1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TypeApplications #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | Bytecode assembler types
module GHC.ByteCode.Types
( CompiledByteCode(..), seqCompiledByteCode
, FFIInfo(..)
, RegBitmap(..)
, NativeCallType(..), NativeCallInfo(..), voidTupleReturnInfo, voidPrimCallInfo
, ByteOff(..), WordOff(..)
, UnlinkedBCO(..), BCOPtr(..), BCONPtr(..)
, ItblEnv, ItblPtr(..)
, AddrEnv, AddrPtr(..)
, CgBreakInfo(..)
, ModBreaks (..), BreakIndex, emptyModBreaks
, CCostCentre
) where
import GHC.Prelude
import GHC.Data.FastString
import GHC.Data.SizedSeq
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Utils.Outputable
import GHC.Builtin.PrimOps
import GHC.Types.SrcLoc
import GHCi.BreakArray
import GHCi.RemoteTypes
import GHCi.FFI
import Control.DeepSeq
import Foreign
import Data.Array
import Data.Array.Base ( UArray(..) )
import Data.ByteString (ByteString)
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import qualified GHC.Exts.Heap as Heap
import GHC.Stack.CCS
import GHC.Cmm.Expr ( GlobalRegSet, emptyRegSet, regSetToList )
import GHC.Iface.Syntax
-- -----------------------------------------------------------------------------
-- Compiled Byte Code
data CompiledByteCode = CompiledByteCode
{ bc_bcos :: [UnlinkedBCO] -- Bunch of interpretable bindings
, bc_itbls :: ItblEnv -- A mapping from DataCons to their itbls
, bc_ffis :: [FFIInfo] -- ffi blocks we allocated
, bc_strs :: AddrEnv -- malloc'd top-level strings
, bc_breaks :: Maybe ModBreaks -- breakpoint info (Nothing if we're not
-- creating breakpoints, for some reason)
}
-- ToDo: we're not tracking strings that we malloc'd
newtype FFIInfo = FFIInfo (RemotePtr C_ffi_cif)
deriving (Show, NFData)
instance Outputable CompiledByteCode where
ppr CompiledByteCode{..} = ppr bc_bcos
-- Not a real NFData instance, because ModBreaks contains some things
-- we can't rnf
seqCompiledByteCode :: CompiledByteCode -> ()
seqCompiledByteCode CompiledByteCode{..} =
rnf bc_bcos `seq`
seqEltsNameEnv rnf bc_itbls `seq`
rnf bc_ffis `seq`
seqEltsNameEnv rnf bc_strs `seq`
rnf (fmap seqModBreaks bc_breaks)
newtype ByteOff = ByteOff Int
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)
newtype WordOff = WordOff Int
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Outputable)
newtype RegBitmap = RegBitmap { unRegBitmap :: Word32 }
deriving (Enum, Eq, Show, Integral, Num, Ord, Real, Bits, FiniteBits, Outputable)
{- Note [GHCi TupleInfo]
~~~~~~~~~~~~~~~~~~~~~~~~
This contains the data we need for passing unboxed tuples between
bytecode and native code
In general we closely follow the native calling convention that
GHC uses for unboxed tuples, but we don't use any registers in
bytecode. All tuple elements are expanded to use a full register
or a full word on the stack.
The position of tuple elements that are returned on the stack in
the native calling convention is unchanged when returning the same
tuple in bytecode.
The order of the remaining elements is determined by the register in
which they would have been returned, rather than by their position in
the tuple in the Haskell source code. This makes jumping between bytecode
and native code easier: A map of live registers is enough to convert the
tuple.
See GHC.StgToByteCode.layoutTuple for more details.
-}
data NativeCallType = NativePrimCall
| NativeTupleReturn
deriving (Eq)
data NativeCallInfo = NativeCallInfo
{ nativeCallType :: !NativeCallType
, nativeCallSize :: !WordOff -- total size of arguments in words
, nativeCallRegs :: !GlobalRegSet
, nativeCallStackSpillSize :: !WordOff {- words spilled on the stack by
GHCs native calling convention -}
}
instance Outputable NativeCallInfo where
ppr NativeCallInfo{..} = text "<arg_size" <+> ppr nativeCallSize <+>
text "stack" <+> ppr nativeCallStackSpillSize <+>
text "regs" <+>
ppr (map (text @SDoc . show) $ regSetToList nativeCallRegs) <>
char '>'
voidTupleReturnInfo :: NativeCallInfo
voidTupleReturnInfo = NativeCallInfo NativeTupleReturn 0 emptyRegSet 0
voidPrimCallInfo :: NativeCallInfo
voidPrimCallInfo = NativeCallInfo NativePrimCall 0 emptyRegSet 0
type ItblEnv = NameEnv (Name, ItblPtr)
type AddrEnv = NameEnv (Name, AddrPtr)
-- We need the Name in the range so we know which
-- elements to filter out when unloading a module
newtype ItblPtr = ItblPtr (RemotePtr Heap.StgInfoTable)
deriving (Show, NFData)
newtype AddrPtr = AddrPtr (RemotePtr ())
deriving (NFData)
data UnlinkedBCO
= UnlinkedBCO {
unlinkedBCOName :: !Name,
unlinkedBCOArity :: {-# UNPACK #-} !Int,
unlinkedBCOInstrs :: !(UArray Int Word16), -- insns
unlinkedBCOBitmap :: !(UArray Int Word64), -- bitmap
unlinkedBCOLits :: !(SizedSeq BCONPtr), -- non-ptrs
unlinkedBCOPtrs :: !(SizedSeq BCOPtr) -- ptrs
}
instance NFData UnlinkedBCO where
rnf UnlinkedBCO{..} =
rnf unlinkedBCOLits `seq`
rnf unlinkedBCOPtrs
data BCOPtr
= BCOPtrName !Name
| BCOPtrPrimOp !PrimOp
| BCOPtrBCO !UnlinkedBCO
| BCOPtrBreakArray -- a pointer to this module's BreakArray
instance NFData BCOPtr where
rnf (BCOPtrBCO bco) = rnf bco
rnf x = x `seq` ()
data BCONPtr
= BCONPtrWord {-# UNPACK #-} !Word
| BCONPtrLbl !FastString
| BCONPtrItbl !Name
-- | A reference to a top-level string literal; see
-- Note [Generating code for top-level string literal bindings] in GHC.StgToByteCode.
| BCONPtrAddr !Name
-- | Only used internally in the assembler in an intermediate representation;
-- should never appear in a fully-assembled UnlinkedBCO.
-- Also see Note [Allocating string literals] in GHC.ByteCode.Asm.
| BCONPtrStr !ByteString
instance NFData BCONPtr where
rnf x = x `seq` ()
-- | Information about a breakpoint that we know at code-generation time
-- In order to be used, this needs to be hydrated relative to the current HscEnv by
-- 'hydrateCgBreakInfo'. Everything here can be fully forced and that's critical for
-- preventing space leaks (see #22530)
data CgBreakInfo
= CgBreakInfo
{ cgb_tyvars :: ![IfaceTvBndr] -- ^ Type variables in scope at the breakpoint
, cgb_vars :: ![Maybe (IfaceIdBndr, Word16)]
, cgb_resty :: !IfaceType
}
-- See Note [Syncing breakpoint info] in GHC.Runtime.Eval
seqCgBreakInfo :: CgBreakInfo -> ()
seqCgBreakInfo CgBreakInfo{..} =
rnf cgb_tyvars `seq`
rnf cgb_vars `seq`
rnf cgb_resty
instance Outputable UnlinkedBCO where
ppr (UnlinkedBCO nm _arity _insns _bitmap lits ptrs)
= sep [text "BCO", ppr nm, text "with",
ppr (sizeSS lits), text "lits",
ppr (sizeSS ptrs), text "ptrs" ]
instance Outputable CgBreakInfo where
ppr info = text "CgBreakInfo" <+>
parens (ppr (cgb_vars info) <+>
ppr (cgb_resty info))
-- -----------------------------------------------------------------------------
-- Breakpoints
-- | Breakpoint index
type BreakIndex = Int
-- | C CostCentre type
data CCostCentre
-- | All the information about the breakpoints for a module
data ModBreaks
= ModBreaks
{ modBreaks_flags :: ForeignRef BreakArray
-- ^ The array of flags, one per breakpoint,
-- indicating which breakpoints are enabled.
, modBreaks_locs :: !(Array BreakIndex SrcSpan)
-- ^ An array giving the source span of each breakpoint.
, modBreaks_vars :: !(Array BreakIndex [OccName])
-- ^ An array giving the names of the free variables at each breakpoint.
, modBreaks_decls :: !(Array BreakIndex [String])
-- ^ An array giving the names of the declarations enclosing each breakpoint.
-- See Note [Field modBreaks_decls]
, modBreaks_ccs :: !(Array BreakIndex (RemotePtr CostCentre))
-- ^ Array pointing to cost centre for each breakpoint
, modBreaks_breakInfo :: IntMap CgBreakInfo
-- ^ info about each breakpoint from the bytecode generator
}
seqModBreaks :: ModBreaks -> ()
seqModBreaks ModBreaks{..} =
rnf modBreaks_flags `seq`
rnf modBreaks_locs `seq`
rnf modBreaks_vars `seq`
rnf modBreaks_decls `seq`
rnf modBreaks_ccs `seq`
rnf (fmap seqCgBreakInfo modBreaks_breakInfo)
-- | Construct an empty ModBreaks
emptyModBreaks :: ModBreaks
emptyModBreaks = ModBreaks
{ modBreaks_flags = error "ModBreaks.modBreaks_array not initialised"
-- ToDo: can we avoid this?
, modBreaks_locs = array (0,-1) []
, modBreaks_vars = array (0,-1) []
, modBreaks_decls = array (0,-1) []
, modBreaks_ccs = array (0,-1) []
, modBreaks_breakInfo = IntMap.empty
}
{-
Note [Field modBreaks_decls]
~~~~~~~~~~~~~~~~~~~~~~
A value of eg ["foo", "bar", "baz"] in a `modBreaks_decls` field means:
The breakpoint is in the function called "baz" that is declared in a `let`
or `where` clause of a declaration called "bar", which itself is declared
in a `let` or `where` clause of the top-level function called "foo".
-}
|