summaryrefslogtreecommitdiff
path: root/src/backend/storage/freespace/fsmpage.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/storage/freespace/fsmpage.c')
-rw-r--r--src/backend/storage/freespace/fsmpage.c352
1 files changed, 352 insertions, 0 deletions
diff --git a/src/backend/storage/freespace/fsmpage.c b/src/backend/storage/freespace/fsmpage.c
new file mode 100644
index 0000000000..ce6f47e8b9
--- /dev/null
+++ b/src/backend/storage/freespace/fsmpage.c
@@ -0,0 +1,352 @@
+/*-------------------------------------------------------------------------
+ *
+ * fsmpage.c
+ * routines to search and manipulate one FSM page.
+ *
+ *
+ * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * $PostgreSQL: pgsql/src/backend/storage/freespace/fsmpage.c,v 1.1 2008/09/30 10:52:13 heikki Exp $
+ *
+ * NOTES:
+ *
+ * The public functions in this file form an API that hides the internal
+ * structure of a FSM page. This allows freespace.c to treat each FSM page
+ * as a black box with SlotsPerPage "slots". fsm_set_avail() and
+ * fsm_get_avail() let's you get/set the value of a slot, and
+ * fsm_search_avail() let's you search for a slot with value >= X.
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "storage/bufmgr.h"
+#include "storage/fsm_internals.h"
+
+/* macros to navigate the tree within a page. */
+#define leftchild(x) (2 * (x) + 1)
+#define rightchild(x) (2 * (x) + 2)
+#define parentof(x) (((x) - 1) / 2)
+
+/* returns right sibling of x, wrapping around within the level */
+static int
+rightsibling(int x)
+{
+ /*
+ * Move right. This might wrap around, stepping to the leftmost node at
+ * the next level.
+ */
+ x++;
+
+ /*
+ * Check if we stepped to the leftmost node at next level, and correct
+ * if so. The leftmost nodes at each level are of form x = 2^level - 1, so
+ * check if (x + 1) is a power of two.
+ */
+ if (((x + 1) & x) == 0)
+ x = parentof(x);
+
+ return x;
+}
+
+/*
+ * Sets the value of a slot on page. Returns true if the page was
+ * modified.
+ *
+ * The caller must hold an exclusive lock on the page.
+ */
+bool
+fsm_set_avail(Page page, int slot, uint8 value)
+{
+ int nodeno = NonLeafNodesPerPage + slot;
+ FSMPage fsmpage = (FSMPage) PageGetContents(page);
+ uint8 oldvalue;
+
+ Assert(slot < LeafNodesPerPage);
+
+ oldvalue = fsmpage->fp_nodes[nodeno];
+
+ /* If the value hasn't changed, we don't need to do anything */
+ if (oldvalue == value && value <= fsmpage->fp_nodes[0])
+ return false;
+
+ fsmpage->fp_nodes[nodeno] = value;
+
+ /*
+ * Propagate up, until we hit the root or a node that doesn't
+ * need to be updated.
+ */
+ do
+ {
+ uint8 newvalue = 0;
+ int lchild;
+ int rchild;
+
+ nodeno = parentof(nodeno);
+ lchild = leftchild(nodeno);
+ rchild = lchild + 1;
+
+ newvalue = fsmpage->fp_nodes[lchild];
+ if (rchild < NodesPerPage)
+ newvalue = Max(newvalue,
+ fsmpage->fp_nodes[rchild]);
+
+ oldvalue = fsmpage->fp_nodes[nodeno];
+ if (oldvalue == newvalue)
+ break;
+
+ fsmpage->fp_nodes[nodeno] = newvalue;
+ } while (nodeno > 0);
+
+ /*
+ * sanity check: if the new value value is higher than the value
+ * at the top, the tree is corrupt.
+ */
+ if (value > fsmpage->fp_nodes[0])
+ fsm_rebuild_page(page);
+
+ return true;
+}
+
+/*
+ * Returns the value of given slot on page.
+ *
+ * Since this is just a read-only access of a single byte, the page doesn't
+ * need to be locked.
+ */
+uint8
+fsm_get_avail(Page page, int slot)
+{
+ FSMPage fsmpage = (FSMPage) PageGetContents(page);
+
+ return fsmpage->fp_nodes[NonLeafNodesPerPage + slot];
+}
+
+/*
+ * Returns the value at the root of a page.
+ * Since this is just a read-only access of a single byte, the page doesn't
+ * need to be locked.
+ */
+uint8
+fsm_get_max_avail(Page page)
+{
+ FSMPage fsmpage = (FSMPage) PageGetContents(page);
+ return fsmpage->fp_nodes[0];
+}
+
+/*
+ * Searches for a slot with min. category. Returns slot number, or -1 if
+ * none found.
+ *
+ * The caller must hold at least a shared lock on the page, and this
+ * function can unlock and lock the page again in exclusive mode if it
+ * needs to be updated. exclusive_lock_held should be set to true if the
+ * caller is already holding an exclusive lock, to avoid extra work.
+ *
+ * If advancenext is false, fp_next_slot is set to point to the returned
+ * slot, and if it's true, to the slot next to the returned slot.
+ */
+int
+fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
+ bool exclusive_lock_held)
+{
+ Page page = BufferGetPage(buf);
+ FSMPage fsmpage = (FSMPage) PageGetContents(page);
+ int nodeno;
+ int target;
+ uint16 slot;
+
+ restart:
+ /*
+ * Check the root first, and exit quickly if there's no page with
+ * enough free space
+ */
+ if (fsmpage->fp_nodes[0] < minvalue)
+ return -1;
+
+
+ /* fp_next_slot is just a hint, so check that it's sane */
+ target = fsmpage->fp_next_slot;
+ if (target < 0 || target >= LeafNodesPerPage)
+ target = 0;
+ target += NonLeafNodesPerPage;
+
+ /*
+ * Start the search from the target slot. At every step, move one
+ * node to the right, and climb up to the parent. Stop when we reach a
+ * node with enough free space. (note that moving to the right only
+ * makes a difference if we're on the right child of the parent)
+ *
+ * The idea is to graduall expand our "search triangle", that is, all
+ * nodes covered by the current node. In the beginning, just the target
+ * node is included, and more nodes to the right of the target node,
+ * taking wrap-around into account, is included at each step. Nodes are
+ * added to the search triangle in left-to-right order, starting from
+ * the target node. This ensures that we'll find the first suitable node
+ * to the right of the target node, and not some other node with enough
+ * free space.
+ *
+ * For example, consider this tree:
+ *
+ * 7
+ * 7 6
+ * 5 7 6 5
+ * 4 5 5 7 2 6 5 2
+ * T
+ *
+ * Imagine that target node is the node indicated by the letter T, and
+ * we're searching for a node with value of 6 or higher. The search
+ * begins at T. At first iteration, we move to the right, and to the
+ * parent, arriving the rightmost 5. At the 2nd iteration, we move to the
+ * right, wrapping around, and climb up, arriving at the 7 at the 2nd
+ * level. 7 satisfies our search, so we descend down to the bottom,
+ * following the path of sevens.
+ */
+ nodeno = target;
+ while (nodeno > 0)
+ {
+ if (fsmpage->fp_nodes[nodeno] >= minvalue)
+ break;
+
+ /*
+ * Move to the right, wrapping around at the level if necessary, and
+ * climb up.
+ */
+ nodeno = parentof(rightsibling(nodeno));
+ }
+
+ /*
+ * We're now at a node with enough free space, somewhere in the middle of
+ * the tree. Descend to the bottom, following a path with enough free
+ * space, preferring to move left if there's a choice.
+ */
+ while (nodeno < NonLeafNodesPerPage)
+ {
+ int leftnodeno = leftchild(nodeno);
+ int rightnodeno = leftnodeno + 1;
+ bool leftok = (leftnodeno < NodesPerPage) &&
+ (fsmpage->fp_nodes[leftnodeno] >= minvalue);
+ bool rightok = (rightnodeno < NodesPerPage) &&
+ (fsmpage->fp_nodes[rightnodeno] >= minvalue);
+
+ if (leftok)
+ nodeno = leftnodeno;
+ else if (rightok)
+ nodeno = rightnodeno;
+ else
+ {
+ /*
+ * Oops. The parent node promised that either left or right
+ * child has enough space, but neither actually did. This can
+ * happen in case of a "torn page", IOW if we crashed earlier
+ * while writing the page to disk, and only part of the page
+ * made it to disk.
+ *
+ * Fix the corruption and restart.
+ */
+ RelFileNode rnode;
+ ForkNumber forknum;
+ BlockNumber blknum;
+
+ BufferGetTag(buf, &rnode, &forknum, &blknum);
+ elog(DEBUG1, "fixing corrupt FSM block %u, relation %u/%u/%u",
+ blknum, rnode.spcNode, rnode.dbNode, rnode.relNode);
+
+ /* make sure we hold an exclusive lock */
+ if (!exclusive_lock_held)
+ {
+ LockBuffer(buf, BUFFER_LOCK_UNLOCK);
+ LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
+ exclusive_lock_held = true;
+ }
+ fsm_rebuild_page(page);
+ MarkBufferDirty(buf);
+ goto restart;
+ }
+ }
+
+ /* We're now at the bottom level, at a node with enough space. */
+ slot = nodeno - NonLeafNodesPerPage;
+
+ /*
+ * Update the next slot pointer. Note that we do this even if we're only
+ * holding a shared lock, on the grounds that it's better to use a shared
+ * lock and get a garbled next pointer every now and then, than take the
+ * concurrency hit of an exlusive lock.
+ *
+ * Wrap-around is handled at the beginning of this function.
+ */
+ fsmpage->fp_next_slot = slot + (advancenext ? 1 : 0);
+
+ return slot;
+}
+
+/*
+ * Sets the available space to zero for all slots numbered >= nslots.
+ * Returns true if the page was modified.
+ */
+bool
+fsm_truncate_avail(Page page, int nslots)
+{
+ FSMPage fsmpage = (FSMPage) PageGetContents(page);
+ uint8 *ptr;
+ bool changed = false;
+
+ Assert(nslots >= 0 && nslots < LeafNodesPerPage);
+
+ /* Clear all truncated leaf nodes */
+ ptr = &fsmpage->fp_nodes[NonLeafNodesPerPage + nslots];
+ for (; ptr < &fsmpage->fp_nodes[NodesPerPage]; ptr++)
+ {
+ if (*ptr != 0)
+ changed = true;
+ *ptr = 0;
+ }
+
+ /* Fix upper nodes. */
+ if (changed)
+ fsm_rebuild_page(page);
+
+ return changed;
+}
+
+/*
+ * Reconstructs the upper levels of a page. Returns true if the page
+ * was modified.
+ */
+bool
+fsm_rebuild_page(Page page)
+{
+ FSMPage fsmpage = (FSMPage) PageGetContents(page);
+ bool changed = false;
+ int nodeno;
+
+ /*
+ * Start from the lowest non-leaflevel, at last node, working our way
+ * backwards, through all non-leaf nodes at all levels, up to the root.
+ */
+ for (nodeno = NonLeafNodesPerPage - 1; nodeno >= 0; nodeno--)
+ {
+ int lchild = leftchild(nodeno);
+ int rchild = lchild + 1;
+ uint8 newvalue = 0;
+
+ if (lchild < NodesPerPage)
+ newvalue = fsmpage->fp_nodes[lchild];
+
+ if (rchild < NodesPerPage)
+ newvalue = Max(newvalue,
+ fsmpage->fp_nodes[rchild]);
+
+ if (fsmpage->fp_nodes[nodeno] != newvalue)
+ {
+ fsmpage->fp_nodes[nodeno] = newvalue;
+ changed = true;
+ }
+ }
+
+ return changed;
+}
+