LockInternal
+ dounlockOSThread()
+}
+
+func badunlockosthread() {
+ throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
+}
+
+func gcount() int32 {
+ n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys))
+ for i := 0; ; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ break
+ }
+ n -= _p_.gfreecnt
+ }
+
+ // All these variables can be changed concurrently, so the result can be inconsistent.
+ // But at least the current goroutine is running.
+ if n < 1 {
+ n = 1
+ }
+ return n
+}
+
+func mcount() int32 {
+ return sched.mcount
+}
+
+// Change number of processors. The world is stopped, sched is locked.
+// gcworkbufs are not being modified by either the GC or
+// the write barrier code.
+// Returns list of Ps with local work, they need to be scheduled by the caller.
+func procresize(nprocs int32) *p {
+ old := gomaxprocs
+ if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
+ throw("procresize: invalid arg")
+ }
+ if trace.enabled {
+ traceGomaxprocs(nprocs)
+ }
+
+ // update statistics
+ now := nanotime()
+ if sched.procresizetime != 0 {
+ sched.totaltime += int64(old) * (now - sched.procresizetime)
+ }
+ sched.procresizetime = now
+
+ // initialize new P's
+ for i := int32(0); i < nprocs; i++ {
+ pp := allp[i]
+ if pp == nil {
+ pp = new(p)
+ pp.id = i
+ pp.status = _Pgcstop
+ pp.sudogcache = pp.sudogbuf[:0]
+ pp.deferpool = pp.deferpoolbuf[:0]
+ atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
+ }
+ if pp.mcache == nil {
+ if old == 0 && i == 0 {
+ if getg().m.mcache == nil {
+ throw("missing mcache?")
+ }
+ pp.mcache = getg().m.mcache // bootstrap
+ } else {
+ pp.mcache = allocmcache()
+ }
+ }
+ }
+
+ // free unused P's
+ for i := nprocs; i < old; i++ {
+ p := allp[i]
+ if trace.enabled {
+ if p == getg().m.p.ptr() {
+ // moving to p[0], pretend that we were descheduled
+ // and then scheduled again to keep the trace sane.
+ traceGoSched()
+ traceProcStop(p)
+ }
+ }
+ // move all runnable goroutines to the global queue
+ for p.runqhead != p.runqtail {
+ // pop from tail of local queue
+ p.runqtail--
+ gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
+ // push onto head of global queue
+ globrunqputhead(gp)
+ }
+ if p.runnext != 0 {
+ globrunqputhead(p.runnext.ptr())
+ p.runnext = 0
+ }
+ // if there's a background worker, make it runnable and put
+ // it on the global queue so it can clean itself up
+ if gp := p.gcBgMarkWorker.ptr(); gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ globrunqput(gp)
+ // This assignment doesn't race because the
+ // world is stopped.
+ p.gcBgMarkWorker.set(nil)
+ }
+ for i := range p.sudogbuf {
+ p.sudogbuf[i] = nil
+ }
+ p.sudogcache = p.sudogbuf[:0]
+ for i := range p.deferpoolbuf {
+ p.deferpoolbuf[i] = nil
+ }
+ p.deferpool = p.deferpoolbuf[:0]
+ freemcache(p.mcache)
+ p.mcache = nil
+ gfpurge(p)
+ traceProcFree(p)
+ p.status = _Pdead
+ // can't free P itself because it can be referenced by an M in syscall
+ }
+
+ _g_ := getg()
+ if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
+ // continue to use the current P
+ _g_.m.p.ptr().status = _Prunning
+ } else {
+ // release the current P and acquire allp[0]
+ if _g_.m.p != 0 {
+ _g_.m.p.ptr().m = 0
+ }
+ _g_.m.p = 0
+ _g_.m.mcache = nil
+ p := allp[0]
+ p.m = 0
+ p.status = _Pidle
+ acquirep(p)
+ if trace.enabled {
+ traceGoStart()
+ }
+ }
+ var runnablePs *p
+ for i := nprocs - 1; i >= 0; i-- {
+ p := allp[i]
+ if _g_.m.p.ptr() == p {
+ continue
+ }
+ p.status = _Pidle
+ if runqempty(p) {
+ pidleput(p)
+ } else {
+ p.m.set(mget())
+ p.link.set(runnablePs)
+ runnablePs = p
+ }
+ }
+ stealOrder.reset(uint32(nprocs))
+ var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
+ atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
+ return runnablePs
+}
+
+// Associate p and the current m.
+//
+// This function is allowed to have write barriers even if the caller
+// isn't because it immediately acquires _p_.
+//
+//go:yeswritebarrierrec
+func acquirep(_p_ *p) {
+ // Do the part that isn't allowed to have write barriers.
+ acquirep1(_p_)
+
+ // have p; write barriers now allowed
+ _g_ := getg()
+ _g_.m.mcache = _p_.mcache
+
+ if trace.enabled {
+ traceProcStart()
+ }
+}
+
+// acquirep1 is the first step of acquirep, which actually acquires
+// _p_. This is broken out so we can disallow write barriers for this
+// part, since we don't yet have a P.
+//
+//go:nowritebarrierrec
+func acquirep1(_p_ *p) {
+ _g_ := getg()
+
+ if _g_.m.p != 0 || _g_.m.mcache != nil {
+ throw("acquirep: already in go")
+ }
+ if _p_.m != 0 || _p_.status != _Pidle {
+ id := int32(0)
+ if _p_.m != 0 {
+ id = _p_.m.ptr().id
+ }
+ print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
+ throw("acquirep: invalid p state")
+ }
+ _g_.m.p.set(_p_)
+ _p_.m.set(_g_.m)
+ _p_.status = _Prunning
+}
+
+// Disassociate p and the current m.
+func releasep() *p {
+ _g_ := getg()
+
+ if _g_.m.p == 0 || _g_.m.mcache == nil {
+ throw("releasep: invalid arg")
+ }
+ _p_ := _g_.m.p.ptr()
+ if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
+ print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
+ throw("releasep: invalid p state")
+ }
+ if trace.enabled {
+ traceProcStop(_g_.m.p.ptr())
+ }
+ _g_.m.p = 0
+ _g_.m.mcache = nil
+ _p_.m = 0
+ _p_.status = _Pidle
+ return _p_
+}
+
+func incidlelocked(v int32) {
+ lock(&sched.lock)
+ sched.nmidlelocked += v
+ if v > 0 {
+ checkdead()
+ }
+ unlock(&sched.lock)
+}
+
+// Check for deadlock situation.
+// The check is based on number of running M's, if 0 -> deadlock.
+func checkdead() {
+ // For -buildmode=c-shared or -buildmode=c-archive it's OK if
+ // there are no running goroutines. The calling program is
+ // assumed to be running.
+ if islibrary || isarchive {
+ return
+ }
+
+ // If we are dying because of a signal caught on an already idle thread,
+ // freezetheworld will cause all running threads to block.
+ // And runtime will essentially enter into deadlock state,
+ // except that there is a thread that will call exit soon.
+ if panicking > 0 {
+ return
+ }
+
+ // -1 for sysmon
+ run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
+ if run > 0 {
+ return
+ }
+ if run < 0 {
+ print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
+ throw("checkdead: inconsistent counts")
+ }
+
+ grunning := 0
+ lock(&allglock)
+ for i := 0; i < len(allgs); i++ {
+ gp := allgs[i]
+ if isSystemGoroutine(gp) {
+ continue
+ }
+ s := readgstatus(gp)
+ switch s &^ _Gscan {
+ case _Gwaiting:
+ grunning++
+ case _Grunnable,
+ _Grunning,
+ _Gsyscall:
+ unlock(&allglock)
+ print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
+ throw("checkdead: runnable g")
+ }
+ }
+ unlock(&allglock)
+ if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
+ throw("no goroutines (main called runtime.Goexit) - deadlock!")
+ }
+
+ // Maybe jump time forward for playground.
+ gp := timejump()
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ globrunqput(gp)
+ _p_ := pidleget()
+ if _p_ == nil {
+ throw("checkdead: no p for timer")
+ }
+ mp := mget()
+ if mp == nil {
+ // There should always be a free M since
+ // nothing is running.
+ throw("checkdead: no m for timer")
+ }
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+ return
+ }
+
+ getg().m.throwing = -1 // do not dump full stacks
+ throw("all goroutines are asleep - deadlock!")
+}
+
+// forcegcperiod is the maximum time in nanoseconds between garbage
+// collections. If we go this long without a garbage collection, one
+// is forced to run.
+//
+// This is a variable for testing purposes. It normally doesn't change.
+var forcegcperiod int64 = 2 * 60 * 1e9
+
+// Always runs without a P, so write barriers are not allowed.
+//
+//go:nowritebarrierrec
+func sysmon() {
+ // If a heap span goes unused for 5 minutes after a garbage collection,
+ // we hand it back to the operating system.
+ scavengelimit := int64(5 * 60 * 1e9)
+
+ if debug.scavenge > 0 {
+ // Scavenge-a-lot for testing.
+ forcegcperiod = 10 * 1e6
+ scavengelimit = 20 * 1e6
+ }
+
+ lastscavenge := nanotime()
+ nscavenge := 0
+
+ lasttrace := int64(0)
+ idle := 0 // how many cycles in succession we had not wokeup somebody
+ delay := uint32(0)
+ for {
+ if idle == 0 { // start with 20us sleep...
+ delay = 20
+ } else if idle > 50 { // start doubling the sleep after 1ms...
+ delay *= 2
+ }
+ if delay > 10*1000 { // up to 10ms
+ delay = 10 * 1000
+ }
+ usleep(delay)
+ if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
+ lock(&sched.lock)
+ if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
+ atomic.Store(&sched.sysmonwait, 1)
+ unlock(&sched.lock)
+ // Make wake-up period small enough
+ // for the sampling to be correct.
+ maxsleep := forcegcperiod / 2
+ if scavengelimit < forcegcperiod {
+ maxsleep = scavengelimit / 2
+ }
+ notetsleep(&sched.sysmonnote, maxsleep)
+ lock(&sched.lock)
+ atomic.Store(&sched.sysmonwait, 0)
+ noteclear(&sched.sysmonnote)
+ idle = 0
+ delay = 20
+ }
+ unlock(&sched.lock)
+ }
+ // poll network if not polled for more than 10ms
+ lastpoll := int64(atomic.Load64(&sched.lastpoll))
+ now := nanotime()
+ unixnow := unixnanotime()
+ if lastpoll != 0 && lastpoll+10*1000*1000 < now {
+ atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
+ gp := netpoll(false) // non-blocking - returns list of goroutines
+ if gp != nil {
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before injectglist.
+ // Otherwise it can lead to the following situation:
+ // injectglist grabs all P's but before it starts M's to run the P's,
+ // another M returns from syscall, finishes running its G,
+ // observes that there is no work to do and no other running M's
+ // and reports deadlock.
+ incidlelocked(-1)
+ injectglist(gp)
+ incidlelocked(1)
+ }
+ }
+ // retake P's blocked in syscalls
+ // and preempt long running G's
+ if retake(now) != 0 {
+ idle = 0
+ } else {
+ idle++
+ }
+ // check if we need to force a GC
+ lastgc := int64(atomic.Load64(&memstats.last_gc))
+ if gcphase == _GCoff && lastgc != 0 && unixnow-lastgc > forcegcperiod && atomic.Load(&forcegc.idle) != 0 {
+ lock(&forcegc.lock)
+ forcegc.idle = 0
+ forcegc.g.schedlink = 0
+ injectglist(forcegc.g)
+ unlock(&forcegc.lock)
+ }
+ // scavenge heap once in a while
+ if lastscavenge+scavengelimit/2 < now {
+ mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
+ lastscavenge = now
+ nscavenge++
+ }
+ if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
+ lasttrace = now
+ schedtrace(debug.scheddetail > 0)
+ }
+ }
+}
+
+var pdesc [_MaxGomaxprocs]struct {
+ schedtick uint32
+ schedwhen int64
+ syscalltick uint32
+ syscallwhen int64
+}
+
+// forcePreemptNS is the time slice given to a G before it is
+// preempted.
+const forcePreemptNS = 10 * 1000 * 1000 // 10ms
+
+func retake(now int64) uint32 {
+ n := 0
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ continue
+ }
+ pd := &pdesc[i]
+ s := _p_.status
+ if s == _Psyscall {
+ // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
+ t := int64(_p_.syscalltick)
+ if int64(pd.syscalltick) != t {
+ pd.syscalltick = uint32(t)
+ pd.syscallwhen = now
+ continue
+ }
+ // On the one hand we don't want to retake Ps if there is no other work to do,
+ // but on the other hand we want to retake them eventually
+ // because they can prevent the sysmon thread from deep sleep.
+ if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
+ continue
+ }
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before the CAS.
+ // Otherwise the M from which we retake can exit the syscall,
+ // increment nmidle and report deadlock.
+ incidlelocked(-1)
+ if atomic.Cas(&_p_.status, s, _Pidle) {
+ if trace.enabled {
+ traceGoSysBlock(_p_)
+ traceProcStop(_p_)
+ }
+ n++
+ _p_.syscalltick++
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ } else if s == _Prunning {
+ // Preempt G if it's running for too long.
+ t := int64(_p_.schedtick)
+ if int64(pd.schedtick) != t {
+ pd.schedtick = uint32(t)
+ pd.schedwhen = now
+ continue
+ }
+ if pd.schedwhen+forcePreemptNS > now {
+ continue
+ }
+ preemptone(_p_)
+ }
+ }
+ return uint32(n)
+}
+
+// Tell all goroutines that they have been preempted and they should stop.
+// This function is purely best-effort. It can fail to inform a goroutine if a
+// processor just started running it.
+// No locks need to be held.
+// Returns true if preemption request was issued to at least one goroutine.
+func preemptall() bool {
+ res := false
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil || _p_.status != _Prunning {
+ continue
+ }
+ if preemptone(_p_) {
+ res = true
+ }
+ }
+ return res
+}
+
+// Tell the goroutine running on processor P to stop.
+// This function is purely best-effort. It can incorrectly fail to inform the
+// goroutine. It can send inform the wrong goroutine. Even if it informs the
+// correct goroutine, that goroutine might ignore the request if it is
+// simultaneously executing newstack.
+// No lock needs to be held.
+// Returns true if preemption request was issued.
+// The actual preemption will happen at some point in the future
+// and will be indicated by the gp->status no longer being
+// Grunning
+func preemptone(_p_ *p) bool {
+ mp := _p_.m.ptr()
+ if mp == nil || mp == getg().m {
+ return false
+ }
+ gp := mp.curg
+ if gp == nil || gp == mp.g0 {
+ return false
+ }
+
+ gp.preempt = true
+
+ // At this point the gc implementation sets gp.stackguard0 to
+ // a value that causes the goroutine to suspend itself.
+ // gccgo has no support for this, and it's hard to support.
+ // The split stack code reads a value from its TCB.
+ // We have no way to set a value in the TCB of a different thread.
+ // And, of course, not all systems support split stack anyhow.
+ // Checking the field in the g is expensive, since it requires
+ // loading the g from TLS. The best mechanism is likely to be
+ // setting a global variable and figuring out a way to efficiently
+ // check that global variable.
+ //
+ // For now we check gp.preempt in schedule and mallocgc,
+ // which is at least better than doing nothing at all.
+
+ return true
+}
+
+var starttime int64
+
+func schedtrace(detailed bool) {
+ now := nanotime()
+ if starttime == 0 {
+ starttime = now
+ }
+
+ lock(&sched.lock)
+ print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
+ if detailed {
+ print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
+ }
+ // We must be careful while reading data from P's, M's and G's.
+ // Even if we hold schedlock, most data can be changed concurrently.
+ // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ continue
+ }
+ mp := _p_.m.ptr()
+ h := atomic.Load(&_p_.runqhead)
+ t := atomic.Load(&_p_.runqtail)
+ if detailed {
+ id := int32(-1)
+ if mp != nil {
+ id = mp.id
+ }
+ print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
+ } else {
+ // In non-detailed mode format lengths of per-P run queues as:
+ // [len1 len2 len3 len4]
+ print(" ")
+ if i == 0 {
+ print("[")
+ }
+ print(t - h)
+ if i == gomaxprocs-1 {
+ print("]\n")
+ }
+ }
+ }
+
+ if !detailed {
+ unlock(&sched.lock)
+ return
+ }
+
+ for mp := allm; mp != nil; mp = mp.alllink {
+ _p_ := mp.p.ptr()
+ gp := mp.curg
+ lockedg := mp.lockedg
+ id1 := int32(-1)
+ if _p_ != nil {
+ id1 = _p_.id
+ }
+ id2 := int64(-1)
+ if gp != nil {
+ id2 = gp.goid
+ }
+ id3 := int64(-1)
+ if lockedg != nil {
+ id3 = lockedg.goid
+ }
+ print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
+ }
+
+ lock(&allglock)
+ for gi := 0; gi < len(allgs); gi++ {
+ gp := allgs[gi]
+ mp := gp.m
+ lockedm := gp.lockedm
+ id1 := int32(-1)
+ if mp != nil {
+ id1 = mp.id
+ }
+ id2 := int32(-1)
+ if lockedm != nil {
+ id2 = lockedm.id
+ }
+ print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
+ }
+ unlock(&allglock)
+ unlock(&sched.lock)
+}
+
+// Put mp on midle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func mput(mp *m) {
+ mp.schedlink = sched.midle
+ sched.midle.set(mp)
+ sched.nmidle++
+ checkdead()
+}
+
+// Try to get an m from midle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func mget() *m {
+ mp := sched.midle.ptr()
+ if mp != nil {
+ sched.midle = mp.schedlink
+ sched.nmidle--
+ }
+ return mp
+}
+
+// Put gp on the global runnable queue.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func globrunqput(gp *g) {
+ gp.schedlink = 0
+ if sched.runqtail != 0 {
+ sched.runqtail.ptr().schedlink.set(gp)
+ } else {
+ sched.runqhead.set(gp)
+ }
+ sched.runqtail.set(gp)
+ sched.runqsize++
+}
+
+// Put gp at the head of the global runnable queue.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func globrunqputhead(gp *g) {
+ gp.schedlink = sched.runqhead
+ sched.runqhead.set(gp)
+ if sched.runqtail == 0 {
+ sched.runqtail.set(gp)
+ }
+ sched.runqsize++
+}
+
+// Put a batch of runnable goroutines on the global runnable queue.
+// Sched must be locked.
+func globrunqputbatch(ghead *g, gtail *g, n int32) {
+ gtail.schedlink = 0
+ if sched.runqtail != 0 {
+ sched.runqtail.ptr().schedlink.set(ghead)
+ } else {
+ sched.runqhead.set(ghead)
+ }
+ sched.runqtail.set(gtail)
+ sched.runqsize += n
+}
+
+// Try get a batch of G's from the global runnable queue.
+// Sched must be locked.
+func globrunqget(_p_ *p, max int32) *g {
+ if sched.runqsize == 0 {
+ return nil
+ }
+
+ n := sched.runqsize/gomaxprocs + 1
+ if n > sched.runqsize {
+ n = sched.runqsize
+ }
+ if max > 0 && n > max {
+ n = max
+ }
+ if n > int32(len(_p_.runq))/2 {
+ n = int32(len(_p_.runq)) / 2
+ }
+
+ sched.runqsize -= n
+ if sched.runqsize == 0 {
+ sched.runqtail = 0
+ }
+
+ gp := sched.runqhead.ptr()
+ sched.runqhead = gp.schedlink
+ n--
+ for ; n > 0; n-- {
+ gp1 := sched.runqhead.ptr()
+ sched.runqhead = gp1.schedlink
+ runqput(_p_, gp1, false)
+ }
+ return gp
+}
+
+// Put p to on _Pidle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func pidleput(_p_ *p) {
+ if !runqempty(_p_) {
+ throw("pidleput: P has non-empty run queue")
+ }
+ _p_.link = sched.pidle
+ sched.pidle.set(_p_)
+ atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
+}
+
+// Try get a p from _Pidle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrierrec
+func pidleget() *p {
+ _p_ := sched.pidle.ptr()
+ if _p_ != nil {
+ sched.pidle = _p_.link
+ atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
+ }
+ return _p_
+}
+
+// runqempty returns true if _p_ has no Gs on its local run queue.
+// It never returns true spuriously.
+func runqempty(_p_ *p) bool {
+ // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
+ // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
+ // Simply observing that runqhead == runqtail and then observing that runqnext == nil
+ // does not mean the queue is empty.
+ for {
+ head := atomic.Load(&_p_.runqhead)
+ tail := atomic.Load(&_p_.runqtail)
+ runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
+ if tail == atomic.Load(&_p_.runqtail) {
+ return head == tail && runnext == 0
+ }
+ }
+}
+
+// To shake out latent assumptions about scheduling order,
+// we introduce some randomness into scheduling decisions
+// when running with the race detector.
+// The need for this was made obvious by changing the
+// (deterministic) scheduling order in Go 1.5 and breaking
+// many poorly-written tests.
+// With the randomness here, as long as the tests pass
+// consistently with -race, they shouldn't have latent scheduling
+// assumptions.
+const randomizeScheduler = raceenabled
+
+// runqput tries to put g on the local runnable queue.
+// If next if false, runqput adds g to the tail of the runnable queue.
+// If next is true, runqput puts g in the _p_.runnext slot.
+// If the run queue is full, runnext puts g on the global queue.
+// Executed only by the owner P.
+func runqput(_p_ *p, gp *g, next bool) {
+ if randomizeScheduler && next && fastrand()%2 == 0 {
+ next = false
+ }
+
+ if next {
+ retryNext:
+ oldnext := _p_.runnext
+ if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
+ goto retryNext
+ }
+ if oldnext == 0 {
+ return
+ }
+ // Kick the old runnext out to the regular run queue.
+ gp = oldnext.ptr()
+ }
+
+retry:
+ h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
+ t := _p_.runqtail
+ if t-h < uint32(len(_p_.runq)) {
+ _p_.runq[t%uint32(len(_p_.runq))].set(gp)
+ atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
+ return
+ }
+ if runqputslow(_p_, gp, h, t) {
+ return
+ }
+ // the queue is not full, now the put above must succeed
+ goto retry
+}
+
+// Put g and a batch of work from local runnable queue on global queue.
+// Executed only by the owner P.
+func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
+ var batch [len(_p_.runq)/2 + 1]*g
+
+ // First, grab a batch from local queue.
+ n := t - h
+ n = n / 2
+ if n != uint32(len(_p_.runq)/2) {
+ throw("runqputslow: queue is not full")
+ }
+ for i := uint32(0); i < n; i++ {
+ batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
+ }
+ if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return false
+ }
+ batch[n] = gp
+
+ if randomizeScheduler {
+ for i := uint32(1); i <= n; i++ {
+ j := fastrand() % (i + 1)
+ batch[i], batch[j] = batch[j], batch[i]
+ }
+ }
+
+ // Link the goroutines.
+ for i := uint32(0); i < n; i++ {
+ batch[i].schedlink.set(batch[i+1])
+ }
+
+ // Now put the batch on global queue.
+ lock(&sched.lock)
+ globrunqputbatch(batch[0], batch[n], int32(n+1))
+ unlock(&sched.lock)
+ return true
+}
+
+// Get g from local runnable queue.
+// If inheritTime is true, gp should inherit the remaining time in the
+// current time slice. Otherwise, it should start a new time slice.
+// Executed only by the owner P.
+func runqget(_p_ *p) (gp *g, inheritTime bool) {
+ // If there's a runnext, it's the next G to run.
+ for {
+ next := _p_.runnext
+ if next == 0 {
+ break
+ }
+ if _p_.runnext.cas(next, 0) {
+ return next.ptr(), true
+ }
+ }
+
+ for {
+ h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := _p_.runqtail
+ if t == h {
+ return nil, false
+ }
+ gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
+ if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
+ return gp, false
+ }
+ }
+}
+
+// Grabs a batch of goroutines from _p_'s runnable queue into batch.
+// Batch is a ring buffer starting at batchHead.
+// Returns number of grabbed goroutines.
+// Can be executed by any P.
+func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
+ for {
+ h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer
+ n := t - h
+ n = n - n/2
+ if n == 0 {
+ if stealRunNextG {
+ // Try to steal from _p_.runnext.
+ if next := _p_.runnext; next != 0 {
+ // Sleep to ensure that _p_ isn't about to run the g we
+ // are about to steal.
+ // The important use case here is when the g running on _p_
+ // ready()s another g and then almost immediately blocks.
+ // Instead of stealing runnext in this window, back off
+ // to give _p_ a chance to schedule runnext. This will avoid
+ // thrashing gs between different Ps.
+ // A sync chan send/recv takes ~50ns as of time of writing,
+ // so 3us gives ~50x overshoot.
+ if GOOS != "windows" {
+ usleep(3)
+ } else {
+ // On windows system timer granularity is 1-15ms,
+ // which is way too much for this optimization.
+ // So just yield.
+ osyield()
+ }
+ if !_p_.runnext.cas(next, 0) {
+ continue
+ }
+ batch[batchHead%uint32(len(batch))] = next
+ return 1
+ }
+ }
+ return 0
+ }
+ if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
+ continue
+ }
+ for i := uint32(0); i < n; i++ {
+ g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
+ batch[(batchHead+i)%uint32(len(batch))] = g
+ }
+ if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return n
+ }
+ }
+}
+
+// Steal half of elements from local runnable queue of p2
+// and put onto local runnable queue of p.
+// Returns one of the stolen elements (or nil if failed).
+func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
+ t := _p_.runqtail
+ n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
+ if n == 0 {
+ return nil
+ }
+ n--
+ gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
+ if n == 0 {
+ return gp
+ }
+ h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
+ if t-h+n >= uint32(len(_p_.runq)) {
+ throw("runqsteal: runq overflow")
+ }
+ atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
+ return gp
+}
+
+//go:linkname setMaxThreads runtime_debug.setMaxThreads
+func setMaxThreads(in int) (out int) {
+ lock(&sched.lock)
+ out = int(sched.maxmcount)
+ if in > 0x7fffffff { // MaxInt32
+ sched.maxmcount = 0x7fffffff
+ } else {
+ sched.maxmcount = int32(in)
+ }
+ checkmcount()
+ unlock(&sched.lock)
+ return
+}
+
+//go:nosplit
+func procPin() int {
+ _g_ := getg()
+ mp := _g_.m
+
+ mp.locks++
+ return int(mp.p.ptr().id)
+}
+
+//go:nosplit
+func procUnpin() {
+ _g_ := getg()
+ _g_.m.locks--
+}
+
+//go:linkname sync_runtime_procPin sync.runtime_procPin
+//go:nosplit
+func sync_runtime_procPin() int {
+ return procPin()
+}
+
+//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
+//go:nosplit
+func sync_runtime_procUnpin() {
+ procUnpin()
+}
+
+//go:linkname sync_atomic_runtime_procPin sync_atomic.runtime_procPin
+//go:nosplit
+func sync_atomic_runtime_procPin() int {
+ return procPin()
+}
+
+//go:linkname sync_atomic_runtime_procUnpin sync_atomic.runtime_procUnpin
+//go:nosplit
+func sync_atomic_runtime_procUnpin() {
+ procUnpin()
+}
+
+// Active spinning for sync.Mutex.
+//go:linkname sync_runtime_canSpin sync.runtime_canSpin
+//go:nosplit
+func sync_runtime_canSpin(i int) bool {
+ // sync.Mutex is cooperative, so we are conservative with spinning.
+ // Spin only few times and only if running on a multicore machine and
+ // GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
+ // As opposed to runtime mutex we don't do passive spinning here,
+ // because there can be work on global runq on on other Ps.
+ if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
+ return false
+ }
+ if p := getg().m.p.ptr(); !runqempty(p) {
+ return false
+ }
+ return true
+}
+
+//go:linkname sync_runtime_doSpin sync.runtime_doSpin
+//go:nosplit
+func sync_runtime_doSpin() {
+ procyield(active_spin_cnt)
+}
+
+var stealOrder randomOrder
+
+// randomOrder/randomEnum are helper types for randomized work stealing.
+// They allow to enumerate all Ps in different pseudo-random orders without repetitions.
+// The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
+// are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
+type randomOrder struct {
+ count uint32
+ coprimes []uint32
+}
+
+type randomEnum struct {
+ i uint32
+ count uint32
+ pos uint32
+ inc uint32
+}
+
+func (ord *randomOrder) reset(count uint32) {
+ ord.count = count
+ ord.coprimes = ord.coprimes[:0]
+ for i := uint32(1); i <= count; i++ {
+ if gcd(i, count) == 1 {
+ ord.coprimes = append(ord.coprimes, i)
+ }
+ }
+}
+
+func (ord *randomOrder) start(i uint32) randomEnum {
+ return randomEnum{
+ count: ord.count,
+ pos: i % ord.count,
+ inc: ord.coprimes[i%uint32(len(ord.coprimes))],
+ }
+}
+
+func (enum *randomEnum) done() bool {
+ return enum.i == enum.count
+}
+
+func (enum *randomEnum) next() {
+ enum.i++
+ enum.pos = (enum.pos + enum.inc) % enum.count
+}
+
+func (enum *randomEnum) position() uint32 {
+ return enum.pos
+}
+
+func gcd(a, b uint32) uint32 {
+ for b != 0 {
+ a, b = b, a%b
+ }
+ return a
+}