summaryrefslogtreecommitdiff
path: root/stdlib/bigarray.mli
blob: 5f9f46e42857b8295d615631d04e988e83477499 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*          Manuel Serrano and Xavier Leroy, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 2000 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(** Large, multi-dimensional, numerical arrays.

   This module implements multi-dimensional arrays of integers and
   floating-point numbers, thereafter referred to as 'Bigarrays',
   to distinguish them from the standard OCaml arrays described in
   {!module:Array}.

   The implementation allows efficient sharing of large numerical
   arrays between OCaml code and C or Fortran numerical libraries.

   The main differences between 'Bigarrays' and standard OCaml
   arrays are as follows:
   - Bigarrays are not limited in size, unlike OCaml arrays.
     (Normal float arrays are limited to 2,097,151 elements on a 32-bit
     platform, and normal arrays of other types to 4,194,303 elements.)
   - Bigarrays are multi-dimensional.  Any number of dimensions
     between 0 and 16 is supported.  In contrast, OCaml arrays
     are mono-dimensional and require encoding multi-dimensional
     arrays as arrays of arrays.
   - Bigarrays can only contain integers and floating-point numbers,
     while OCaml arrays can contain arbitrary OCaml data types.
   - Bigarrays provide more space-efficient storage of
     integer and floating-point elements than normal OCaml arrays, in
     particular because they support 'small' types such as
     single-precision floats and 8 and 16-bit integers, in addition to
     the standard OCaml types of double-precision floats and 32 and
     64-bit integers.
   - The memory layout of Bigarrays is entirely compatible with that
     of arrays in C and Fortran, allowing large arrays to be passed
     back and forth between OCaml code and C / Fortran code with no
     data copying at all.
   - Bigarrays support interesting high-level operations that normal
     arrays do not provide efficiently, such as extracting sub-arrays
     and 'slicing' a multi-dimensional array along certain dimensions,
     all without any copying.

   Users of this module are encouraged to do [open Bigarray] in their
   source, then refer to array types and operations via short dot
   notation, e.g. [Array1.t] or [Array2.sub].

   Bigarrays support all the OCaml ad-hoc polymorphic operations:
   - comparisons ([=], [<>], [<=], etc, as well as {!Stdlib.compare});
   - hashing (module [Hash]);
   - and structured input-output (the functions from the
     {!Marshal} module, as well as {!Stdlib.output_value}
     and {!Stdlib.input_value}).
*)

(** {1 Element kinds} *)

(** Bigarrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers
   ({!Bigarray.float32_elt}),
- IEEE double precision (64 bits) floating-point numbers
   ({!Bigarray.float64_elt}),
- IEEE single precision (2 * 32 bits) floating-point complex numbers
   ({!Bigarray.complex32_elt}),
- IEEE double precision (2 * 64 bits) floating-point complex numbers
   ({!Bigarray.complex64_elt}),
- 8-bit integers (signed or unsigned)
   ({!Bigarray.int8_signed_elt} or {!Bigarray.int8_unsigned_elt}),
- 16-bit integers (signed or unsigned)
   ({!Bigarray.int16_signed_elt} or {!Bigarray.int16_unsigned_elt}),
- OCaml integers (signed, 31 bits on 32-bit architectures,
   63 bits on 64-bit architectures) ({!Bigarray.int_elt}),
- 32-bit signed integers ({!Bigarray.int32_elt}),
- 64-bit signed integers ({!Bigarray.int64_elt}),
- platform-native signed integers (32 bits on 32-bit architectures,
   64 bits on 64-bit architectures) ({!Bigarray.nativeint_elt}).

   Each element kind is represented at the type level by one of the
   [*_elt] types defined below (defined with a single constructor instead
   of abstract types for technical injectivity reasons).

   @since 4.07 Moved from otherlibs to stdlib.
*)

type float32_elt = Float32_elt
type float64_elt = Float64_elt
type int8_signed_elt = Int8_signed_elt
type int8_unsigned_elt = Int8_unsigned_elt
type int16_signed_elt = Int16_signed_elt
type int16_unsigned_elt = Int16_unsigned_elt
type int32_elt = Int32_elt
type int64_elt = Int64_elt
type int_elt = Int_elt
type nativeint_elt = Nativeint_elt
type complex32_elt = Complex32_elt
type complex64_elt = Complex64_elt

type ('a, 'b) kind =
    Float32 : (float, float32_elt) kind
  | Float64 : (float, float64_elt) kind
  | Int8_signed : (int, int8_signed_elt) kind
  | Int8_unsigned : (int, int8_unsigned_elt) kind
  | Int16_signed : (int, int16_signed_elt) kind
  | Int16_unsigned : (int, int16_unsigned_elt) kind
  | Int32 : (int32, int32_elt) kind
  | Int64 : (int64, int64_elt) kind
  | Int : (int, int_elt) kind
  | Nativeint : (nativeint, nativeint_elt) kind
  | Complex32 : (Complex.t, complex32_elt) kind
  | Complex64 : (Complex.t, complex64_elt) kind
  | Char : (char, int8_unsigned_elt) kind (**)
(** To each element kind is associated an OCaml type, which is
   the type of OCaml values that can be stored in the Bigarray
   or read back from it.  This type is not necessarily the same
   as the type of the array elements proper: for instance,
   a Bigarray whose elements are of kind [float32_elt] contains
   32-bit single precision floats, but reading or writing one of
   its elements from OCaml uses the OCaml type [float], which is
   64-bit double precision floats.

   The GADT type [('a, 'b) kind] captures this association
   of an OCaml type ['a] for values read or written in the Bigarray,
   and of an element kind ['b] which represents the actual contents
   of the Bigarray. Its constructors list all possible associations
   of OCaml types with element kinds, and are re-exported below for
   backward-compatibility reasons.

   Using a generalized algebraic datatype (GADT) here allows writing
   well-typed polymorphic functions whose return type depend on the
   argument type, such as:

{[
  let zero : type a b. (a, b) kind -> a = function
    | Float32 -> 0.0 | Complex32 -> Complex.zero
    | Float64 -> 0.0 | Complex64 -> Complex.zero
    | Int8_signed -> 0 | Int8_unsigned -> 0
    | Int16_signed -> 0 | Int16_unsigned -> 0
    | Int32 -> 0l | Int64 -> 0L
    | Int -> 0 | Nativeint -> 0n
    | Char -> '\000'
]}
*)

val float32 : (float, float32_elt) kind
(** See {!Bigarray.char}. *)

val float64 : (float, float64_elt) kind
(** See {!Bigarray.char}. *)

val complex32 : (Complex.t, complex32_elt) kind
(** See {!Bigarray.char}. *)

val complex64 : (Complex.t, complex64_elt) kind
(** See {!Bigarray.char}. *)

val int8_signed : (int, int8_signed_elt) kind
(** See {!Bigarray.char}. *)

val int8_unsigned : (int, int8_unsigned_elt) kind
(** See {!Bigarray.char}. *)

val int16_signed : (int, int16_signed_elt) kind
(** See {!Bigarray.char}. *)

val int16_unsigned : (int, int16_unsigned_elt) kind
(** See {!Bigarray.char}. *)

val int : (int, int_elt) kind
(** See {!Bigarray.char}. *)

val int32 : (int32, int32_elt) kind
(** See {!Bigarray.char}. *)

val int64 : (int64, int64_elt) kind
(** See {!Bigarray.char}. *)

val nativeint : (nativeint, nativeint_elt) kind
(** See {!Bigarray.char}. *)

val char : (char, int8_unsigned_elt) kind
(** As shown by the types of the values above,
   Bigarrays of kind [float32_elt] and [float64_elt] are
   accessed using the OCaml type [float].  Bigarrays of complex kinds
   [complex32_elt], [complex64_elt] are accessed with the OCaml type
   {!Complex.t}. Bigarrays of
   integer kinds are accessed using the smallest OCaml integer
   type large enough to represent the array elements:
   [int] for 8- and 16-bit integer Bigarrays, as well as OCaml-integer
   Bigarrays; [int32] for 32-bit integer Bigarrays; [int64]
   for 64-bit integer Bigarrays; and [nativeint] for
   platform-native integer Bigarrays.  Finally, Bigarrays of
   kind [int8_unsigned_elt] can also be accessed as arrays of
   characters instead of arrays of small integers, by using
   the kind value [char] instead of [int8_unsigned]. *)

val kind_size_in_bytes : ('a, 'b) kind -> int
(** [kind_size_in_bytes k] is the number of bytes used to store
   an element of type [k].

   @since 4.03 *)

(** {1 Array layouts} *)

type c_layout = C_layout_typ (**)
(** See {!type:Bigarray.fortran_layout}.*)

type fortran_layout = Fortran_layout_typ (**)
(** To facilitate interoperability with existing C and Fortran code,
   this library supports two different memory layouts for Bigarrays,
   one compatible with the C conventions,
   the other compatible with the Fortran conventions.

   In the C-style layout, array indices start at 0, and
   multi-dimensional arrays are laid out in row-major format.
   That is, for a two-dimensional array, all elements of
   row 0 are contiguous in memory, followed by all elements of
   row 1, etc.  In other terms, the array elements at [(x,y)]
   and [(x, y+1)] are adjacent in memory.

   In the Fortran-style layout, array indices start at 1, and
   multi-dimensional arrays are laid out in column-major format.
   That is, for a two-dimensional array, all elements of
   column 0 are contiguous in memory, followed by all elements of
   column 1, etc.  In other terms, the array elements at [(x,y)]
   and [(x+1, y)] are adjacent in memory.

   Each layout style is identified at the type level by the
   phantom types {!type:Bigarray.c_layout} and {!type:Bigarray.fortran_layout}
   respectively. *)

(** {2 Supported layouts}

   The GADT type ['a layout] represents one of the two supported
   memory layouts: C-style or Fortran-style. Its constructors are
   re-exported as values below for backward-compatibility reasons.
*)

type 'a layout =
    C_layout: c_layout layout
  | Fortran_layout: fortran_layout layout

val c_layout : c_layout layout
val fortran_layout : fortran_layout layout


(** {1 Generic arrays (of arbitrarily many dimensions)} *)

module Genarray :
  sig
  type (!'a, !'b, !'c) t
  (** The type [Genarray.t] is the type of Bigarrays with variable
     numbers of dimensions.  Any number of dimensions between 0 and 16
     is supported.

     The three type parameters to [Genarray.t] identify the array element
     kind and layout, as follows:
     - the first parameter, ['a], is the OCaml type for accessing array
       elements ([float], [int], [int32], [int64], [nativeint]);
     - the second parameter, ['b], is the actual kind of array elements
       ([float32_elt], [float64_elt], [int8_signed_elt], [int8_unsigned_elt],
       etc);
     - the third parameter, ['c], identifies the array layout
       ([c_layout] or [fortran_layout]).

     For instance, [(float, float32_elt, fortran_layout) Genarray.t]
     is the type of generic Bigarrays containing 32-bit floats
     in Fortran layout; reads and writes in this array use the
     OCaml type [float]. *)

  external create: ('a, 'b) kind -> 'c layout -> int array -> ('a, 'b, 'c) t
    = "caml_ba_create"
  (** [Genarray.create kind layout dimensions] returns a new Bigarray
     whose element kind is determined by the parameter [kind] (one of
     [float32], [float64], [int8_signed], etc) and whose layout is
     determined by the parameter [layout] (one of [c_layout] or
     [fortran_layout]).  The [dimensions] parameter is an array of
     integers that indicate the size of the Bigarray in each dimension.
     The length of [dimensions] determines the number of dimensions
     of the Bigarray.

     For instance, [Genarray.create int32 c_layout [|4;6;8|]]
     returns a fresh Bigarray of 32-bit integers, in C layout,
     having three dimensions, the three dimensions being 4, 6 and 8
     respectively.

     Bigarrays returned by [Genarray.create] are not initialized:
     the initial values of array elements is unspecified.

     [Genarray.create] raises [Invalid_argument] if the number of dimensions
     is not in the range 0 to 16 inclusive, or if one of the dimensions
     is negative. *)

  val init: ('a, 'b) kind -> 'c layout -> int array -> (int array -> 'a) ->
            ('a, 'b, 'c) t
  (** [Genarray.init kind layout dimensions f] returns a new Bigarray [b]
      whose element kind is determined by the parameter [kind] (one of
      [float32], [float64], [int8_signed], etc) and whose layout is
      determined by the parameter [layout] (one of [c_layout] or
      [fortran_layout]).  The [dimensions] parameter is an array of
      integers that indicate the size of the Bigarray in each dimension.
      The length of [dimensions] determines the number of dimensions
      of the Bigarray.

      Each element [Genarray.get b i] is initialized to the result of [f i].
      In other words, [Genarray.init kind layout dimensions f] tabulates
      the results of [f] applied to the indices of a new Bigarray whose
      layout is described by [kind], [layout] and [dimensions].  The index
      array [i] may be shared and mutated between calls to f.

      For instance, [Genarray.init int c_layout [|2; 1; 3|]
      (Array.fold_left (+) 0)] returns a fresh Bigarray of integers, in C
      layout, having three dimensions (2, 1, 3, respectively), with the
      element values 0, 1, 2, 1, 2, 3.

      [Genarray.init] raises [Invalid_argument] if the number of dimensions
      is not in the range 0 to 16 inclusive, or if one of the dimensions
      is negative.

      @since 4.12 *)

  external num_dims: ('a, 'b, 'c) t -> int = "caml_ba_num_dims"
  (** Return the number of dimensions of the given Bigarray. *)

  val dims : ('a, 'b, 'c) t -> int array
  (** [Genarray.dims a] returns all dimensions of the Bigarray [a],
     as an array of integers of length [Genarray.num_dims a]. *)

  external nth_dim: ('a, 'b, 'c) t -> int -> int = "caml_ba_dim"
  (** [Genarray.nth_dim a n] returns the [n]-th dimension of the
     Bigarray [a].  The first dimension corresponds to [n = 0];
     the second dimension corresponds to [n = 1]; the last dimension,
     to [n = Genarray.num_dims a - 1].
     @raise Invalid_argument if [n] is less than 0 or greater or equal than
     [Genarray.num_dims a]. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given Bigarray. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given Bigarray. *)

  external change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
      = "caml_ba_change_layout"
  (** [Genarray.change_layout a layout] returns a Bigarray with the
      specified [layout], sharing the data with [a] (and hence having
      the same dimensions as [a]). No copying of elements is involved: the
      new array and the original array share the same storage space.
      The dimensions are reversed, such that [get v [| a; b |]] in
      C layout becomes [get v [| b+1; a+1 |]] in Fortran layout.

      @since 4.04
  *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a] multiplied
    by [a]'s {!kind_size_in_bytes}.

    @since 4.03 *)

  external get: ('a, 'b, 'c) t -> int array -> 'a = "caml_ba_get_generic"
  (** Read an element of a generic Bigarray.
     [Genarray.get a [|i1; ...; iN|]] returns the element of [a]
     whose coordinates are [i1] in the first dimension, [i2] in
     the second dimension, ..., [iN] in the [N]-th dimension.

     If [a] has C layout, the coordinates must be greater or equal than 0
     and strictly less than the corresponding dimensions of [a].
     If [a] has Fortran layout, the coordinates must be greater or equal
     than 1 and less or equal than the corresponding dimensions of [a].

     If [N > 3], alternate syntax is provided: you can write
     [a.{i1, i2, ..., iN}] instead of [Genarray.get a [|i1; ...; iN|]].
     (The syntax [a.{...}] with one, two or three coordinates is
     reserved for accessing one-, two- and three-dimensional arrays
     as described below.)

     @raise Invalid_argument if the array [a] does not have exactly [N]
     dimensions, or if the coordinates are outside the array bounds.
  *)

  external set: ('a, 'b, 'c) t -> int array -> 'a -> unit
    = "caml_ba_set_generic"
  (** Assign an element of a generic Bigarray.
     [Genarray.set a [|i1; ...; iN|] v] stores the value [v] in the
     element of [a] whose coordinates are [i1] in the first dimension,
     [i2] in the second dimension, ..., [iN] in the [N]-th dimension.

     The array [a] must have exactly [N] dimensions, and all coordinates
     must lie inside the array bounds, as described for [Genarray.get];
     otherwise, [Invalid_argument] is raised.

     If [N > 3], alternate syntax is provided: you can write
     [a.{i1, i2, ..., iN} <- v] instead of
     [Genarray.set a [|i1; ...; iN|] v].
     (The syntax [a.{...} <- v] with one, two or three coordinates is
     reserved for updating one-, two- and three-dimensional arrays
     as described below.) *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given Bigarray by restricting the
     first (left-most) dimension.  [Genarray.sub_left a ofs len]
     returns a Bigarray with the same number of dimensions as [a],
     and the same dimensions as [a], except the first dimension,
     which corresponds to the interval [[ofs ... ofs + len - 1]]
     of the first dimension of [a].  No copying of elements is
     involved: the sub-array and the original array share the same
     storage space.  In other terms, the element at coordinates
     [[|i1; ...; iN|]] of the sub-array is identical to the
     element at coordinates [[|i1+ofs; ...; iN|]] of the original
     array [a].

     [Genarray.sub_left] applies only to Bigarrays in C layout.
     @raise Invalid_argument if [ofs] and [len] do not designate
     a valid sub-array of [a], that is, if [ofs < 0], or [len < 0],
     or [ofs + len > Genarray.nth_dim a 0]. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given Bigarray by restricting the
     last (right-most) dimension.  [Genarray.sub_right a ofs len]
     returns a Bigarray with the same number of dimensions as [a],
     and the same dimensions as [a], except the last dimension,
     which corresponds to the interval [[ofs ... ofs + len - 1]]
     of the last dimension of [a].  No copying of elements is
     involved: the sub-array and the original array share the same
     storage space.  In other terms, the element at coordinates
     [[|i1; ...; iN|]] of the sub-array is identical to the
     element at coordinates [[|i1; ...; iN+ofs|]] of the original
     array [a].

     [Genarray.sub_right] applies only to Bigarrays in Fortran layout.
     @raise Invalid_argument if [ofs] and [len] do not designate
     a valid sub-array of [a], that is, if [ofs < 1], or [len < 0],
     or [ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1)]. *)

  external slice_left:
    ('a, 'b, c_layout) t -> int array -> ('a, 'b, c_layout) t
    = "caml_ba_slice"
  (** Extract a sub-array of lower dimension from the given Bigarray
     by fixing one or several of the first (left-most) coordinates.
     [Genarray.slice_left a [|i1; ... ; iM|]] returns the 'slice'
     of [a] obtained by setting the first [M] coordinates to
     [i1], ..., [iM].  If [a] has [N] dimensions, the slice has
     dimension [N - M], and the element at coordinates
     [[|j1; ...; j(N-M)|]] in the slice is identical to the element
     at coordinates [[|i1; ...; iM; j1; ...; j(N-M)|]] in the original
     array [a].  No copying of elements is involved: the slice and
     the original array share the same storage space.

     [Genarray.slice_left] applies only to Bigarrays in C layout.
     @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]]
     is outside the bounds of [a]. *)

  external slice_right:
    ('a, 'b, fortran_layout) t -> int array -> ('a, 'b, fortran_layout) t
    = "caml_ba_slice"
  (** Extract a sub-array of lower dimension from the given Bigarray
     by fixing one or several of the last (right-most) coordinates.
     [Genarray.slice_right a [|i1; ... ; iM|]] returns the 'slice'
     of [a] obtained by setting the last [M] coordinates to
     [i1], ..., [iM].  If [a] has [N] dimensions, the slice has
     dimension [N - M], and the element at coordinates
     [[|j1; ...; j(N-M)|]] in the slice is identical to the element
     at coordinates [[|j1; ...; j(N-M); i1; ...; iM|]] in the original
     array [a].  No copying of elements is involved: the slice and
     the original array share the same storage space.

     [Genarray.slice_right] applies only to Bigarrays in Fortran layout.
     @raise Invalid_argument if [M >= N], or if [[|i1; ... ; iM|]]
     is outside the bounds of [a]. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
      = "caml_ba_blit"
  (** Copy all elements of a Bigarray in another Bigarray.
     [Genarray.blit src dst] copies all elements of [src] into
     [dst].  Both arrays [src] and [dst] must have the same number of
     dimensions and equal dimensions.  Copying a sub-array of [src]
     to a sub-array of [dst] can be achieved by applying [Genarray.blit]
     to sub-array or slices of [src] and [dst]. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Set all elements of a Bigarray to a given value.
     [Genarray.fill a v] stores the value [v] in all elements of
     the Bigarray [a].  Setting only some elements of [a] to [v]
     can be achieved by applying [Genarray.fill] to a sub-array
     or a slice of [a]. *)
  end

(** {1 Zero-dimensional arrays} *)

(** Zero-dimensional arrays. The [Array0] structure provides operations
   similar to those of {!Bigarray.Genarray}, but specialized to the case
   of zero-dimensional arrays that only contain a single scalar value.
   Statically knowing the number of dimensions of the array allows
   faster operations, and more precise static type-checking.
   @since 4.05 *)
module Array0 : sig
  type (!'a, !'b, !'c) t
  (** The type of zero-dimensional Bigarrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> ('a, 'b, 'c) t
  (** [Array0.create kind layout] returns a new Bigarray of zero dimension.
     [kind] and [layout] determine the array element kind and the array
     layout as described for {!Genarray.create}. *)

  val init: ('a, 'b) kind -> 'c layout -> 'a -> ('a, 'b, 'c) t
  (** [Array0.init kind layout v] behaves like [Array0.create kind layout]
     except that the element is additionally initialized to the value [v].

     @since 4.12 *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given Bigarray. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given Bigarray. *)

  val change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
  (** [Array0.change_layout a layout] returns a Bigarray with the
      specified [layout], sharing the data with [a]. No copying of elements
      is involved: the new array and the original array share the same
      storage space.

      @since 4.06
  *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is [a]'s {!kind_size_in_bytes}. *)

  val get: ('a, 'b, 'c) t -> 'a
  (** [Array0.get a] returns the only element in [a]. *)

  val set: ('a, 'b, 'c) t -> 'a -> unit
  (** [Array0.set a x v] stores the value [v] in [a]. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit = "caml_ba_blit"
  (** Copy the first Bigarray to the second Bigarray.
     See {!Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given Bigarray with the given value.
     See {!Genarray.fill} for more details. *)

  val of_value: ('a, 'b) kind -> 'c layout -> 'a -> ('a, 'b, 'c) t
  (** Build a zero-dimensional Bigarray initialized from the
     given value.  *)

end


(** {1 One-dimensional arrays} *)

(** One-dimensional arrays. The [Array1] structure provides operations
   similar to those of
   {!Bigarray.Genarray}, but specialized to the case of one-dimensional arrays.
   (The {!Array2} and {!Array3} structures below provide operations
   specialized for two- and three-dimensional arrays.)
   Statically knowing the number of dimensions of the array allows
   faster operations, and more precise static type-checking. *)
module Array1 : sig
  type (!'a, !'b, !'c) t
  (** The type of one-dimensional Bigarrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> int -> ('a, 'b, 'c) t
  (** [Array1.create kind layout dim] returns a new Bigarray of
     one dimension, whose size is [dim].  [kind] and [layout]
     determine the array element kind and the array layout
     as described for {!Genarray.create}. *)

  val init: ('a, 'b) kind -> 'c layout -> int -> (int -> 'a) ->
            ('a, 'b, 'c) t
  (** [Array1.init kind layout dim f] returns a new Bigarray [b]
     of one dimension, whose size is [dim].  [kind] and [layout]
     determine the array element kind and the array layout
     as described for {!Genarray.create}.

     Each element [Array1.get b i] of the array is initialized to the
     result of [f i].

     In other words, [Array1.init kind layout dimensions f] tabulates
     the results of [f] applied to the indices of a new Bigarray whose
     layout is described by [kind], [layout] and [dim].

     @since 4.12 *)

  external dim: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the size (dimension) of the given one-dimensional
     Bigarray. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given Bigarray. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given Bigarray. *)

  val change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
  (** [Array1.change_layout a layout] returns a Bigarray with the
      specified [layout], sharing the data with [a] (and hence having
      the same dimension as [a]). No copying of elements is involved: the
      new array and the original array share the same storage space.

      @since 4.06
  *)


  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a]
    multiplied by [a]'s {!kind_size_in_bytes}.

    @since 4.03 *)

  external get: ('a, 'b, 'c) t -> int -> 'a = "%caml_ba_ref_1"
  (** [Array1.get a x], or alternatively [a.{x}],
     returns the element of [a] at index [x].
     [x] must be greater or equal than [0] and strictly less than
     [Array1.dim a] if [a] has C layout.  If [a] has Fortran layout,
     [x] must be greater or equal than [1] and less or equal than
     [Array1.dim a].  Otherwise, [Invalid_argument] is raised. *)

  external set: ('a, 'b, 'c) t -> int -> 'a -> unit = "%caml_ba_set_1"
  (** [Array1.set a x v], also written [a.{x} <- v],
     stores the value [v] at index [x] in [a].
     [x] must be inside the bounds of [a] as described in
     {!Bigarray.Array1.get};
     otherwise, [Invalid_argument] is raised. *)

  external sub: ('a, 'b, 'c) t -> int -> int -> ('a, 'b, 'c) t
      = "caml_ba_sub"
  (** Extract a sub-array of the given one-dimensional Bigarray.
     See {!Genarray.sub_left} for more details. *)

  val slice: ('a, 'b, 'c) t -> int -> ('a, 'b, 'c) Array0.t
  (** Extract a scalar (zero-dimensional slice) of the given one-dimensional
     Bigarray.  The integer parameter is the index of the scalar to
     extract.  See {!Bigarray.Genarray.slice_left} and
     {!Bigarray.Genarray.slice_right} for more details.
     @since 4.05 *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
      = "caml_ba_blit"
  (** Copy the first Bigarray to the second Bigarray.
     See {!Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given Bigarray with the given value.
     See {!Genarray.fill} for more details. *)

  val of_array: ('a, 'b) kind -> 'c layout -> 'a array -> ('a, 'b, 'c) t
  (** Build a one-dimensional Bigarray initialized from the
     given array.  *)

  external unsafe_get: ('a, 'b, 'c) t -> int -> 'a = "%caml_ba_unsafe_ref_1"
  (** Like {!Bigarray.Array1.get}, but bounds checking is not always performed.
      Use with caution and only when the program logic guarantees that
      the access is within bounds. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> 'a -> unit
                     = "%caml_ba_unsafe_set_1"
  (** Like {!Bigarray.Array1.set}, but bounds checking is not always performed.
      Use with caution and only when the program logic guarantees that
      the access is within bounds. *)

end


(** {1 Two-dimensional arrays} *)

(** Two-dimensional arrays. The [Array2] structure provides operations
   similar to those of {!Bigarray.Genarray}, but specialized to the
   case of two-dimensional arrays. *)
module Array2 :
  sig
  type (!'a, !'b, !'c) t
  (** The type of two-dimensional Bigarrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind ->  'c layout -> int -> int -> ('a, 'b, 'c) t
  (** [Array2.create kind layout dim1 dim2] returns a new Bigarray of
     two dimensions, whose size is [dim1] in the first dimension
     and [dim2] in the second dimension.  [kind] and [layout]
     determine the array element kind and the array layout
     as described for {!Bigarray.Genarray.create}. *)

  val init: ('a, 'b) kind ->  'c layout -> int -> int ->
            (int -> int -> 'a) -> ('a, 'b, 'c) t
  (** [Array2.init kind layout dim1 dim2 f] returns a new Bigarray [b]
     of two dimensions, whose size is [dim2] in the first dimension
     and [dim2] in the second dimension.  [kind] and [layout]
     determine the array element kind and the array layout
     as described for {!Bigarray.Genarray.create}.

     Each element [Array2.get b i j] of the array is initialized to
     the result of [f i j].

     In other words, [Array2.init kind layout dim1 dim2 f] tabulates
     the results of [f] applied to the indices of a new Bigarray whose
     layout is described by [kind], [layout], [dim1] and [dim2].

     @since 4.12 *)

  external dim1: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the first dimension of the given two-dimensional Bigarray. *)

  external dim2: ('a, 'b, 'c) t -> int = "%caml_ba_dim_2"
  (** Return the second dimension of the given two-dimensional Bigarray. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given Bigarray. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given Bigarray. *)

  val change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
  (** [Array2.change_layout a layout] returns a Bigarray with the
      specified [layout], sharing the data with [a] (and hence having
      the same dimensions as [a]). No copying of elements is involved: the
      new array and the original array share the same storage space.
      The dimensions are reversed, such that [get v [| a; b |]] in
      C layout becomes [get v [| b+1; a+1 |]] in Fortran layout.

      @since 4.06
  *)


  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a]
    multiplied by [a]'s {!kind_size_in_bytes}.

    @since 4.03 *)

  external get: ('a, 'b, 'c) t -> int -> int -> 'a = "%caml_ba_ref_2"
  (** [Array2.get a x y], also written [a.{x,y}],
     returns the element of [a] at coordinates ([x], [y]).
     [x] and [y] must be within the bounds
     of [a], as described for {!Bigarray.Genarray.get};
     otherwise, [Invalid_argument] is raised. *)

  external set: ('a, 'b, 'c) t -> int -> int -> 'a -> unit = "%caml_ba_set_2"
  (** [Array2.set a x y v], or alternatively [a.{x,y} <- v],
     stores the value [v] at coordinates ([x], [y]) in [a].
     [x] and [y] must be within the bounds of [a],
     as described for {!Bigarray.Genarray.set};
     otherwise, [Invalid_argument] is raised. *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a two-dimensional sub-array of the given two-dimensional
     Bigarray by restricting the first dimension.
     See {!Bigarray.Genarray.sub_left} for more details.
     [Array2.sub_left] applies only to arrays with C layout. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a two-dimensional sub-array of the given two-dimensional
     Bigarray by restricting the second dimension.
     See {!Bigarray.Genarray.sub_right} for more details.
     [Array2.sub_right] applies only to arrays with Fortran layout. *)

  val slice_left: ('a, 'b, c_layout) t -> int -> ('a, 'b, c_layout) Array1.t
  (** Extract a row (one-dimensional slice) of the given two-dimensional
     Bigarray.  The integer parameter is the index of the row to
     extract.  See {!Bigarray.Genarray.slice_left} for more details.
     [Array2.slice_left] applies only to arrays with C layout. *)

  val slice_right:
    ('a, 'b, fortran_layout) t -> int -> ('a, 'b, fortran_layout) Array1.t
  (** Extract a column (one-dimensional slice) of the given
     two-dimensional Bigarray.  The integer parameter is the
     index of the column to extract.  See {!Bigarray.Genarray.slice_right}
     for more details.  [Array2.slice_right] applies only to arrays
     with Fortran layout. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first Bigarray to the second Bigarray.
     See {!Bigarray.Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given Bigarray with the given value.
     See {!Bigarray.Genarray.fill} for more details. *)

  val of_array: ('a, 'b) kind -> 'c layout -> 'a array array -> ('a, 'b, 'c) t
  (** Build a two-dimensional Bigarray initialized from the
     given array of arrays.  *)

  external unsafe_get: ('a, 'b, 'c) t -> int -> int -> 'a
                     = "%caml_ba_unsafe_ref_2"
  (** Like {!Bigarray.Array2.get}, but bounds checking is not always
      performed. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> int -> 'a -> unit
                     = "%caml_ba_unsafe_set_2"
  (** Like {!Bigarray.Array2.set}, but bounds checking is not always
      performed. *)

end

(** {1 Three-dimensional arrays} *)

(** Three-dimensional arrays. The [Array3] structure provides operations
   similar to those of {!Bigarray.Genarray}, but specialized to the case
   of three-dimensional arrays. *)
module Array3 :
  sig
  type (!'a, !'b, !'c) t
  (** The type of three-dimensional Bigarrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> int -> int -> int -> ('a, 'b, 'c) t
  (** [Array3.create kind layout dim1 dim2 dim3] returns a new Bigarray of
     three dimensions, whose size is [dim1] in the first dimension,
     [dim2] in the second dimension, and [dim3] in the third.
     [kind] and [layout] determine the array element kind and
     the array layout as described for {!Bigarray.Genarray.create}. *)

  val init: ('a, 'b) kind ->  'c layout -> int -> int -> int ->
            (int -> int -> int -> 'a) -> ('a, 'b, 'c) t
  (** [Array3.init kind layout dim1 dim2 dim3 f] returns a new Bigarray [b]
     of three dimensions, whose size is [dim1] in the first dimension,
     [dim2] in the second dimension, and [dim3] in the third.
     [kind] and [layout] determine the array element kind and the array
     layout as described for {!Bigarray.Genarray.create}.

     Each element [Array3.get b i j k] of the array is initialized to
     the result of [f i j k].

     In other words, [Array3.init kind layout dim1 dim2 dim3 f] tabulates
     the results of [f] applied to the indices of a new Bigarray whose
     layout is described by [kind], [layout], [dim1], [dim2] and [dim3].

     @since 4.12 *)

  external dim1: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the first dimension of the given three-dimensional Bigarray. *)

  external dim2: ('a, 'b, 'c) t -> int = "%caml_ba_dim_2"
  (** Return the second dimension of the given three-dimensional Bigarray. *)

  external dim3: ('a, 'b, 'c) t -> int = "%caml_ba_dim_3"
  (** Return the third dimension of the given three-dimensional Bigarray. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given Bigarray. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given Bigarray. *)


  val change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
  (** [Array3.change_layout a layout] returns a Bigarray with the
      specified [layout], sharing the data with [a] (and hence having
      the same dimensions as [a]). No copying of elements is involved: the
      new array and the original array share the same storage space.
      The dimensions are reversed, such that [get v [| a; b; c |]] in
      C layout becomes [get v [| c+1; b+1; a+1 |]] in Fortran layout.

      @since 4.06
  *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a]
    multiplied by [a]'s {!kind_size_in_bytes}.

    @since 4.03 *)

  external get: ('a, 'b, 'c) t -> int -> int -> int -> 'a = "%caml_ba_ref_3"
  (** [Array3.get a x y z], also written [a.{x,y,z}],
     returns the element of [a] at coordinates ([x], [y], [z]).
     [x], [y] and [z] must be within the bounds of [a],
     as described for {!Bigarray.Genarray.get};
     otherwise, [Invalid_argument] is raised. *)

  external set: ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit
    = "%caml_ba_set_3"
  (** [Array3.set a x y v], or alternatively [a.{x,y,z} <- v],
     stores the value [v] at coordinates ([x], [y], [z]) in [a].
     [x], [y] and [z] must be within the bounds of [a],
     as described for {!Bigarray.Genarray.set};
     otherwise, [Invalid_argument] is raised. *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a three-dimensional sub-array of the given
     three-dimensional Bigarray by restricting the first dimension.
     See {!Bigarray.Genarray.sub_left} for more details.  [Array3.sub_left]
     applies only to arrays with C layout. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a three-dimensional sub-array of the given
     three-dimensional Bigarray by restricting the second dimension.
     See {!Bigarray.Genarray.sub_right} for more details.  [Array3.sub_right]
     applies only to arrays with Fortran layout. *)

  val slice_left_1:
    ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) Array1.t
  (** Extract a one-dimensional slice of the given three-dimensional
     Bigarray by fixing the first two coordinates.
     The integer parameters are the coordinates of the slice to
     extract.  See {!Bigarray.Genarray.slice_left} for more details.
     [Array3.slice_left_1] applies only to arrays with C layout. *)

  val slice_right_1:
    ('a, 'b, fortran_layout) t ->
    int -> int -> ('a, 'b, fortran_layout) Array1.t
  (** Extract a one-dimensional slice of the given three-dimensional
     Bigarray by fixing the last two coordinates.
     The integer parameters are the coordinates of the slice to
     extract.  See {!Bigarray.Genarray.slice_right} for more details.
     [Array3.slice_right_1] applies only to arrays with Fortran
     layout. *)

  val slice_left_2: ('a, 'b, c_layout) t -> int -> ('a, 'b, c_layout) Array2.t
  (** Extract a  two-dimensional slice of the given three-dimensional
     Bigarray by fixing the first coordinate.
     The integer parameter is the first coordinate of the slice to
     extract.  See {!Bigarray.Genarray.slice_left} for more details.
     [Array3.slice_left_2] applies only to arrays with C layout. *)

  val slice_right_2:
    ('a, 'b, fortran_layout) t -> int -> ('a, 'b, fortran_layout) Array2.t
  (** Extract a two-dimensional slice of the given
     three-dimensional Bigarray by fixing the last coordinate.
     The integer parameter is the coordinate of the slice
     to extract.  See {!Bigarray.Genarray.slice_right} for more details.
     [Array3.slice_right_2] applies only to arrays with Fortran
     layout. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first Bigarray to the second Bigarray.
     See {!Bigarray.Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given Bigarray with the given value.
     See {!Bigarray.Genarray.fill} for more details. *)

  val of_array:
    ('a, 'b) kind -> 'c layout -> 'a array array array -> ('a, 'b, 'c) t
  (** Build a three-dimensional Bigarray initialized from the
     given array of arrays of arrays.  *)

  external unsafe_get: ('a, 'b, 'c) t -> int -> int -> int -> 'a
                     = "%caml_ba_unsafe_ref_3"
  (** Like {!Bigarray.Array3.get}, but bounds checking is not always
      performed. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit
                     = "%caml_ba_unsafe_set_3"
  (** Like {!Bigarray.Array3.set}, but bounds checking is not always
      performed. *)

end

(** {1 Coercions between generic Bigarrays and fixed-dimension Bigarrays} *)

external genarray_of_array0 :
  ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic Bigarray corresponding to the given zero-dimensional
    Bigarray.
    @since 4.05 *)

external genarray_of_array1 :
  ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic Bigarray corresponding to the given one-dimensional
   Bigarray. *)

external genarray_of_array2 :
  ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic Bigarray corresponding to the given two-dimensional
   Bigarray. *)

external genarray_of_array3 :
  ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic Bigarray corresponding to the given three-dimensional
   Bigarray. *)

val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
(** Return the zero-dimensional Bigarray corresponding to the given
   generic Bigarray.
   @raise Invalid_argument if the generic Bigarray
   does not have exactly zero dimension.
   @since 4.05 *)

val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t
(** Return the one-dimensional Bigarray corresponding to the given
   generic Bigarray.
   @raise Invalid_argument if the generic Bigarray
   does not have exactly one dimension. *)

val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t
(** Return the two-dimensional Bigarray corresponding to the given
   generic Bigarray.
   @raise Invalid_argument if the generic Bigarray
   does not have exactly two dimensions. *)

val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t
(** Return the three-dimensional Bigarray corresponding to the given
   generic Bigarray.
   @raise Invalid_argument if the generic Bigarray
   does not have exactly three dimensions. *)


(** {1 Re-shaping Bigarrays} *)

val reshape : ('a, 'b, 'c) Genarray.t -> int array -> ('a, 'b, 'c) Genarray.t
(** [reshape b [|d1;...;dN|]] converts the Bigarray [b] to a
   [N]-dimensional array of dimensions [d1]...[dN].  The returned
   array and the original array [b] share their data
   and have the same layout.  For instance, assuming that [b]
   is a one-dimensional array of dimension 12, [reshape b [|3;4|]]
   returns a two-dimensional array [b'] of dimensions 3 and 4.
   If [b] has C layout, the element [(x,y)] of [b'] corresponds
   to the element [x * 3 + y] of [b].  If [b] has Fortran layout,
   the element [(x,y)] of [b'] corresponds to the element
   [x + (y - 1) * 4] of [b].
   The returned Bigarray must have exactly the same number of
   elements as the original Bigarray [b].  That is, the product
   of the dimensions of [b] must be equal to [i1 * ... * iN].
   Otherwise, [Invalid_argument] is raised. *)

val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   zero-dimensional arrays.
   @since 4.05 *)

val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   one-dimensional arrays. *)

val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a, 'b, 'c) Array2.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   two-dimensional arrays. *)

val reshape_3 :
  ('a, 'b, 'c) Genarray.t -> int -> int -> int -> ('a, 'b, 'c) Array3.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
    three-dimensional arrays. *)

(** {1:bigarray_concurrency Bigarrays and concurrency safety}

    Care must be taken when concurrently accessing bigarrays from multiple
    domains: accessing a bigarray will never crash a program, but unsynchronized
    accesses might yield surprising (non-sequentially-consistent) results.

    {2:bigarray_atomicity Atomicity}

    Every bigarray operation that accesses more than one array element is not
    atomic. This includes slicing, bliting, and filling bigarrays.

    For example, consider the following program:
{[open Bigarray
let size = 100_000_000
let a = Array1.init Int C_layout size (fun _ -> 1)
let update f a () =
  for i = 0 to size - 1 do a.{i} <- f a.{i} done
let d1 = Domain.spawn (update (fun x -> x + 1) a)
let d2 = Domain.spawn (update (fun x -> 2 * x + 1) a)
let () = Domain.join d1; Domain.join d2
]}

    After executing this code, each field of the bigarray [a] is either [2],
    [3], [4] or [5]. If atomicity is required, then the user must implement
    their own synchronization (for example, using {!Mutex.t}).

    {2:bigarray_data_race Data races}

    If two domains only access disjoint parts of the bigarray, then the
    observed behaviour is the equivalent to some sequential interleaving of the
    operations from the two domains.

    A data race is said to occur when two domains access the same bigarray
    element without synchronization and at least one of the accesses is a
    write. In the absence of data races, the observed behaviour is equivalent
    to some sequential interleaving of the operations from different domains.

    Whenever possible, data races should be avoided by using synchronization to
    mediate the accesses to the bigarray elements.

    Indeed, in the presence of data races, programs will not crash but the
    observed behaviour may not be equivalent to any sequential interleaving of
    operations from different domains.

    {2:bigarrarray_data_race_tearing Tearing}

    Bigarrays have a distinct caveat in the presence of data races:
    concurrent bigarray operations might produce surprising values due to
    tearing. More precisely, the interleaving of partial writes and reads might
    create values that would not exist with a sequential execution.
    For instance, at the end of
{[let res = Array1.init Complex64 c_layout size (fun _ -> Complex.zero)
let d1 = Domain.spawn (fun () -> Array1.fill res Complex.one)
let d2 = Domain.spawn (fun () -> Array1.fill res Complex.i)
let () = Domain.join d1; Domain.join d2
]}
    the [res] bigarray might contain values that are neither [Complex.i]
    nor [Complex.one] (for instance [1 + i]).
*)