diff options
Diffstat (limited to 'src/backend/optimizer/plan')
| -rw-r--r-- | src/backend/optimizer/plan/analyzejoins.c | 10 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/createplan.c | 46 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/initsplan.c | 58 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/planagg.c | 8 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/planmain.c | 12 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/planner.c | 73 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/setrefs.c | 20 | ||||
| -rw-r--r-- | src/backend/optimizer/plan/subselect.c | 40 |
8 files changed, 134 insertions, 133 deletions
diff --git a/src/backend/optimizer/plan/analyzejoins.c b/src/backend/optimizer/plan/analyzejoins.c index 523a1e75f8..129fc3dfae 100644 --- a/src/backend/optimizer/plan/analyzejoins.c +++ b/src/backend/optimizer/plan/analyzejoins.c @@ -40,7 +40,7 @@ static List *remove_rel_from_joinlist(List *joinlist, int relid, int *nremoved); * Check for relations that don't actually need to be joined at all, * and remove them from the query. * - * We are passed the current joinlist and return the updated list. Other + * We are passed the current joinlist and return the updated list. Other * data structures that have to be updated are accessible via "root". */ List * @@ -90,7 +90,7 @@ restart: * Restart the scan. This is necessary to ensure we find all * removable joins independently of ordering of the join_info_list * (note that removal of attr_needed bits may make a join appear - * removable that did not before). Also, since we just deleted the + * removable that did not before). Also, since we just deleted the * current list cell, we'd have to have some kluge to continue the * list scan anyway. */ @@ -107,7 +107,7 @@ restart: * We already know that the clause is a binary opclause referencing only the * rels in the current join. The point here is to check whether it has the * form "outerrel_expr op innerrel_expr" or "innerrel_expr op outerrel_expr", - * rather than mixing outer and inner vars on either side. If it matches, + * rather than mixing outer and inner vars on either side. If it matches, * we set the transient flag outer_is_left to identify which side is which. */ static inline bool @@ -154,7 +154,7 @@ join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo) /* * Currently, we only know how to remove left joins to a baserel with - * unique indexes. We can check most of these criteria pretty trivially + * unique indexes. We can check most of these criteria pretty trivially * to avoid doing useless extra work. But checking whether any of the * indexes are unique would require iterating over the indexlist, so for * now we just make sure there are indexes of some sort or other. If none @@ -203,7 +203,7 @@ join_is_removable(PlannerInfo *root, SpecialJoinInfo *sjinfo) * actually references some inner-rel attributes; but the correct check * for that is relatively expensive, so we first check against ph_eval_at, * which must mention the inner rel if the PHV uses any inner-rel attrs as - * non-lateral references. Note that if the PHV's syntactic scope is just + * non-lateral references. Note that if the PHV's syntactic scope is just * the inner rel, we can't drop the rel even if the PHV is variable-free. */ foreach(l, root->placeholder_list) diff --git a/src/backend/optimizer/plan/createplan.c b/src/backend/optimizer/plan/createplan.c index 784805fbf4..4b641a2ca1 100644 --- a/src/backend/optimizer/plan/createplan.c +++ b/src/backend/optimizer/plan/createplan.c @@ -171,7 +171,7 @@ static Material *make_material(Plan *lefttree); /* * create_plan * Creates the access plan for a query by recursively processing the - * desired tree of pathnodes, starting at the node 'best_path'. For + * desired tree of pathnodes, starting at the node 'best_path'. For * every pathnode found, we create a corresponding plan node containing * appropriate id, target list, and qualification information. * @@ -286,7 +286,7 @@ create_scan_plan(PlannerInfo *root, Path *best_path) /* * For table scans, rather than using the relation targetlist (which is * only those Vars actually needed by the query), we prefer to generate a - * tlist containing all Vars in order. This will allow the executor to + * tlist containing all Vars in order. This will allow the executor to * optimize away projection of the table tuples, if possible. (Note that * planner.c may replace the tlist we generate here, forcing projection to * occur.) @@ -523,7 +523,7 @@ use_physical_tlist(PlannerInfo *root, RelOptInfo *rel) * * If the plan node immediately above a scan would prefer to get only * needed Vars and not a physical tlist, it must call this routine to - * undo the decision made by use_physical_tlist(). Currently, Hash, Sort, + * undo the decision made by use_physical_tlist(). Currently, Hash, Sort, * and Material nodes want this, so they don't have to store useless columns. */ static void @@ -654,7 +654,7 @@ create_join_plan(PlannerInfo *root, JoinPath *best_path) /* * * Expensive function pullups may have pulled local predicates * into - * this path node. Put them in the qpqual of the plan node. * JMH, + * this path node. Put them in the qpqual of the plan node. * JMH, * 6/15/92 */ if (get_loc_restrictinfo(best_path) != NIL) @@ -1170,10 +1170,10 @@ create_indexscan_plan(PlannerInfo *root, /* * The qpqual list must contain all restrictions not automatically handled * by the index, other than pseudoconstant clauses which will be handled - * by a separate gating plan node. All the predicates in the indexquals + * by a separate gating plan node. All the predicates in the indexquals * will be checked (either by the index itself, or by nodeIndexscan.c), * but if there are any "special" operators involved then they must be - * included in qpqual. The upshot is that qpqual must contain + * included in qpqual. The upshot is that qpqual must contain * scan_clauses minus whatever appears in indexquals. * * In normal cases simple pointer equality checks will be enough to spot @@ -1310,15 +1310,15 @@ create_bitmap_scan_plan(PlannerInfo *root, /* * The qpqual list must contain all restrictions not automatically handled * by the index, other than pseudoconstant clauses which will be handled - * by a separate gating plan node. All the predicates in the indexquals + * by a separate gating plan node. All the predicates in the indexquals * will be checked (either by the index itself, or by * nodeBitmapHeapscan.c), but if there are any "special" operators - * involved then they must be added to qpqual. The upshot is that qpqual + * involved then they must be added to qpqual. The upshot is that qpqual * must contain scan_clauses minus whatever appears in indexquals. * * This loop is similar to the comparable code in create_indexscan_plan(), * but with some differences because it has to compare the scan clauses to - * stripped (no RestrictInfos) indexquals. See comments there for more + * stripped (no RestrictInfos) indexquals. See comments there for more * info. * * In normal cases simple equal() checks will be enough to spot duplicate @@ -1363,7 +1363,7 @@ create_bitmap_scan_plan(PlannerInfo *root, /* * When dealing with special operators, we will at this point have - * duplicate clauses in qpqual and bitmapqualorig. We may as well drop + * duplicate clauses in qpqual and bitmapqualorig. We may as well drop * 'em from bitmapqualorig, since there's no point in making the tests * twice. */ @@ -1475,7 +1475,7 @@ create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, /* * Here, we only detect qual-free subplans. A qual-free subplan would * cause us to generate "... OR true ..." which we may as well reduce - * to just "true". We do not try to eliminate redundant subclauses + * to just "true". We do not try to eliminate redundant subclauses * because (a) it's not as likely as in the AND case, and (b) we might * well be working with hundreds or even thousands of OR conditions, * perhaps from a long IN list. The performance of list_append_unique @@ -1571,7 +1571,7 @@ create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual, /* * We know that the index predicate must have been implied by the * query condition as a whole, but it may or may not be implied by - * the conditions that got pushed into the bitmapqual. Avoid + * the conditions that got pushed into the bitmapqual. Avoid * generating redundant conditions. */ if (!predicate_implied_by(list_make1(pred), ipath->indexclauses)) @@ -1954,14 +1954,14 @@ create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path, Assert(rte->rtekind == RTE_RELATION); /* - * Sort clauses into best execution order. We do this first since the FDW + * Sort clauses into best execution order. We do this first since the FDW * might have more info than we do and wish to adjust the ordering. */ scan_clauses = order_qual_clauses(root, scan_clauses); /* * Let the FDW perform its processing on the restriction clauses and - * generate the plan node. Note that the FDW might remove restriction + * generate the plan node. Note that the FDW might remove restriction * clauses that it intends to execute remotely, or even add more (if it * has selected some join clauses for remote use but also wants them * rechecked locally). @@ -2615,7 +2615,7 @@ replace_nestloop_params_mutator(Node *node, PlannerInfo *root) * * Note that after doing this, we might have different * representations of the contents of the same PHV in different - * parts of the plan tree. This is OK because equal() will just + * parts of the plan tree. This is OK because equal() will just * match on phid/phlevelsup, so setrefs.c will still recognize an * upper-level reference to a lower-level copy of the same PHV. */ @@ -2793,7 +2793,7 @@ fix_indexqual_references(PlannerInfo *root, IndexPath *index_path) /* * Check to see if the indexkey is on the right; if so, commute - * the clause. The indexkey should be the side that refers to + * the clause. The indexkey should be the side that refers to * (only) the base relation. */ if (!bms_equal(rinfo->left_relids, index->rel->relids)) @@ -2887,7 +2887,7 @@ fix_indexqual_references(PlannerInfo *root, IndexPath *index_path) * * This is a simplified version of fix_indexqual_references. The input does * not have RestrictInfo nodes, and we assume that indxpath.c already - * commuted the clauses to put the index keys on the left. Also, we don't + * commuted the clauses to put the index keys on the left. Also, we don't * bother to support any cases except simple OpExprs, since nothing else * is allowed for ordering operators. */ @@ -3126,7 +3126,7 @@ order_qual_clauses(PlannerInfo *root, List *clauses) /* * Sort. We don't use qsort() because it's not guaranteed stable for - * equal keys. The expected number of entries is small enough that a + * equal keys. The expected number of entries is small enough that a * simple insertion sort should be good enough. */ for (i = 1; i < nitems; i++) @@ -3771,7 +3771,7 @@ make_sort(PlannerInfo *root, Plan *lefttree, int numCols, * prepare_sort_from_pathkeys * Prepare to sort according to given pathkeys * - * This is used to set up for both Sort and MergeAppend nodes. It calculates + * This is used to set up for both Sort and MergeAppend nodes. It calculates * the executor's representation of the sort key information, and adjusts the * plan targetlist if needed to add resjunk sort columns. * @@ -3784,7 +3784,7 @@ make_sort(PlannerInfo *root, Plan *lefttree, int numCols, * * We must convert the pathkey information into arrays of sort key column * numbers, sort operator OIDs, collation OIDs, and nulls-first flags, - * which is the representation the executor wants. These are returned into + * which is the representation the executor wants. These are returned into * the output parameters *p_numsortkeys etc. * * When looking for matches to an EquivalenceClass's members, we will only @@ -4229,7 +4229,7 @@ make_material(Plan *lefttree) * materialize_finished_plan: stick a Material node atop a completed plan * * There are a couple of places where we want to attach a Material node - * after completion of subquery_planner(). This currently requires hackery. + * after completion of subquery_planner(). This currently requires hackery. * Since subquery_planner has already run SS_finalize_plan on the subplan * tree, we have to kluge up parameter lists for the Material node. * Possibly this could be fixed by postponing SS_finalize_plan processing @@ -4435,7 +4435,7 @@ make_group(PlannerInfo *root, /* * distinctList is a list of SortGroupClauses, identifying the targetlist items - * that should be considered by the Unique filter. The input path must + * that should be considered by the Unique filter. The input path must * already be sorted accordingly. */ Unique * @@ -4453,7 +4453,7 @@ make_unique(Plan *lefttree, List *distinctList) /* * Charge one cpu_operator_cost per comparison per input tuple. We assume - * all columns get compared at most of the tuples. (XXX probably this is + * all columns get compared at most of the tuples. (XXX probably this is * an overestimate.) */ plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols; diff --git a/src/backend/optimizer/plan/initsplan.c b/src/backend/optimizer/plan/initsplan.c index b57bfd2176..f88e493edb 100644 --- a/src/backend/optimizer/plan/initsplan.c +++ b/src/backend/optimizer/plan/initsplan.c @@ -87,12 +87,12 @@ static void check_hashjoinable(RestrictInfo *restrictinfo); * appearing in the jointree. * * The initial invocation must pass root->parse->jointree as the value of - * jtnode. Internally, the function recurses through the jointree. + * jtnode. Internally, the function recurses through the jointree. * * At the end of this process, there should be one baserel RelOptInfo for * every non-join RTE that is used in the query. Therefore, this routine * is the only place that should call build_simple_rel with reloptkind - * RELOPT_BASEREL. (Note: build_simple_rel recurses internally to build + * RELOPT_BASEREL. (Note: build_simple_rel recurses internally to build * "other rel" RelOptInfos for the members of any appendrels we find here.) */ void @@ -234,10 +234,10 @@ add_vars_to_targetlist(PlannerInfo *root, List *vars, * means setting suitable where_needed values for them. * * Note that this only deals with lateral references in unflattened LATERAL - * subqueries. When we flatten a LATERAL subquery, its lateral references + * subqueries. When we flatten a LATERAL subquery, its lateral references * become plain Vars in the parent query, but they may have to be wrapped in * PlaceHolderVars if they need to be forced NULL by outer joins that don't - * also null the LATERAL subquery. That's all handled elsewhere. + * also null the LATERAL subquery. That's all handled elsewhere. * * This has to run before deconstruct_jointree, since it might result in * creation of PlaceHolderInfos. @@ -360,7 +360,7 @@ extract_lateral_references(PlannerInfo *root, RelOptInfo *brel, Index rtindex) /* * We mark the Vars as being "needed" at the LATERAL RTE. This is a bit * of a cheat: a more formal approach would be to mark each one as needed - * at the join of the LATERAL RTE with its source RTE. But it will work, + * at the join of the LATERAL RTE with its source RTE. But it will work, * and it's much less tedious than computing a separate where_needed for * each Var. */ @@ -568,7 +568,7 @@ create_lateral_join_info(PlannerInfo *root) * add_lateral_info * Add a LateralJoinInfo to root->lateral_info_list, if needed * - * We suppress redundant list entries. The passed Relids are copied if saved. + * We suppress redundant list entries. The passed Relids are copied if saved. */ static void add_lateral_info(PlannerInfo *root, Relids lhs, Relids rhs) @@ -615,7 +615,7 @@ add_lateral_info(PlannerInfo *root, Relids lhs, Relids rhs) * deconstruct_jointree * Recursively scan the query's join tree for WHERE and JOIN/ON qual * clauses, and add these to the appropriate restrictinfo and joininfo - * lists belonging to base RelOptInfos. Also, add SpecialJoinInfo nodes + * lists belonging to base RelOptInfos. Also, add SpecialJoinInfo nodes * to root->join_info_list for any outer joins appearing in the query tree. * Return a "joinlist" data structure showing the join order decisions * that need to be made by make_one_rel(). @@ -632,9 +632,9 @@ add_lateral_info(PlannerInfo *root, Relids lhs, Relids rhs) * be evaluated at the lowest level where all the variables it mentions are * available. However, we cannot push a qual down into the nullable side(s) * of an outer join since the qual might eliminate matching rows and cause a - * NULL row to be incorrectly emitted by the join. Therefore, we artificially + * NULL row to be incorrectly emitted by the join. Therefore, we artificially * OR the minimum-relids of such an outer join into the required_relids of - * clauses appearing above it. This forces those clauses to be delayed until + * clauses appearing above it. This forces those clauses to be delayed until * application of the outer join (or maybe even higher in the join tree). */ List * @@ -755,7 +755,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join, *inner_join_rels = *qualscope; /* - * Try to process any quals postponed by children. If they need + * Try to process any quals postponed by children. If they need * further postponement, add them to my output postponed_qual_list. */ foreach(l, child_postponed_quals) @@ -807,7 +807,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join, * regard for whether this level is an outer join, which is correct. * Then we place our own join quals, which are restricted by lower * outer joins in any case, and are forced to this level if this is an - * outer join and they mention the outer side. Finally, if this is an + * outer join and they mention the outer side. Finally, if this is an * outer join, we create a join_info_list entry for the join. This * will prevent quals above us in the join tree that use those rels * from being pushed down below this level. (It's okay for upper @@ -897,7 +897,7 @@ deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join, nullable_rels); /* - * Try to process any quals postponed by children. If they need + * Try to process any quals postponed by children. If they need * further postponement, add them to my output postponed_qual_list. * Quals that can be processed now must be included in my_quals, so * that they'll be handled properly in make_outerjoininfo. @@ -1059,7 +1059,7 @@ make_outerjoininfo(PlannerInfo *root, * complain if any nullable rel is FOR [KEY] UPDATE/SHARE. * * You might be wondering why this test isn't made far upstream in the - * parser. It's because the parser hasn't got enough info --- consider + * parser. It's because the parser hasn't got enough info --- consider * FOR UPDATE applied to a view. Only after rewriting and flattening do * we know whether the view contains an outer join. * @@ -1074,8 +1074,8 @@ make_outerjoininfo(PlannerInfo *root, (jointype == JOIN_FULL && bms_is_member(rc->rti, left_rels))) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - /*------ - translator: %s is a SQL row locking clause such as FOR UPDATE */ + /*------ + translator: %s is a SQL row locking clause such as FOR UPDATE */ errmsg("%s cannot be applied to the nullable side of an outer join", LCS_asString(rc->strength)))); } @@ -1117,7 +1117,7 @@ make_outerjoininfo(PlannerInfo *root, min_lefthand = bms_intersect(clause_relids, left_rels); /* - * Similarly for required RHS. But here, we must also include any lower + * Similarly for required RHS. But here, we must also include any lower * inner joins, to ensure we don't try to commute with any of them. */ min_righthand = bms_int_members(bms_union(clause_relids, inner_join_rels), @@ -1169,7 +1169,7 @@ make_outerjoininfo(PlannerInfo *root, * Here, we have to consider that "our join condition" includes any * clauses that syntactically appeared above the lower OJ and below * ours; those are equivalent to degenerate clauses in our OJ and must - * be treated as such. Such clauses obviously can't reference our + * be treated as such. Such clauses obviously can't reference our * LHS, and they must be non-strict for the lower OJ's RHS (else * reduce_outer_joins would have reduced the lower OJ to a plain * join). Hence the other ways in which we handle clauses within our @@ -1248,7 +1248,7 @@ make_outerjoininfo(PlannerInfo *root, * distribute_qual_to_rels * Add clause information to either the baserestrictinfo or joininfo list * (depending on whether the clause is a join) of each base relation - * mentioned in the clause. A RestrictInfo node is created and added to + * mentioned in the clause. A RestrictInfo node is created and added to * the appropriate list for each rel. Alternatively, if the clause uses a * mergejoinable operator and is not delayed by outer-join rules, enter * the left- and right-side expressions into the query's list of @@ -1313,7 +1313,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * In ordinary SQL, a WHERE or JOIN/ON clause can't reference any rels * that aren't within its syntactic scope; however, if we pulled up a * LATERAL subquery then we might find such references in quals that have - * been pulled up. We need to treat such quals as belonging to the join + * been pulled up. We need to treat such quals as belonging to the join * level that includes every rel they reference. Although we could make * pull_up_subqueries() place such quals correctly to begin with, it's * easier to handle it here. When we find a clause that contains Vars @@ -1357,10 +1357,10 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * gating Result plan node. We put such a clause into the regular * RestrictInfo lists for the moment, but eventually createplan.c will * pull it out and make a gating Result node immediately above whatever - * plan node the pseudoconstant clause is assigned to. It's usually best + * plan node the pseudoconstant clause is assigned to. It's usually best * to put a gating node as high in the plan tree as possible. If we are * not below an outer join, we can actually push the pseudoconstant qual - * all the way to the top of the tree. If we are below an outer join, we + * all the way to the top of the tree. If we are below an outer join, we * leave the qual at its original syntactic level (we could push it up to * just below the outer join, but that seems more complex than it's * worth). @@ -1414,7 +1414,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * Note: it is not immediately obvious that a simple boolean is enough * for this: if for some reason we were to attach a degenerate qual to * its original join level, it would need to be treated as an outer join - * qual there. However, this cannot happen, because all the rels the + * qual there. However, this cannot happen, because all the rels the * clause mentions must be in the outer join's min_righthand, therefore * the join it needs must be formed before the outer join; and we always * attach quals to the lowest level where they can be evaluated. But @@ -1448,7 +1448,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * We can't use such a clause to deduce equivalence (the left and * right sides might be unequal above the join because one of them has * gone to NULL) ... but we might be able to use it for more limited - * deductions, if it is mergejoinable. So consider adding it to the + * deductions, if it is mergejoinable. So consider adding it to the * lists of set-aside outer-join clauses. */ is_pushed_down = false; @@ -1478,7 +1478,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, else { /* - * Normal qual clause or degenerate outer-join clause. Either way, we + * Normal qual clause or degenerate outer-join clause. Either way, we * can mark it as pushed-down. */ is_pushed_down = true; @@ -1598,7 +1598,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * * In all cases, it's important to initialize the left_ec and right_ec * fields of a mergejoinable clause, so that all possibly mergejoinable - * expressions have representations in EquivalenceClasses. If + * expressions have representations in EquivalenceClasses. If * process_equivalence is successful, it will take care of that; * otherwise, we have to call initialize_mergeclause_eclasses to do it. */ @@ -1674,7 +1674,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * For an is_pushed_down qual, we can evaluate the qual as soon as (1) we have * all the rels it mentions, and (2) we are at or above any outer joins that * can null any of these rels and are below the syntactic location of the - * given qual. We must enforce (2) because pushing down such a clause below + * given qual. We must enforce (2) because pushing down such a clause below * the OJ might cause the OJ to emit null-extended rows that should not have * been formed, or that should have been rejected by the clause. (This is * only an issue for non-strict quals, since if we can prove a qual mentioning @@ -1700,7 +1700,7 @@ distribute_qual_to_rels(PlannerInfo *root, Node *clause, * required relids overlap the LHS too) causes that OJ's delay_upper_joins * flag to be set TRUE. This will prevent any higher-level OJs from * being interchanged with that OJ, which would result in not having any - * correct place to evaluate the qual. (The case we care about here is a + * correct place to evaluate the qual. (The case we care about here is a * sub-select WHERE clause within the RHS of some outer join. The WHERE * clause must effectively be treated as a degenerate clause of that outer * join's condition. Rather than trying to match such clauses with joins @@ -1928,7 +1928,7 @@ distribute_restrictinfo_to_rels(PlannerInfo *root, * that provides all its variables. * * "nullable_relids" is the set of relids used in the expressions that are - * potentially nullable below the expressions. (This has to be supplied by + * potentially nullable below the expressions. (This has to be supplied by * caller because this function is used after deconstruct_jointree, so we * don't have knowledge of where the clause items came from.) * @@ -2098,7 +2098,7 @@ check_mergejoinable(RestrictInfo *restrictinfo) * info fields in the restrictinfo. * * Currently, we support hashjoin for binary opclauses where - * the operator is a hashjoinable operator. The arguments can be + * the operator is a hashjoinable operator. The arguments can be * anything --- as long as there are no volatile functions in them. */ static void diff --git a/src/backend/optimizer/plan/planagg.c b/src/backend/optimizer/plan/planagg.c index 7937ff00e0..94ca92d78e 100644 --- a/src/backend/optimizer/plan/planagg.c +++ b/src/backend/optimizer/plan/planagg.c @@ -10,9 +10,9 @@ * ORDER BY col ASC/DESC * LIMIT 1) * Given a suitable index on tab.col, this can be much faster than the - * generic scan-all-the-rows aggregation plan. We can handle multiple + * generic scan-all-the-rows aggregation plan. We can handle multiple * MIN/MAX aggregates by generating multiple subqueries, and their - * orderings can be different. However, if the query contains any + * orderings can be different. However, if the query contains any * non-optimizable aggregates, there's no point since we'll have to * scan all the rows anyway. * @@ -128,7 +128,7 @@ preprocess_minmax_aggregates(PlannerInfo *root, List *tlist) /* * Scan the tlist and HAVING qual to find all the aggregates and verify - * all are MIN/MAX aggregates. Stop as soon as we find one that isn't. + * all are MIN/MAX aggregates. Stop as soon as we find one that isn't. */ aggs_list = NIL; if (find_minmax_aggs_walker((Node *) tlist, &aggs_list)) @@ -163,7 +163,7 @@ preprocess_minmax_aggregates(PlannerInfo *root, List *tlist) * We can use either an ordering that gives NULLS FIRST or one that * gives NULLS LAST; furthermore there's unlikely to be much * performance difference between them, so it doesn't seem worth - * costing out both ways if we get a hit on the first one. NULLS + * costing out both ways if we get a hit on the first one. NULLS * FIRST is more likely to be available if the operator is a * reverse-sort operator, so try that first if reverse. */ diff --git a/src/backend/optimizer/plan/planmain.c b/src/backend/optimizer/plan/planmain.c index 3ea916f166..93484a0cd5 100644 --- a/src/backend/optimizer/plan/planmain.c +++ b/src/backend/optimizer/plan/planmain.c @@ -33,7 +33,7 @@ * which may involve joins but not any fancier features. * * Since query_planner does not handle the toplevel processing (grouping, - * sorting, etc) it cannot select the best path by itself. Instead, it + * sorting, etc) it cannot select the best path by itself. Instead, it * returns the RelOptInfo for the top level of joining, and the caller * (grouping_planner) can choose one of the surviving paths for the rel. * Normally it would choose either the rel's cheapest path, or the cheapest @@ -63,7 +63,7 @@ query_planner(PlannerInfo *root, List *tlist, /* * If the query has an empty join tree, then it's something easy like - * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. + * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. */ if (parse->jointree->fromlist == NIL) { @@ -129,7 +129,7 @@ query_planner(PlannerInfo *root, List *tlist, /* * Examine the targetlist and join tree, adding entries to baserel * targetlists for all referenced Vars, and generating PlaceHolderInfo - * entries for all referenced PlaceHolderVars. Restrict and join clauses + * entries for all referenced PlaceHolderVars. Restrict and join clauses * are added to appropriate lists belonging to the mentioned relations. We * also build EquivalenceClasses for provably equivalent expressions. The * SpecialJoinInfo list is also built to hold information about join order @@ -153,7 +153,7 @@ query_planner(PlannerInfo *root, List *tlist, /* * If we formed any equivalence classes, generate additional restriction - * clauses as appropriate. (Implied join clauses are formed on-the-fly + * clauses as appropriate. (Implied join clauses are formed on-the-fly * later.) */ generate_base_implied_equalities(root); @@ -168,14 +168,14 @@ query_planner(PlannerInfo *root, List *tlist, /* * Examine any "placeholder" expressions generated during subquery pullup. * Make sure that the Vars they need are marked as needed at the relevant - * join level. This must be done before join removal because it might + * join level. This must be done before join removal because it might * cause Vars or placeholders to be needed above a join when they weren't * so marked before. */ fix_placeholder_input_needed_levels(root); /* - * Remove any useless outer joins. Ideally this would be done during + * Remove any useless outer joins. Ideally this would be done during * jointree preprocessing, but the necessary information isn't available * until we've built baserel data structures and classified qual clauses. */ diff --git a/src/backend/optimizer/plan/planner.c b/src/backend/optimizer/plan/planner.c index 0508d16902..0f1e2e4680 100644 --- a/src/backend/optimizer/plan/planner.c +++ b/src/backend/optimizer/plan/planner.c @@ -192,7 +192,7 @@ standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams) /* * We document cursor_tuple_fraction as simply being a fraction, which - * means the edge cases 0 and 1 have to be treated specially here. We + * means the edge cases 0 and 1 have to be treated specially here. We * convert 1 to 0 ("all the tuples") and 0 to a very small fraction. */ if (tuple_fraction >= 1.0) @@ -386,7 +386,7 @@ subquery_planner(PlannerGlobal *glob, Query *parse, } /* - * Preprocess RowMark information. We need to do this after subquery + * Preprocess RowMark information. We need to do this after subquery * pullup (so that all non-inherited RTEs are present) and before * inheritance expansion (so that the info is available for * expand_inherited_tables to examine and modify). @@ -506,7 +506,7 @@ subquery_planner(PlannerGlobal *glob, Query *parse, * to execute that we're better off doing it only once per group, despite * the loss of selectivity. This is hard to estimate short of doing the * entire planning process twice, so we use a heuristic: clauses - * containing subplans are left in HAVING. Otherwise, we move or copy the + * containing subplans are left in HAVING. Otherwise, we move or copy the * HAVING clause into WHERE, in hopes of eliminating tuples before * aggregation instead of after. * @@ -916,8 +916,8 @@ inheritance_planner(PlannerInfo *root) subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ ); /* - * Planning may have modified the query result relation (if there - * were security barrier quals on the result RTE). + * Planning may have modified the query result relation (if there were + * security barrier quals on the result RTE). */ appinfo->child_relid = subroot.parse->resultRelation; @@ -940,7 +940,8 @@ inheritance_planner(PlannerInfo *root) else { List *tmp_rtable = NIL; - ListCell *cell1, *cell2; + ListCell *cell1, + *cell2; /* * Check to see if any of the original RTEs were turned into @@ -1108,7 +1109,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * If there's a top-level ORDER BY, assume we have to fetch all the - * tuples. This might be too simplistic given all the hackery below + * tuples. This might be too simplistic given all the hackery below * to possibly avoid the sort; but the odds of accurate estimates here * are pretty low anyway. */ @@ -1135,7 +1136,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * We should not need to call preprocess_targetlist, since we must be - * in a SELECT query node. Instead, use the targetlist returned by + * in a SELECT query node. Instead, use the targetlist returned by * plan_set_operations (since this tells whether it returned any * resjunk columns!), and transfer any sort key information from the * original tlist. @@ -1152,11 +1153,11 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) if (parse->rowMarks) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), - /*------ - translator: %s is a SQL row locking clause such as FOR UPDATE */ + /*------ + translator: %s is a SQL row locking clause such as FOR UPDATE */ errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT", LCS_asString(((RowMarkClause *) - linitial(parse->rowMarks))->strength)))); + linitial(parse->rowMarks))->strength)))); /* * Calculate pathkeys that represent result ordering requirements @@ -1279,7 +1280,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * Generate the best unsorted and presorted paths for this Query (but - * note there may not be any presorted paths). We also generate (in + * note there may not be any presorted paths). We also generate (in * standard_qp_callback) pathkey representations of the query's sort * clause, distinct clause, etc. */ @@ -1314,7 +1315,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * In GROUP BY mode, an absolute LIMIT is relative to the number - * of groups not the number of tuples. If the caller gave us a + * of groups not the number of tuples. If the caller gave us a * fraction, keep it as-is. (In both cases, we are effectively * assuming that all the groups are about the same size.) */ @@ -1673,7 +1674,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) * Furthermore, there cannot be any variables in either HAVING * or the targetlist, so we actually do not need the FROM * table at all! We can just throw away the plan-so-far and - * generate a Result node. This is a sufficiently unusual + * generate a Result node. This is a sufficiently unusual * corner case that it's not worth contorting the structure of * this routine to avoid having to generate the plan in the * first place. @@ -1717,14 +1718,14 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * The "base" targetlist for all steps of the windowing process is - * a flat tlist of all Vars and Aggs needed in the result. (In + * a flat tlist of all Vars and Aggs needed in the result. (In * some cases we wouldn't need to propagate all of these all the * way to the top, since they might only be needed as inputs to * WindowFuncs. It's probably not worth trying to optimize that * though.) We also add window partitioning and sorting * expressions to the base tlist, to ensure they're computed only * once at the bottom of the stack (that's critical for volatile - * functions). As we climb up the stack, we'll add outputs for + * functions). As we climb up the stack, we'll add outputs for * the WindowFuncs computed at each level. */ window_tlist = make_windowInputTargetList(root, @@ -1733,7 +1734,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) /* * The copyObject steps here are needed to ensure that each plan - * node has a separately modifiable tlist. (XXX wouldn't a + * node has a separately modifiable tlist. (XXX wouldn't a * shallow list copy do for that?) */ result_plan->targetlist = (List *) copyObject(window_tlist); @@ -2018,7 +2019,7 @@ grouping_planner(PlannerInfo *root, double tuple_fraction) * * Once grouping_planner() has applied a general tlist to the topmost * scan/join plan node, any tlist eval cost for added-on nodes should be - * accounted for as we create those nodes. Presently, of the node types we + * accounted for as we create those nodes. Presently, of the node types we * can add on later, only Agg, WindowAgg, and Group project new tlists (the * rest just copy their input tuples) --- so make_agg(), make_windowagg() and * make_group() are responsible for calling this function to account for their @@ -2150,7 +2151,7 @@ preprocess_rowmarks(PlannerInfo *root) * insufficient because of rule substitution, query pullup, etc. */ CheckSelectLocking(parse, ((RowMarkClause *) - linitial(parse->rowMarks))->strength); + linitial(parse->rowMarks))->strength); } else { @@ -2184,7 +2185,7 @@ preprocess_rowmarks(PlannerInfo *root) /* * Currently, it is syntactically impossible to have FOR UPDATE et al - * applied to an update/delete target rel. If that ever becomes + * applied to an update/delete target rel. If that ever becomes * possible, we should drop the target from the PlanRowMark list. */ Assert(rc->rti != parse->resultRelation); @@ -2268,7 +2269,7 @@ preprocess_rowmarks(PlannerInfo *root) * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses * * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the - * results back in *count_est and *offset_est. These variables are set to + * results back in *count_est and *offset_est. These variables are set to * 0 if the corresponding clause is not present, and -1 if it's present * but we couldn't estimate the value for it. (The "0" convention is OK * for OFFSET but a little bit bogus for LIMIT: effectively we estimate @@ -2277,7 +2278,7 @@ preprocess_rowmarks(PlannerInfo *root) * be passed to make_limit, which see if you change this code. * * The return value is the suitably adjusted tuple_fraction to use for - * planning the query. This adjustment is not overridable, since it reflects + * planning the query. This adjustment is not overridable, since it reflects * plan actions that grouping_planner() will certainly take, not assumptions * about context. */ @@ -2401,7 +2402,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction, else if (*offset_est != 0 && tuple_fraction > 0.0) { /* - * We have an OFFSET but no LIMIT. This acts entirely differently + * We have an OFFSET but no LIMIT. This acts entirely differently * from the LIMIT case: here, we need to increase rather than decrease * the caller's tuple_fraction, because the OFFSET acts to cause more * tuples to be fetched instead of fewer. This only matters if we got @@ -2416,7 +2417,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction, /* * If we have absolute counts from both caller and OFFSET, add them - * together; likewise if they are both fractional. If one is + * together; likewise if they are both fractional. If one is * fractional and the other absolute, we want to take the larger, and * we heuristically assume that's the fractional one. */ @@ -2457,7 +2458,7 @@ preprocess_limit(PlannerInfo *root, double tuple_fraction, * * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding * a Limit node. This is worth checking for because "OFFSET 0" is a common - * locution for an optimization fence. (Because other places in the planner + * locution for an optimization fence. (Because other places in the planner * merely check whether parse->limitOffset isn't NULL, it will still work as * an optimization fence --- we're just suppressing unnecessary run-time * overhead.) @@ -2700,7 +2701,7 @@ choose_hashed_grouping(PlannerInfo *root, /* * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY - * aggregates. (Doing so would imply storing *all* the input values in + * aggregates. (Doing so would imply storing *all* the input values in * the hash table, and/or running many sorts in parallel, either of which * seems like a certain loser.) We similarly don't support ordered-set * aggregates in hashed aggregation, but that case is included in the @@ -2840,7 +2841,7 @@ choose_hashed_grouping(PlannerInfo *root, * pass in the costs as individual variables.) * * But note that making the two choices independently is a bit bogus in - * itself. If the two could be combined into a single choice operation + * itself. If the two could be combined into a single choice operation * it'd probably be better, but that seems far too unwieldy to be practical, * especially considering that the combination of GROUP BY and DISTINCT * isn't very common in real queries. By separating them, we are giving @@ -2937,7 +2938,7 @@ choose_hashed_distinct(PlannerInfo *root, 0.0, work_mem, limit_tuples); /* - * Now for the GROUP case. See comments in grouping_planner about the + * Now for the GROUP case. See comments in grouping_planner about the * sorting choices here --- this code should match that code. */ sorted_p.startup_cost = sorted_startup_cost; @@ -3127,7 +3128,7 @@ make_subplanTargetList(PlannerInfo *root, * add them to the result tlist if not already present. (A Var used * directly as a GROUP BY item will be present already.) Note this * includes Vars used in resjunk items, so we are covering the needs of - * ORDER BY and window specifications. Vars used within Aggrefs will be + * ORDER BY and window specifications. Vars used within Aggrefs will be * pulled out here, too. */ non_group_vars = pull_var_clause((Node *) non_group_cols, @@ -3178,7 +3179,7 @@ get_grouping_column_index(Query *parse, TargetEntry *tle) * Locate grouping columns in the tlist chosen by create_plan. * * This is only needed if we don't use the sub_tlist chosen by - * make_subplanTargetList. We have to forget the column indexes found + * make_subplanTargetList. We have to forget the column indexes found * by that routine and re-locate the grouping exprs in the real sub_tlist. * We assume the grouping exprs are just Vars (see make_subplanTargetList). */ @@ -3209,11 +3210,11 @@ locate_grouping_columns(PlannerInfo *root, /* * The grouping column returned by create_plan might not have the same - * typmod as the original Var. (This can happen in cases where a + * typmod as the original Var. (This can happen in cases where a * set-returning function has been inlined, so that we now have more * knowledge about what it returns than we did when the original Var * was created.) So we can't use tlist_member() to search the tlist; - * instead use tlist_member_match_var. For safety, still check that + * instead use tlist_member_match_var. For safety, still check that * the vartype matches. */ if (!(groupexpr && IsA(groupexpr, Var))) @@ -3339,7 +3340,7 @@ select_active_windows(PlannerInfo *root, WindowFuncLists *wflists) * * When grouping_planner inserts one or more WindowAgg nodes into the plan, * this function computes the initial target list to be computed by the node - * just below the first WindowAgg. This list must contain all values needed + * just below the first WindowAgg. This list must contain all values needed * to evaluate the window functions, compute the final target list, and * perform any required final sort step. If multiple WindowAggs are needed, * each intermediate one adds its window function results onto this tlist; @@ -3347,7 +3348,7 @@ select_active_windows(PlannerInfo *root, WindowFuncLists *wflists) * * This function is much like make_subplanTargetList, though not quite enough * like it to share code. As in that function, we flatten most expressions - * into their component variables. But we do not want to flatten window + * into their component variables. But we do not want to flatten window * PARTITION BY/ORDER BY clauses, since that might result in multiple * evaluations of them, which would be bad (possibly even resulting in * inconsistent answers, if they contain volatile functions). Also, we must @@ -3520,7 +3521,7 @@ make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, * This depends on the behavior of make_pathkeys_for_window()! * * We are given the target WindowClause and an array of the input column - * numbers associated with the resulting pathkeys. In the easy case, there + * numbers associated with the resulting pathkeys. In the easy case, there * are the same number of pathkey columns as partitioning + ordering columns * and we just have to copy some data around. However, it's possible that * some of the original partitioning + ordering columns were eliminated as @@ -3532,7 +3533,7 @@ make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, * determine which keys are significant. * * The method used here is a bit brute-force: add the sort columns to a list - * one at a time and note when the resulting pathkey list gets longer. But + * one at a time and note when the resulting pathkey list gets longer. But * it's a sufficiently uncommon case that a faster way doesn't seem worth * the amount of code refactoring that'd be needed. *---------- diff --git a/src/backend/optimizer/plan/setrefs.c b/src/backend/optimizer/plan/setrefs.c index 46affe7dad..768c5c7670 100644 --- a/src/backend/optimizer/plan/setrefs.c +++ b/src/backend/optimizer/plan/setrefs.c @@ -145,7 +145,7 @@ static bool extract_query_dependencies_walker(Node *node, /* * set_plan_references * - * This is the final processing pass of the planner/optimizer. The plan + * This is the final processing pass of the planner/optimizer. The plan * tree is complete; we just have to adjust some representational details * for the convenience of the executor: * @@ -189,7 +189,7 @@ static bool extract_query_dependencies_walker(Node *node, * and root->glob->invalItems (for everything else). * * Notice that we modify Plan nodes in-place, but use expression_tree_mutator - * to process targetlist and qual expressions. We can assume that the Plan + * to process targetlist and qual expressions. We can assume that the Plan * nodes were just built by the planner and are not multiply referenced, but * it's not so safe to assume that for expression tree nodes. */ @@ -262,7 +262,7 @@ add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing) /* * If there are any dead subqueries, they are not referenced in the Plan * tree, so we must add RTEs contained in them to the flattened rtable - * separately. (If we failed to do this, the executor would not perform + * separately. (If we failed to do this, the executor would not perform * expected permission checks for tables mentioned in such subqueries.) * * Note: this pass over the rangetable can't be combined with the previous @@ -292,7 +292,7 @@ add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing) /* * The subquery might never have been planned at all, if it * was excluded on the basis of self-contradictory constraints - * in our query level. In this case apply + * in our query level. In this case apply * flatten_unplanned_rtes. * * If it was planned but the plan is dummy, we assume that it @@ -591,7 +591,7 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) /* * These plan types don't actually bother to evaluate their * targetlists, because they just return their unmodified input - * tuples. Even though the targetlist won't be used by the + * tuples. Even though the targetlist won't be used by the * executor, we fix it up for possible use by EXPLAIN (not to * mention ease of debugging --- wrong varnos are very confusing). */ @@ -609,7 +609,7 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) /* * Like the plan types above, LockRows doesn't evaluate its - * tlist or quals. But we have to fix up the RT indexes in + * tlist or quals. But we have to fix up the RT indexes in * its rowmarks. */ set_dummy_tlist_references(plan, rtoffset); @@ -727,7 +727,7 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) * Set up the visible plan targetlist as being the same as * the first RETURNING list. This is for the use of * EXPLAIN; the executor won't pay any attention to the - * targetlist. We postpone this step until here so that + * targetlist. We postpone this step until here so that * we don't have to do set_returning_clause_references() * twice on identical targetlists. */ @@ -953,7 +953,7 @@ set_subqueryscan_references(PlannerInfo *root, else { /* - * Keep the SubqueryScan node. We have to do the processing that + * Keep the SubqueryScan node. We have to do the processing that * set_plan_references would otherwise have done on it. Notice we do * not do set_upper_references() here, because a SubqueryScan will * always have been created with correct references to its subplan's @@ -1425,7 +1425,7 @@ set_dummy_tlist_references(Plan *plan, int rtoffset) * * In most cases, subplan tlists will be "flat" tlists with only Vars, * so we try to optimize that case by extracting information about Vars - * in advance. Matching a parent tlist to a child is still an O(N^2) + * in advance. Matching a parent tlist to a child is still an O(N^2) * operation, but at least with a much smaller constant factor than plain * tlist_member() searches. * @@ -1870,7 +1870,7 @@ fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context) * adjust any Vars that refer to other tables to reference junk tlist * entries in the top subplan's targetlist. Vars referencing the result * table should be left alone, however (the executor will evaluate them - * using the actual heap tuple, after firing triggers if any). In the + * using the actual heap tuple, after firing triggers if any). In the * adjusted RETURNING list, result-table Vars will have their original * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR. * diff --git a/src/backend/optimizer/plan/subselect.c b/src/backend/optimizer/plan/subselect.c index a3f358377d..be92049ec4 100644 --- a/src/backend/optimizer/plan/subselect.c +++ b/src/backend/optimizer/plan/subselect.c @@ -434,7 +434,7 @@ make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, Node *result; /* - * Copy the source Query node. This is a quick and dirty kluge to resolve + * Copy the source Query node. This is a quick and dirty kluge to resolve * the fact that the parser can generate trees with multiple links to the * same sub-Query node, but the planner wants to scribble on the Query. * Try to clean this up when we do querytree redesign... @@ -459,7 +459,7 @@ make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, * path/costsize.c. * * XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash - * its output. In that case it would've been better to specify full + * its output. In that case it would've been better to specify full * retrieval. At present, however, we can only check hashability after * we've made the subplan :-(. (Determining whether it'll fit in work_mem * is the really hard part.) Therefore, we don't want to be too @@ -496,7 +496,7 @@ make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, /* * If it's a correlated EXISTS with an unimportant targetlist, we might be * able to transform it to the equivalent of an IN and then implement it - * by hashing. We don't have enough information yet to tell which way is + * by hashing. We don't have enough information yet to tell which way is * likely to be better (it depends on the expected number of executions of * the EXISTS qual, and we are much too early in planning the outer query * to be able to guess that). So we generate both plans, if possible, and @@ -724,7 +724,7 @@ build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot, * Otherwise, we have the option to tack a Material node onto the top * of the subplan, to reduce the cost of reading it repeatedly. This * is pointless for a direct-correlated subplan, since we'd have to - * recompute its results each time anyway. For uncorrelated/undirect + * recompute its results each time anyway. For uncorrelated/undirect * correlated subplans, we add Material unless the subplan's top plan * node would materialize its output anyway. Also, if enable_material * is false, then the user does not want us to materialize anything @@ -750,10 +750,10 @@ build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot, /* * A parameterless subplan (not initplan) should be prepared to handle - * REWIND efficiently. If it has direct parameters then there's no point + * REWIND efficiently. If it has direct parameters then there's no point * since it'll be reset on each scan anyway; and if it's an initplan then * there's no point since it won't get re-run without parameter changes - * anyway. The input of a hashed subplan doesn't need REWIND either. + * anyway. The input of a hashed subplan doesn't need REWIND either. */ if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable) root->glob->rewindPlanIDs = bms_add_member(root->glob->rewindPlanIDs, @@ -850,7 +850,7 @@ generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno) /* * convert_testexpr: convert the testexpr given by the parser into * actually executable form. This entails replacing PARAM_SUBLINK Params - * with Params or Vars representing the results of the sub-select. The + * with Params or Vars representing the results of the sub-select. The * nodes to be substituted are passed in as the List result from * generate_subquery_params or generate_subquery_vars. */ @@ -952,7 +952,7 @@ testexpr_is_hashable(Node *testexpr) * * The combining operators must be hashable and strict. The need for * hashability is obvious, since we want to use hashing. Without - * strictness, behavior in the presence of nulls is too unpredictable. We + * strictness, behavior in the presence of nulls is too unpredictable. We * actually must assume even more than plain strictness: they can't yield * NULL for non-null inputs, either (see nodeSubplan.c). However, hash * indexes and hash joins assume that too. @@ -1060,7 +1060,7 @@ SS_process_ctes(PlannerInfo *root) } /* - * Copy the source Query node. Probably not necessary, but let's keep + * Copy the source Query node. Probably not necessary, but let's keep * this similar to make_subplan. */ subquery = (Query *) copyObject(cte->ctequery); @@ -1086,7 +1086,7 @@ SS_process_ctes(PlannerInfo *root) elog(ERROR, "unexpected outer reference in CTE query"); /* - * Make a SubPlan node for it. This is just enough unlike + * Make a SubPlan node for it. This is just enough unlike * build_subplan that we can't share code. * * Note plan_id, plan_name, and cost fields are set further down. @@ -1309,7 +1309,7 @@ convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, /* * See if the subquery can be simplified based on the knowledge that it's - * being used in EXISTS(). If we aren't able to get rid of its + * being used in EXISTS(). If we aren't able to get rid of its * targetlist, we have to fail, because the pullup operation leaves us * with noplace to evaluate the targetlist. */ @@ -1358,9 +1358,9 @@ convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, * what pull_up_subqueries has to go through. * * In fact, it's even easier than what convert_ANY_sublink_to_join has to - * do. The machinations of simplify_EXISTS_query ensured that there is + * do. The machinations of simplify_EXISTS_query ensured that there is * nothing interesting in the subquery except an rtable and jointree, and - * even the jointree FromExpr no longer has quals. So we can just append + * even the jointree FromExpr no longer has quals. So we can just append * the rtable to our own and use the FromExpr in our jointree. But first, * adjust all level-zero varnos in the subquery to account for the rtable * merger. @@ -1491,7 +1491,7 @@ simplify_EXISTS_query(Query *query) * * On success, the modified subselect is returned, and we store a suitable * upper-level test expression at *testexpr, plus a list of the subselect's - * output Params at *paramIds. (The test expression is already Param-ified + * output Params at *paramIds. (The test expression is already Param-ified * and hence need not go through convert_testexpr, which is why we have to * deal with the Param IDs specially.) * @@ -1654,7 +1654,7 @@ convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect, return NULL; /* - * Also reject sublinks in the stuff we intend to pull up. (It might be + * Also reject sublinks in the stuff we intend to pull up. (It might be * possible to support this, but doesn't seem worth the complication.) */ if (contain_subplans((Node *) leftargs)) @@ -1856,7 +1856,7 @@ process_sublinks_mutator(Node *node, process_sublinks_context *context) * is needed for a bare List.) * * Anywhere within the top-level AND/OR clause structure, we can tell - * make_subplan() that NULL and FALSE are interchangeable. So isTopQual + * make_subplan() that NULL and FALSE are interchangeable. So isTopQual * propagates down in both cases. (Note that this is unlike the meaning * of "top level qual" used in most other places in Postgres.) */ @@ -1962,7 +1962,7 @@ SS_finalize_plan(PlannerInfo *root, Plan *plan, bool attach_initplans) * Now determine the set of params that are validly referenceable in this * query level; to wit, those available from outer query levels plus the * output parameters of any local initPlans. (We do not include output - * parameters of regular subplans. Those should only appear within the + * parameters of regular subplans. Those should only appear within the * testexpr of SubPlan nodes, and are taken care of locally within * finalize_primnode. Likewise, special parameters that are generated by * nodes such as ModifyTable are handled within finalize_plan.) @@ -2138,7 +2138,7 @@ finalize_plan(PlannerInfo *root, Plan *plan, Bitmapset *valid_params, /* * In a SubqueryScan, SS_finalize_plan has already been run on the * subplan by the inner invocation of subquery_planner, so there's - * no need to do it again. Instead, just pull out the subplan's + * no need to do it again. Instead, just pull out the subplan's * extParams list, which represents the params it needs from my * level and higher levels. */ @@ -2500,7 +2500,7 @@ finalize_primnode(Node *node, finalize_primnode_context *context) /* * Remove any param IDs of output parameters of the subplan that were - * referenced in the testexpr. These are not interesting for + * referenced in the testexpr. These are not interesting for * parameter change signaling since we always re-evaluate the subplan. * Note that this wouldn't work too well if there might be uses of the * same param IDs elsewhere in the plan, but that can't happen because @@ -2598,7 +2598,7 @@ SS_make_initplan_from_plan(PlannerInfo *root, Plan *plan, /* Label the subplan for EXPLAIN purposes */ node->plan_name = psprintf("InitPlan %d (returns $%d)", - node->plan_id, prm->paramid); + node->plan_id, prm->paramid); return prm; } |
