1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module GHC.Data.Graph.Collapse
( PureSupernode(..)
, Supernode(..)
, collapseInductiveGraph
, VizCollapseMonad(..)
, NullCollapseViz(..)
, runNullCollapse
, MonadUniqSM(..)
)
where
import GHC.Prelude
import Control.Exception
import Control.Monad
import Data.List (delete, union, insert, intersect)
import Data.Semigroup
import GHC.Cmm.Dataflow.Label
import GHC.Data.Graph.Inductive.Graph
import GHC.Types.Unique.Supply
import GHC.Utils.Panic
{-|
Module : GHC.Data.Graph.Collapse
Description : Implement the "collapsing" algorithm Hecht and Ullman
A control-flow graph is reducible if and only if it is collapsible
according to the definition of Hecht and Ullman (1972). This module
implements the collapsing algorithm of Hecht and Ullman, and if it
encounters a graph that is not collapsible, it splits nodes until the
graph is fully collapsed. It then reports what nodes (if any) had to
be split in order to collapse the graph. The information is used
upstream to node-split Cmm graphs.
The module uses the inductive graph representation cloned from the
Functional Graph Library (Hackage package `fgl`, modules
`GHC.Data.Graph.Inductive.*`.)
-}
-- Full reference to paper: Matthew S. Hecht and Jeffrey D. Ullman
-- (1972). Flow Graph Reducibility. SIAM J. Comput., 1(2), 188–202.
-- https://doi.org/10.1137/0201014
------------------ Graph-splitting monad -----------------------
-- | If you want to visualize the graph-collapsing algorithm, create
-- an instance of monad `VizCollapseMonad`. Each step in the
-- algorithm is announced to the monad as a side effect. If you don't
-- care about visualization, you would use the `NullCollapseViz`
-- monad, in which these operations are no-ops.
class (Monad m) => MonadUniqSM m where
liftUniqSM :: UniqSM a -> m a
class (MonadUniqSM m, Graph gr, Supernode s m) => VizCollapseMonad m gr s where
consumeByInGraph :: Node -> Node -> gr s () -> m ()
splitGraphAt :: gr s () -> LNode s -> m ()
finalGraph :: gr s () -> m ()
-- | The identity monad as a `VizCollapseMonad`. Use this monad when
-- you want efficiency in graph collapse.
newtype NullCollapseViz a = NullCollapseViz { unNCV :: UniqSM a }
deriving (Functor, Applicative, Monad, MonadUnique)
instance MonadUniqSM NullCollapseViz where
liftUniqSM = NullCollapseViz
instance (Graph gr, Supernode s NullCollapseViz) =>
VizCollapseMonad NullCollapseViz gr s where
consumeByInGraph _ _ _ = return ()
splitGraphAt _ _ = return ()
finalGraph _ = return ()
runNullCollapse :: NullCollapseViz a -> UniqSM a
runNullCollapse = unNCV
------------------ Utility functions on graphs -----------------------
-- | Tell if a `Node` has a single predecessor.
singlePred :: Graph gr => gr a b -> Node -> Bool
singlePred gr n
| ([_], _, _, _) <- context gr n = True
| otherwise = False
-- | Use this function to extract information about a `Node` that you
-- know is in a `Graph`. It's like `match` from `Graph`, but it must
-- succeed.
forceMatch :: (Graph gr)
=> Node -> gr s b -> (Context s b, gr s b)
forceMatch node g = case match node g of (Just c, g') -> (c, g')
_ -> panicDump node g
where panicDump :: Graph gr => Node -> gr s b -> any
panicDump k _g =
panic $ "GHC.Data.Graph.Collapse failed to match node " ++ show k
-- | Rewrite the label of a given node.
updateNode :: DynGraph gr => (s -> s) -> Node -> gr s b -> gr s b
updateNode relabel node g = (preds, n, relabel this, succs) & g'
where ((preds, n, this, succs), g') = forceMatch node g
-- | Test if a graph has but a single node.
singletonGraph :: Graph gr => gr a b -> Bool
singletonGraph g = case labNodes g of [_] -> True
_ -> False
---------------- Supernodes ------------------------------------
-- | A "supernode" stands for a collection of one or more nodes (basic
-- blocks) that have been coalesced by the Hecht-Ullman algorithm.
-- A collection in a supernode constitutes a /reducible/ subgraph of a
-- control-flow graph. (When an entire control-flow graph is collapsed
-- to a single supernode, the flow graph is reducible.)
--
-- The idea of node splitting is to collapse a control-flow graph down
-- to a single supernode, then materialize (``inflate'') the reducible
-- equivalent graph from that supernode. The `Supernode` class
-- defines only the methods needed to collapse; rematerialization is
-- the responsiblity of the client.
--
-- During the Hecht-Ullman algorithm, every supernode has a unique
-- entry point, which is given by `superLabel`. But this invariant is
-- not guaranteed by the class methods and is not a law of the class.
-- The `mapLabels` function rewrites all labels that appear in a
-- supernode (both definitions and uses). The `freshen` function
-- replaces every appearance of a /defined/ label with a fresh label.
-- (Appearances include both definitions and uses.)
--
-- Laws:
-- @
-- superLabel (n <> n') == superLabel n
-- blocks (n <> n') == blocks n `union` blocks n'
-- mapLabels f (n <> n') = mapLabels f n <> mapLabels f n'
-- mapLabels id == id
-- mapLabels (f . g) == mapLabels f . mapLabels g
-- @
--
-- (We expect `freshen` to distribute over `<>`, but because of
-- the fresh names involved, formulating a precise law is a bit
-- challenging.)
class (Semigroup node) => PureSupernode node where
superLabel :: node -> Label
mapLabels :: (Label -> Label) -> (node -> node)
class (MonadUnique m, PureSupernode node) => Supernode node m where
freshen :: node -> m node
-- ghost method
-- blocks :: node -> Set Block
------------------ Functions specific to the algorithm -----------------------
-- | Merge two nodes, return new graph plus list of nodes that newly have a single
-- predecessor. This function implements transformation $T_2$ from
-- the Hecht and Ullman paper (merge the node into its unique
-- predecessor). It then also removes self-edges (transformation $T_1$ from
-- the Hecht and Ullman paper). There is no need for a separate
-- implementation of $T_1$.
--
-- `consumeBy v u g` returns the graph that results when node v is
-- consumed by node u in graph g. Both v and u are replaced with a new node u'
-- with these properties:
--
-- LABELS(u') = LABELS(u) `union` LABELS(v)
-- SUCC(u') = SUCC(u) `union` SUCC(v) - { u }
-- every node that previously points to u now points to u'
--
-- It also returns a list of nodes in the result graph that
-- are *newly* single-predecessor nodes.
consumeBy :: (DynGraph gr, PureSupernode s)
=> Node -> Node -> gr s () -> (gr s (), [Node])
consumeBy toNode fromNode g =
assert (toPreds == [((), fromNode)]) $
(newGraph, newCandidates)
where ((toPreds, _, to, toSuccs), g') = forceMatch toNode g
((fromPreds, _, from, fromSuccs), g'') = forceMatch fromNode g'
context = ( fromPreds -- by construction, can't have `toNode`
, fromNode
, from <> to
, delete ((), fromNode) toSuccs `union` fromSuccs
)
newGraph = context & g''
newCandidates = filter (singlePred newGraph) changedNodes
changedNodes = fromNode `insert` map snd (toSuccs `intersect` fromSuccs)
-- | Split a given node. The node is replaced with a collection of replicas,
-- one for each predecessor. After the split, every predecessor
-- points to a unique replica.
split :: forall gr s b m . (DynGraph gr, Supernode s m)
=> Node -> gr s b -> m (gr s b)
split node g = assert (isMultiple preds) $ foldM addReplica g' newNodes
where ((preds, _, this, succs), g') = forceMatch node g
newNodes :: [((b, Node), Node)]
newNodes = zip preds [maxNode+1..]
(_, maxNode) = nodeRange g
thisLabel = superLabel this
addReplica :: gr s b -> ((b, Node), Node) -> m (gr s b)
addReplica g ((b, pred), newNode) = do
newSuper <- freshen this
return $ add newSuper
where add newSuper =
updateNode (thisLabel `replacedWith` superLabel newSuper) pred $
([(b, pred)], newNode, newSuper, succs) & g
replacedWith :: PureSupernode s => Label -> Label -> s -> s
replacedWith old new = mapLabels (\l -> if l == old then new else l)
-- | Does a list have more than one element? (in constant time).
isMultiple :: [a] -> Bool
isMultiple [] = False
isMultiple [_] = False
isMultiple (_:_:_) = True
-- | Find a candidate for splitting by finding a node that has multiple predecessors.
anySplittable :: forall gr a b . Graph gr => gr a b -> LNode a
anySplittable g = case splittable of
n : _ -> n
[] -> panic "anySplittable found no splittable nodes"
where splittable = filter (isMultiple . pre g . fst) $ labNodes g
splittable :: [LNode a]
------------------ The collapsing algorithm -----------------------
-- | Using the algorithm of Hecht and Ullman (1972), collapse a graph
-- into a single node, splitting nodes as needed. Record
-- visualization events in monad `m`.
collapseInductiveGraph :: (DynGraph gr, Supernode s m, VizCollapseMonad m gr s)
=> gr s () -> m (gr s ())
collapseInductiveGraph g = drain g worklist
where worklist :: [[Node]] -- nodes with exactly one predecessor
worklist = [filter (singlePred g) $ nodes g]
drain g [] = if singletonGraph g then finalGraph g >> return g
else let (n, super) = anySplittable g
in do splitGraphAt g (n, super)
collapseInductiveGraph =<< split n g
drain g ([]:nss) = drain g nss
drain g ((n:ns):nss) = let (g', ns') = consumeBy n (theUniquePred n) g
in do consumeByInGraph n (theUniquePred n) g
drain g' (ns':ns:nss)
where theUniquePred n
| ([(_, p)], _, _, _) <- context g n = p
| otherwise =
panic "node claimed to have a unique predecessor; it doesn't"
|