diff options
Diffstat (limited to 'src/backend/utils/adt')
| -rw-r--r-- | src/backend/utils/adt/Makefile | 3 | ||||
| -rw-r--r-- | src/backend/utils/adt/array_selfuncs.c | 1225 | ||||
| -rw-r--r-- | src/backend/utils/adt/array_typanalyze.c | 762 | ||||
| -rw-r--r-- | src/backend/utils/adt/selfuncs.c | 58 |
4 files changed, 2034 insertions, 14 deletions
diff --git a/src/backend/utils/adt/Makefile b/src/backend/utils/adt/Makefile index c635c38f5b..c5b0a75e93 100644 --- a/src/backend/utils/adt/Makefile +++ b/src/backend/utils/adt/Makefile @@ -15,7 +15,8 @@ override CFLAGS+= -mieee endif endif -OBJS = acl.o arrayfuncs.o array_userfuncs.o arrayutils.o bool.o \ +OBJS = acl.o arrayfuncs.o array_selfuncs.o array_typanalyze.o \ + array_userfuncs.o arrayutils.o bool.o \ cash.o char.o date.o datetime.o datum.o domains.o \ enum.o float.o format_type.o \ geo_ops.o geo_selfuncs.o int.o int8.o json.o like.o lockfuncs.o \ diff --git a/src/backend/utils/adt/array_selfuncs.c b/src/backend/utils/adt/array_selfuncs.c new file mode 100644 index 0000000000..3916de4bfb --- /dev/null +++ b/src/backend/utils/adt/array_selfuncs.c @@ -0,0 +1,1225 @@ +/*------------------------------------------------------------------------- + * + * array_selfuncs.c + * Functions for selectivity estimation of array operators + * + * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/utils/adt/array_selfuncs.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include <math.h> + +#include "catalog/pg_collation.h" +#include "catalog/pg_operator.h" +#include "catalog/pg_statistic.h" +#include "optimizer/clauses.h" +#include "utils/array.h" +#include "utils/lsyscache.h" +#include "utils/selfuncs.h" +#include "utils/typcache.h" + + +/* Default selectivity constant for "@>" and "<@" operators */ +#define DEFAULT_CONTAIN_SEL 0.005 + +/* Default selectivity constant for "&&" operator */ +#define DEFAULT_OVERLAP_SEL 0.01 + +/* Default selectivity for given operator */ +#define DEFAULT_SEL(operator) \ + ((operator) == OID_ARRAY_OVERLAP_OP ? \ + DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL) + +static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval, + Oid elemtype, Oid operator); +static Selectivity mcelem_array_selec(ArrayType *array, + TypeCacheEntry *typentry, + Datum *mcelem, int nmcelem, + float4 *numbers, int nnumbers, + float4 *hist, int nhist, + Oid operator, FmgrInfo *cmpfunc); +static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, + float4 *numbers, int nnumbers, + Datum *array_data, int nitems, + Oid operator, FmgrInfo *cmpfunc); +static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem, + float4 *numbers, int nnumbers, + Datum *array_data, int nitems, + float4 *hist, int nhist, + Oid operator, FmgrInfo *cmpfunc); +static float *calc_hist(const float4 *hist, int nhist, int n); +static float *calc_distr(const float *p, int n, int m, float rest); +static int floor_log2(uint32 n); +static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, + int *index, FmgrInfo *cmpfunc); +static int element_compare(const void *key1, const void *key2, void *arg); +static int float_compare_desc(const void *key1, const void *key2); + + +/* + * scalararraysel_containment + * Estimate selectivity of ScalarArrayOpExpr via array containment. + * + * scalararraysel() has already verified that the operator of a + * ScalarArrayOpExpr is the array element type's default equality or + * inequality operator. If we have const =/<> ANY/ALL (array_var) + * then we can estimate the selectivity as though this were an array + * containment operator, array_var op ARRAY[const]. + * + * Returns selectivity (0..1), or -1 if we fail to estimate selectivity. + */ +Selectivity +scalararraysel_containment(PlannerInfo *root, + Node *leftop, Node *rightop, + Oid elemtype, bool isEquality, bool useOr, + int varRelid) +{ + Selectivity selec; + VariableStatData vardata; + Datum constval; + TypeCacheEntry *typentry; + FmgrInfo *cmpfunc; + + /* + * rightop must be a variable, else punt. + */ + examine_variable(root, rightop, varRelid, &vardata); + if (!vardata.rel) + { + ReleaseVariableStats(vardata); + return -1.0; + } + + /* + * Aggressively reduce leftop to a constant, if possible. + */ + leftop = estimate_expression_value(root, leftop); + if (!IsA(leftop, Const)) + { + ReleaseVariableStats(vardata); + return -1.0; + } + if (((Const *) leftop)->constisnull) + { + /* qual can't succeed if null on left */ + ReleaseVariableStats(vardata); + return (Selectivity) 0.0; + } + constval = ((Const *) leftop)->constvalue; + + /* Get element type's default comparison function */ + typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); + if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) + { + ReleaseVariableStats(vardata); + return -1.0; + } + cmpfunc = &typentry->cmp_proc_finfo; + + /* + * If the operator is <>, swap ANY/ALL, then invert the result later. + */ + if (!isEquality) + useOr = !useOr; + + /* Get array element stats for var, if available */ + if (HeapTupleIsValid(vardata.statsTuple)) + { + Form_pg_statistic stats; + Datum *values; + int nvalues; + float4 *numbers; + int nnumbers; + float4 *hist; + int nhist; + + stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); + + /* MCELEM will be an array of same type as element */ + if (get_attstatsslot(vardata.statsTuple, + elemtype, vardata.atttypmod, + STATISTIC_KIND_MCELEM, InvalidOid, + NULL, + &values, &nvalues, + &numbers, &nnumbers)) + { + /* For ALL case, also get histogram of distinct-element counts */ + if (useOr || + !get_attstatsslot(vardata.statsTuple, + elemtype, vardata.atttypmod, + STATISTIC_KIND_DECHIST, InvalidOid, + NULL, + NULL, NULL, + &hist, &nhist)) + { + hist = NULL; + nhist = 0; + } + + /* + * For = ANY, estimate as var @> ARRAY[const]. + * + * For = ALL, estimate as var <@ ARRAY[const]. + */ + if (useOr) + selec = mcelem_array_contain_overlap_selec(values, nvalues, + numbers, nnumbers, + &constval, 1, + OID_ARRAY_CONTAINS_OP, + cmpfunc); + else + selec = mcelem_array_contained_selec(values, nvalues, + numbers, nnumbers, + &constval, 1, + hist, nhist, + OID_ARRAY_CONTAINED_OP, + cmpfunc); + + if (hist) + free_attstatsslot(elemtype, NULL, 0, hist, nhist); + free_attstatsslot(elemtype, values, nvalues, numbers, nnumbers); + } + else + { + /* No most-common-elements info, so do without */ + if (useOr) + selec = mcelem_array_contain_overlap_selec(NULL, 0, + NULL, 0, + &constval, 1, + OID_ARRAY_CONTAINS_OP, + cmpfunc); + else + selec = mcelem_array_contained_selec(NULL, 0, + NULL, 0, + &constval, 1, + NULL, 0, + OID_ARRAY_CONTAINED_OP, + cmpfunc); + } + + /* + * MCE stats count only non-null rows, so adjust for null rows. + */ + selec *= (1.0 - stats->stanullfrac); + } + else + { + /* No stats at all, so do without */ + if (useOr) + selec = mcelem_array_contain_overlap_selec(NULL, 0, + NULL, 0, + &constval, 1, + OID_ARRAY_CONTAINS_OP, + cmpfunc); + else + selec = mcelem_array_contained_selec(NULL, 0, + NULL, 0, + &constval, 1, + NULL, 0, + OID_ARRAY_CONTAINED_OP, + cmpfunc); + /* we assume no nulls here, so no stanullfrac correction */ + } + + ReleaseVariableStats(vardata); + + /* + * If the operator is <>, invert the results. + */ + if (!isEquality) + selec = 1.0 - selec; + + CLAMP_PROBABILITY(selec); + + return selec; +} + +/* + * arraycontsel -- restriction selectivity for "arraycolumn @> const", + * "arraycolumn && const" or "arraycolumn <@ const" + */ +Datum +arraycontsel(PG_FUNCTION_ARGS) +{ + PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); + Oid operator = PG_GETARG_OID(1); + List *args = (List *) PG_GETARG_POINTER(2); + int varRelid = PG_GETARG_INT32(3); + VariableStatData vardata; + Node *other; + bool varonleft; + Selectivity selec; + Oid element_typeid; + + /* + * If expression is not (variable op something) or (something op + * variable), then punt and return a default estimate. + */ + if (!get_restriction_variable(root, args, varRelid, + &vardata, &other, &varonleft)) + PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); + + /* + * Can't do anything useful if the something is not a constant, either. + */ + if (!IsA(other, Const)) + { + ReleaseVariableStats(vardata); + PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); + } + + /* + * The "&&", "@>" and "<@" operators are strict, so we can cope with a + * NULL constant right away. + */ + if (((Const *) other)->constisnull) + { + ReleaseVariableStats(vardata); + PG_RETURN_FLOAT8(0.0); + } + + /* + * If var is on the right, commute the operator, so that we can assume + * the var is on the left in what follows. + */ + if (!varonleft) + { + if (operator == OID_ARRAY_CONTAINS_OP) + operator = OID_ARRAY_CONTAINED_OP; + else if (operator == OID_ARRAY_CONTAINED_OP) + operator = OID_ARRAY_CONTAINS_OP; + } + + /* + * OK, there's a Var and a Const we're dealing with here. We need the + * Const to be a array with same element type as column, else we can't do + * anything useful. (Such cases will likely fail at runtime, but here + * we'd rather just return a default estimate.) + */ + element_typeid = get_base_element_type(((Const *) other)->consttype); + if (element_typeid != InvalidOid && + element_typeid == get_base_element_type(vardata.vartype)) + { + selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue, + element_typeid, operator); + } + else + { + selec = DEFAULT_SEL(operator); + } + + ReleaseVariableStats(vardata); + + CLAMP_PROBABILITY(selec); + + PG_RETURN_FLOAT8((float8) selec); +} + +/* + * arraycontjoinsel -- join selectivity for "arraycolumn @> const", + * "arraycolumn && const" or "arraycolumn <@ const" + */ +Datum +arraycontjoinsel(PG_FUNCTION_ARGS) +{ + /* For the moment this is just a stub */ + Oid operator = PG_GETARG_OID(1); + + PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); +} + +/* + * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const" + * or "arraycolumn <@ const" based on the statistics + * + * This function is mainly responsible for extracting the pg_statistic data + * to be used; we then pass the problem on to mcelem_array_selec(). + */ +static Selectivity +calc_arraycontsel(VariableStatData *vardata, Datum constval, + Oid elemtype, Oid operator) +{ + Selectivity selec; + TypeCacheEntry *typentry; + FmgrInfo *cmpfunc; + ArrayType *array; + + /* Get element type's default comparison function */ + typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); + if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) + return DEFAULT_SEL(operator); + cmpfunc = &typentry->cmp_proc_finfo; + + /* + * The caller made sure the const is a array with same element type, so + * get it now + */ + array = DatumGetArrayTypeP(constval); + + if (HeapTupleIsValid(vardata->statsTuple)) + { + Form_pg_statistic stats; + Datum *values; + int nvalues; + float4 *numbers; + int nnumbers; + float4 *hist; + int nhist; + + stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); + + /* MCELEM will be an array of same type as column */ + if (get_attstatsslot(vardata->statsTuple, + elemtype, vardata->atttypmod, + STATISTIC_KIND_MCELEM, InvalidOid, + NULL, + &values, &nvalues, + &numbers, &nnumbers)) + { + /* + * For "array <@ const" case we also need histogram of distinct + * element counts. + */ + if (operator != OID_ARRAY_CONTAINED_OP || + !get_attstatsslot(vardata->statsTuple, + elemtype, vardata->atttypmod, + STATISTIC_KIND_DECHIST, InvalidOid, + NULL, + NULL, NULL, + &hist, &nhist)) + { + hist = NULL; + nhist = 0; + } + + /* Use the most-common-elements slot for the array Var. */ + selec = mcelem_array_selec(array, typentry, + values, nvalues, + numbers, nnumbers, + hist, nhist, + operator, cmpfunc); + + if (hist) + free_attstatsslot(elemtype, NULL, 0, hist, nhist); + free_attstatsslot(elemtype, values, nvalues, numbers, nnumbers); + } + else + { + /* No most-common-elements info, so do without */ + selec = mcelem_array_selec(array, typentry, + NULL, 0, NULL, 0, NULL, 0, + operator, cmpfunc); + } + + /* + * MCE stats count only non-null rows, so adjust for null rows. + */ + selec *= (1.0 - stats->stanullfrac); + } + else + { + /* No stats at all, so do without */ + selec = mcelem_array_selec(array, typentry, + NULL, 0, NULL, 0, NULL, 0, + operator, cmpfunc); + /* we assume no nulls here, so no stanullfrac correction */ + } + + /* If constant was toasted, release the copy we made */ + if (PointerGetDatum(array) != constval) + pfree(array); + + return selec; +} + +/* + * Array selectivity estimation based on most common elements statistics + * + * This function just deconstructs and sorts the array constant's contents, + * and then passes the problem on to mcelem_array_contain_overlap_selec or + * mcelem_array_contained_selec depending on the operator. + */ +static Selectivity +mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry, + Datum *mcelem, int nmcelem, + float4 *numbers, int nnumbers, + float4 *hist, int nhist, + Oid operator, FmgrInfo *cmpfunc) +{ + Selectivity selec; + int num_elems; + Datum *elem_values; + bool *elem_nulls; + bool null_present; + int nonnull_nitems; + int i; + + /* + * Prepare constant array data for sorting. Sorting lets us find unique + * elements and efficiently merge with the MCELEM array. + */ + deconstruct_array(array, + typentry->type_id, + typentry->typlen, + typentry->typbyval, + typentry->typalign, + &elem_values, &elem_nulls, &num_elems); + + /* Collapse out any null elements */ + nonnull_nitems = 0; + null_present = false; + for (i = 0; i < num_elems; i++) + { + if (elem_nulls[i]) + null_present = true; + else + elem_values[nonnull_nitems++] = elem_values[i]; + } + + /* + * Query "column @> '{anything, null}'" matches nothing. For the other + * two operators, presence of a null in the constant can be ignored. + */ + if (null_present && operator == OID_ARRAY_CONTAINS_OP) + { + pfree(elem_values); + pfree(elem_nulls); + return (Selectivity) 0.0; + } + + /* Sort extracted elements using their default comparison function. */ + qsort_arg(elem_values, nonnull_nitems, sizeof(Datum), + element_compare, cmpfunc); + + /* Separate cases according to operator */ + if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP) + selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem, + numbers, nnumbers, + elem_values, nonnull_nitems, + operator, cmpfunc); + else if (operator == OID_ARRAY_CONTAINED_OP) + selec = mcelem_array_contained_selec(mcelem, nmcelem, + numbers, nnumbers, + elem_values, nonnull_nitems, + hist, nhist, + operator, cmpfunc); + else + { + elog(ERROR, "arraycontsel called for unrecognized operator %u", + operator); + selec = 0.0; /* keep compiler quiet */ + } + + pfree(elem_values); + pfree(elem_nulls); + return selec; +} + +/* + * Estimate selectivity of "column @> const" and "column && const" based on + * most common element statistics. This estimation assumes element + * occurrences are independent. + * + * mcelem (of length nmcelem) and numbers (of length nnumbers) are from + * the array column's MCELEM statistics slot, or are NULL/0 if stats are + * not available. array_data (of length nitems) is the constant's elements. + * + * Both the mcelem and array_data arrays are assumed presorted according + * to the element type's cmpfunc. Null elements are not present. + * + * TODO: this estimate probably could be improved by using the distinct + * elements count histogram. For example, excepting the special case of + * "column @> '{}'", we can multiply the calculated selectivity by the + * fraction of nonempty arrays in the column. + */ +static Selectivity +mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, + float4 *numbers, int nnumbers, + Datum *array_data, int nitems, + Oid operator, FmgrInfo *cmpfunc) +{ + Selectivity selec, + elem_selec; + int mcelem_index, + i; + bool use_bsearch; + float4 minfreq; + + /* + * There should be three more Numbers than Values, because the last three + * cells should hold minimal and maximal frequency among the non-null + * elements, and then the frequency of null elements. Ignore the Numbers + * if not right. + */ + if (nnumbers != nmcelem + 3) + { + numbers = NULL; + nnumbers = 0; + } + + if (numbers) + { + /* Grab the lowest observed frequency */ + minfreq = numbers[nmcelem]; + } + else + { + /* Without statistics make some default assumptions */ + minfreq = 2 * DEFAULT_CONTAIN_SEL; + } + + /* Decide whether it is faster to use binary search or not. */ + if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems) + use_bsearch = true; + else + use_bsearch = false; + + if (operator == OID_ARRAY_CONTAINS_OP) + { + /* + * Initial selectivity for "column @> const" query is 1.0, and it will + * be decreased with each element of constant array. + */ + selec = 1.0; + } + else + { + /* + * Initial selectivity for "column && const" query is 0.0, and it will + * be increased with each element of constant array. + */ + selec = 0.0; + } + + /* Scan mcelem and array in parallel. */ + mcelem_index = 0; + for (i = 0; i < nitems; i++) + { + bool match = false; + + /* Ignore any duplicates in the array data. */ + if (i > 0 && + element_compare(&array_data[i - 1], &array_data[i], cmpfunc) == 0) + continue; + + /* Find the smallest MCELEM >= this array item. */ + if (use_bsearch) + { + match = find_next_mcelem(mcelem, nmcelem, array_data[i], + &mcelem_index, cmpfunc); + } + else + { + while (mcelem_index < nmcelem) + { + int cmp = element_compare(&mcelem[mcelem_index], + &array_data[i], + cmpfunc); + + if (cmp < 0) + mcelem_index++; + else + { + if (cmp == 0) + match = true; /* mcelem is found */ + break; + } + } + } + + if (match && numbers) + { + /* MCELEM matches the array item; use its frequency. */ + elem_selec = numbers[mcelem_index]; + mcelem_index++; + } + else + { + /* + * The element is not in MCELEM. Punt, but assume that the + * selectivity cannot be more than minfreq / 2. + */ + elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2); + } + + /* + * Update overall selectivity using the current element's selectivity + * and an assumption of element occurrence independence. + */ + if (operator == OID_ARRAY_CONTAINS_OP) + selec *= elem_selec; + else + selec = selec + elem_selec - selec * elem_selec; + + /* Clamp intermediate results to stay sane despite roundoff error */ + CLAMP_PROBABILITY(selec); + } + + return selec; +} + +/* + * Estimate selectivity of "column <@ const" based on most common element + * statistics. + * + * mcelem (of length nmcelem) and numbers (of length nnumbers) are from + * the array column's MCELEM statistics slot, or are NULL/0 if stats are + * not available. array_data (of length nitems) is the constant's elements. + * hist (of length nhist) is from the array column's DECHIST statistics slot, + * or is NULL/0 if those stats are not available. + * + * Both the mcelem and array_data arrays are assumed presorted according + * to the element type's cmpfunc. Null elements are not present. + * + * Independent element occurrence would imply a particular distribution of + * distinct element counts among matching rows. Real data usually falsifies + * that assumption. For example, in a set of 11-element integer arrays having + * elements in the range [0..10], element occurrences are typically not + * independent. If they were, a sufficiently-large set would include all + * distinct element counts 0 through 11. We correct for this using the + * histogram of distinct element counts. + * + * In the "column @> const" and "column && const" cases, we usually have a + * "const" with low number of elements (otherwise we have selectivity close + * to 0 or 1 respectively). That's why the effect of dependence related + * to distinct element count distribution is negligible there. In the + * "column <@ const" case, number of elements is usually high (otherwise we + * have selectivity close to 0). That's why we should do a correction with + * the array distinct element count distribution here. + * + * Using the histogram of distinct element counts produces a different + * distribution law than independent occurrences of elements. This + * distribution law can be described as follows: + * + * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * + * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m] + * + * where: + * o1, o2, ..., on - occurrences of elements 1, 2, ..., n + * (1 - occurrence, 0 - no occurrence) in row + * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n + * (scalar values in [0..1]) according to collected statistics + * m = o1 + o2 + ... + on = total number of distinct elements in row + * hist[m] - histogram data for occurrence of m elements. + * ind[m] - probability of m occurrences from n events assuming their + * probabilities to be equal to frequencies of array elements. + * + * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) * + * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m + */ +static Selectivity +mcelem_array_contained_selec(Datum *mcelem, int nmcelem, + float4 *numbers, int nnumbers, + Datum *array_data, int nitems, + float4 *hist, int nhist, + Oid operator, FmgrInfo *cmpfunc) +{ + int mcelem_index, + i, + unique_nitems = 0; + float selec, + minfreq, + nullelem_freq; + float *dist, + *mcelem_dist, + *hist_part; + float avg_count, + mult, + rest; + float *elem_selec; + + /* + * There should be three more Numbers than Values in the MCELEM slot, + * because the last three cells should hold minimal and maximal frequency + * among the non-null elements, and then the frequency of null elements. + * Punt if not right, because we can't do much without the element freqs. + */ + if (numbers == NULL || nnumbers != nmcelem + 3) + return DEFAULT_CONTAIN_SEL; + + /* + * Grab some of the summary statistics that compute_array_stats() stores: + * lowest frequency, frequency of null elements, and average distinct + * element count. + */ + minfreq = numbers[nmcelem]; + nullelem_freq = numbers[nmcelem + 2]; + + if (hist && nhist > 0) + avg_count = hist[nhist - 1]; + else + avg_count = 10.0f; /* default assumption */ + + /* + * "rest" will be the sum of the frequencies of all elements not + * represented in MCELEM. The average distinct element count is the sum + * of the frequencies of *all* elements. Begin with that; we will proceed + * to subtract the MCELEM frequencies. + */ + rest = avg_count; + + /* + * mult is a multiplier representing estimate of probability that each + * mcelem that is not present in constant doesn't occur. + */ + mult = 1.0f; + + /* + * elem_selec is array of estimated frequencies for elements in the + * constant. + */ + elem_selec = (float *) palloc(sizeof(float) * nitems); + + /* Scan mcelem and array in parallel. */ + mcelem_index = 0; + for (i = 0; i < nitems; i++) + { + bool match = false; + + /* Ignore any duplicates in the array data. */ + if (i > 0 && + element_compare(&array_data[i - 1], &array_data[i], cmpfunc) == 0) + continue; + + /* + * Iterate over MCELEM until we find an entry greater than or equal to + * this element of the constant. Update "rest" and "mult" for mcelem + * entries skipped over. + */ + while (mcelem_index < nmcelem) + { + int cmp = element_compare(&mcelem[mcelem_index], + &array_data[i], + cmpfunc); + + if (cmp < 0) + { + mult *= (1.0f - numbers[mcelem_index]); + rest -= numbers[mcelem_index]; + mcelem_index++; + } + else + { + if (cmp == 0) + match = true; /* mcelem is found */ + break; + } + } + + if (match) + { + /* MCELEM matches the array item. */ + elem_selec[unique_nitems] = numbers[mcelem_index]; + /* "rest" is decremented for all mcelems, matched or not */ + rest -= numbers[mcelem_index]; + mcelem_index++; + } + else + { + /* + * The element is not in MCELEM. Punt, but assume that the + * selectivity cannot be more than minfreq / 2. + */ + elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL, + minfreq / 2); + } + + unique_nitems++; + } + + /* + * If we handled all constant elements without exhausting the MCELEM + * array, finish walking it to complete calculation of "rest" and "mult". + */ + while (mcelem_index < nmcelem) + { + mult *= (1.0f - numbers[mcelem_index]); + rest -= numbers[mcelem_index]; + mcelem_index++; + } + + /* + * The presence of many distinct rare elements materially decreases + * selectivity. Use the Poisson distribution to estimate the probability + * of a column value having zero occurrences of such elements. See above + * for the definition of "rest". + */ + mult *= exp(-rest); + + /* Check we have nonempty distinct element count histogram */ + if (hist && nhist >= 3) + { + /*---------- + * Using the distinct element count histogram requires + * O(unique_nitems * (nmcelem + unique_nitems)) + * operations. Beyond a certain computational cost threshold, it's + * reasonable to sacrifice accuracy for decreased planning time. + * We limit the number of operations to EFFORT * nmcelem; since + * nmcelem is limited by the column's statistics target, the work + * done is user-controllable. + * + * If the number of operations would be too large, we can reduce it + * without losing all accuracy by reducing unique_nitems and + * considering only the most-common elements of the constant array. + * To make the results exactly match what we would have gotten with + * only those elements to start with, we'd have to remove any + * discarded elements' frequencies from "mult", but since this is only + * an approximation anyway, we don't bother with that. Therefore it's + * sufficient to qsort elem_selec[] and take the largest elements. + * (They will no longer match up with the elements of array_data[], + * but we don't care.) + *---------- + */ +#define EFFORT 100 + + if ((nmcelem + unique_nitems) > 0 && + unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems)) + { + /* + * Use the quadratic formula to solve for largest allowable N; + * we have A = 1, B = nmcelem, C = - EFFORT * nmcelem. + */ + double b = (double) nmcelem; + int n; + + n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2); + + /* Sort, then take just the first n elements */ + qsort(elem_selec, unique_nitems, sizeof(float), + float_compare_desc); + unique_nitems = n; + } + + /* + * Calculate probabilities of each distinct element count for both + * mcelems and constant elements. At this point, assume independent + * element occurrence. + */ + dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f); + mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest); + + /* ignore hist[nhist-1], which is the avg not a histogram member */ + hist_part = calc_hist(hist, nhist - 1, unique_nitems); + + selec = 0.0f; + for (i = 0; i <= unique_nitems; i++) + { + /* + * mult * dist[i] / mcelem_dist[i] gives us probability of qual + * matching from assumption of independent element occurrence with + * the condition that distinct element count = i. + */ + if (mcelem_dist[i] > 0) + selec += hist_part[i] * mult * dist[i] / mcelem_dist[i]; + } + + pfree(dist); + pfree(mcelem_dist); + pfree(hist_part); + } + else + { + /* We don't have histogram. Use a rough estimate. */ + selec = mult; + } + + pfree(elem_selec); + + /* Take into account occurrence of NULL element. */ + selec *= (1.0f - nullelem_freq); + + CLAMP_PROBABILITY(selec); + + return selec; +} + +/* + * Calculate the first n distinct element count probabilities from a + * histogram of distinct element counts. + * + * Returns a palloc'd array of n+1 entries, with array[k] being the + * probability of element count k, k in [0..n]. + * + * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) * + * (nhist - 1)) probability to each value in (a,b) and an additional half of + * that to a and b themselves. + */ +static float * +calc_hist(const float4 *hist, int nhist, int n) +{ + float *hist_part; + int k, + i = 0; + float prev_interval = 0, + next_interval; + float frac; + + hist_part = (float *) palloc((n + 1) * sizeof(float)); + + /* + * frac is a probability contribution for each interval between histogram + * values. We have nhist - 1 intervals, so contribution of each one will + * be 1 / (nhist - 1). + */ + frac = 1.0f / ((float) (nhist - 1)); + + for (k = 0; k <= n; k++) + { + int count = 0; + + /* + * Count the histogram boundaries equal to k. (Although the histogram + * should theoretically contain only exact integers, entries are + * floats so there could be roundoff error in large values. Treat any + * fractional value as equal to the next larger k.) + */ + while (i < nhist && hist[i] <= k) + { + count++; + i++; + } + + if (count > 0) + { + /* k is an exact bound for at least one histogram box. */ + float val; + + /* Find length between current histogram value and the next one */ + if (i < nhist) + next_interval = hist[i] - hist[i - 1]; + else + next_interval = 0; + + /* + * count - 1 histogram boxes contain k exclusively. They + * contribute a total of (count - 1) * frac probability. Also + * factor in the partial histogram boxes on either side. + */ + val = (float) (count - 1); + if (next_interval > 0) + val += 0.5f / next_interval; + if (prev_interval > 0) + val += 0.5f / prev_interval; + hist_part[k] = frac * val; + + prev_interval = next_interval; + } + else + { + /* k does not appear as an exact histogram bound. */ + if (prev_interval > 0) + hist_part[k] = frac / prev_interval; + else + hist_part[k] = 0.0f; + } + } + + return hist_part; +} + +/* + * Consider n independent events with probabilities p[]. This function + * calculates probabilities of exact k of events occurrence for k in [0..m]. + * Returns a palloc'd array of size m+1. + * + * "rest" is the sum of the probabilities of all low-probability events not + * included in p. + * + * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the + * probability that exactly j of first i events occur. Obviously M[0,0] = 1. + * For any constant j, each increment of i increases the probability iff the + * event occurs. So, by the law of total probability: + * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i] + * for i > 0, j > 0. + * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0. + */ +static float * +calc_distr(const float *p, int n, int m, float rest) +{ + float *row, + *prev_row, + *tmp; + int i, + j; + + /* + * Since we return only the last row of the matrix and need only the + * current and previous row for calculations, allocate two rows. + */ + row = (float *) palloc((m + 1) * sizeof(float)); + prev_row = (float *) palloc((m + 1) * sizeof(float)); + + /* M[0,0] = 1 */ + row[0] = 1.0f; + for (i = 1; i <= n; i++) + { + float t = p[i - 1]; + + /* Swap rows */ + tmp = row; + row = prev_row; + prev_row = tmp; + + /* Calculate next row */ + for (j = 0; j <= i && j <= m; j++) + { + float val = 0.0f; + + if (j < i) + val += prev_row[j] * (1.0f - t); + if (j > 0) + val += prev_row[j - 1] * t; + row[j] = val; + } + } + + /* + * The presence of many distinct rare (not in "p") elements materially + * decreases selectivity. Model their collective occurrence with the + * Poisson distribution. + */ + if (rest > DEFAULT_CONTAIN_SEL) + { + float t; + + /* Swap rows */ + tmp = row; + row = prev_row; + prev_row = tmp; + + for (i = 0; i <= m; i++) + row[i] = 0.0f; + + /* Value of Poisson distribution for 0 occurrences */ + t = exp(-rest); + + /* + * Calculate convolution of previously computed distribution and the + * Poisson distribution. + */ + for (i = 0; i <= m; i++) + { + for (j = 0; j <= m - i; j++) + row[j + i] += prev_row[j] * t; + + /* Get Poisson distribution value for (i + 1) occurrences */ + t *= rest / (float) (i + 1); + } + } + + pfree(prev_row); + return row; +} + +/* Fast function for floor value of 2 based logarithm calculation. */ +static int +floor_log2(uint32 n) +{ + int logval = 0; + + if (n == 0) + return -1; + if (n >= (1 << 16)) + { + n >>= 16; + logval += 16; + } + if (n >= (1 << 8)) + { + n >>= 8; + logval += 8; + } + if (n >= (1 << 4)) + { + n >>= 4; + logval += 4; + } + if (n >= (1 << 2)) + { + n >>= 2; + logval += 2; + } + if (n >= (1 << 1)) + { + logval += 1; + } + return logval; +} + +/* + * find_next_mcelem binary-searches a most common elements array, starting + * from *index, for the first member >= value. It saves the position of the + * match into *index and returns true if it's an exact match. (Note: we + * assume the mcelem elements are distinct so there can't be more than one + * exact match.) + */ +static bool +find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index, + FmgrInfo *cmpfunc) +{ + int l = *index, + r = nmcelem - 1, + i, + res; + + while (l <= r) + { + i = (l + r) / 2; + res = element_compare(&mcelem[i], &value, cmpfunc); + if (res == 0) + { + *index = i; + return true; + } + else if (res < 0) + l = i + 1; + else + r = i - 1; + } + *index = l; + return false; +} + +/* + * Comparison function for elements. + * + * We use the element type's default btree opclass, and the default collation + * if the type is collation-sensitive. + * + * XXX consider using SortSupport infrastructure + */ +static int +element_compare(const void *key1, const void *key2, void *arg) +{ + Datum d1 = *((const Datum *) key1); + Datum d2 = *((const Datum *) key2); + FmgrInfo *cmpfunc = (FmgrInfo *) arg; + Datum c; + + c = FunctionCall2Coll(cmpfunc, DEFAULT_COLLATION_OID, d1, d2); + return DatumGetInt32(c); +} + +/* + * Comparison function for sorting floats into descending order. + */ +static int +float_compare_desc(const void *key1, const void *key2) +{ + float d1 = *((const float *) key1); + float d2 = *((const float *) key2); + + if (d1 > d2) + return -1; + else if (d1 < d2) + return 1; + else + return 0; +} diff --git a/src/backend/utils/adt/array_typanalyze.c b/src/backend/utils/adt/array_typanalyze.c new file mode 100644 index 0000000000..941e2adb03 --- /dev/null +++ b/src/backend/utils/adt/array_typanalyze.c @@ -0,0 +1,762 @@ +/*------------------------------------------------------------------------- + * + * array_typanalyze.c + * Functions for gathering statistics from array columns + * + * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * + * IDENTIFICATION + * src/backend/utils/adt/array_typanalyze.c + * + *------------------------------------------------------------------------- + */ +#include "postgres.h" + +#include "access/tuptoaster.h" +#include "catalog/pg_collation.h" +#include "commands/vacuum.h" +#include "utils/array.h" +#include "utils/datum.h" +#include "utils/typcache.h" + + +/* + * To avoid consuming too much memory, IO and CPU load during analysis, and/or + * too much space in the resulting pg_statistic rows, we ignore arrays that + * are wider than ARRAY_WIDTH_THRESHOLD (after detoasting!). Note that this + * number is considerably more than the similar WIDTH_THRESHOLD limit used + * in analyze.c's standard typanalyze code. + */ +#define ARRAY_WIDTH_THRESHOLD 0x10000 + +/* Extra data for compute_array_stats function */ +typedef struct +{ + /* Information about array element type */ + Oid type_id; /* element type's OID */ + Oid eq_opr; /* default equality operator's OID */ + bool typbyval; /* physical properties of element type */ + int16 typlen; + char typalign; + + /* + * Lookup data for element type's comparison and hash functions (these + * are in the type's typcache entry, which we expect to remain valid + * over the lifespan of the ANALYZE run) + */ + FmgrInfo *cmp; + FmgrInfo *hash; + + /* Saved state from std_typanalyze() */ + AnalyzeAttrComputeStatsFunc std_compute_stats; + void *std_extra_data; +} ArrayAnalyzeExtraData; + +/* + * While compute_array_stats is running, we keep a pointer to the extra data + * here for use by assorted subroutines. compute_array_stats doesn't + * currently need to be re-entrant, so avoiding this is not worth the extra + * notational cruft that would be needed. + */ +static ArrayAnalyzeExtraData *array_extra_data; + +/* A hash table entry for the Lossy Counting algorithm */ +typedef struct +{ + Datum key; /* This is 'e' from the LC algorithm. */ + int frequency; /* This is 'f'. */ + int delta; /* And this is 'delta'. */ + int last_container; /* For de-duplication of array elements. */ +} TrackItem; + +/* A hash table entry for distinct-elements counts */ +typedef struct +{ + int count; /* Count of distinct elements in an array */ + int frequency; /* Number of arrays seen with this count */ +} DECountItem; + +static void compute_array_stats(VacAttrStats *stats, + AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows); +static void prune_element_hashtable(HTAB *elements_tab, int b_current); +static uint32 element_hash(const void *key, Size keysize); +static int element_match(const void *key1, const void *key2, Size keysize); +static int element_compare(const void *key1, const void *key2); +static int trackitem_compare_frequencies_desc(const void *e1, const void *e2); +static int trackitem_compare_element(const void *e1, const void *e2); +static int countitem_compare_count(const void *e1, const void *e2); + + +/* + * array_typanalyze -- typanalyze function for array columns + */ +Datum +array_typanalyze(PG_FUNCTION_ARGS) +{ + VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0); + Oid element_typeid; + TypeCacheEntry *typentry; + ArrayAnalyzeExtraData *extra_data; + + /* + * Call the standard typanalyze function. It may fail to find needed + * operators, in which case we also can't do anything, so just fail. + */ + if (!std_typanalyze(stats)) + PG_RETURN_BOOL(false); + + /* + * Check attribute data type is a varlena array. + */ + element_typeid = stats->attrtype->typelem; + + if (!OidIsValid(element_typeid) || stats->attrtype->typlen != -1) + elog(ERROR, "array_typanalyze was invoked for non-array type %u", + stats->attrtypid); + + /* + * Gather information about the element type. If we fail to find + * something, return leaving the state from std_typanalyze() in place. + */ + typentry = lookup_type_cache(element_typeid, + TYPECACHE_EQ_OPR | + TYPECACHE_CMP_PROC_FINFO | + TYPECACHE_HASH_PROC_FINFO); + + if (!OidIsValid(typentry->eq_opr) || + !OidIsValid(typentry->cmp_proc_finfo.fn_oid) || + !OidIsValid(typentry->hash_proc_finfo.fn_oid)) + PG_RETURN_BOOL(true); + + /* Store our findings for use by compute_array_stats() */ + extra_data = (ArrayAnalyzeExtraData *) palloc(sizeof(ArrayAnalyzeExtraData)); + extra_data->type_id = typentry->type_id; + extra_data->eq_opr = typentry->eq_opr; + extra_data->typbyval = typentry->typbyval; + extra_data->typlen = typentry->typlen; + extra_data->typalign = typentry->typalign; + extra_data->cmp = &typentry->cmp_proc_finfo; + extra_data->hash = &typentry->hash_proc_finfo; + + /* Save old compute_stats and extra_data for scalar statistics ... */ + extra_data->std_compute_stats = stats->compute_stats; + extra_data->std_extra_data = stats->extra_data; + + /* ... and replace with our info */ + stats->compute_stats = compute_array_stats; + stats->extra_data = extra_data; + + /* + * Note we leave stats->minrows set as std_typanalyze set it. Should + * it be increased for array analysis purposes? + */ + + PG_RETURN_BOOL(true); +} + +/* + * compute_array_stats() -- compute statistics for a array column + * + * This function computes statistics useful for determining selectivity of + * the array operators <@, &&, and @>. It is invoked by ANALYZE via the + * compute_stats hook after sample rows have been collected. + * + * We also invoke the standard compute_stats function, which will compute + * "scalar" statistics relevant to the btree-style array comparison operators. + * However, exact duplicates of an entire array may be rare despite many + * arrays sharing individual elements. This especially afflicts long arrays, + * which are also liable to lack all scalar statistics due to the low + * WIDTH_THRESHOLD used in analyze.c. So, in addition to the standard stats, + * we find the most common array elements and compute a histogram of distinct + * element counts. + * + * The algorithm used is Lossy Counting, as proposed in the paper "Approximate + * frequency counts over data streams" by G. S. Manku and R. Motwani, in + * Proceedings of the 28th International Conference on Very Large Data Bases, + * Hong Kong, China, August 2002, section 4.2. The paper is available at + * http://www.vldb.org/conf/2002/S10P03.pdf + * + * The Lossy Counting (aka LC) algorithm goes like this: + * Let s be the threshold frequency for an item (the minimum frequency we + * are interested in) and epsilon the error margin for the frequency. Let D + * be a set of triples (e, f, delta), where e is an element value, f is that + * element's frequency (actually, its current occurrence count) and delta is + * the maximum error in f. We start with D empty and process the elements in + * batches of size w. (The batch size is also known as "bucket size" and is + * equal to 1/epsilon.) Let the current batch number be b_current, starting + * with 1. For each element e we either increment its f count, if it's + * already in D, or insert a new triple into D with values (e, 1, b_current + * - 1). After processing each batch we prune D, by removing from it all + * elements with f + delta <= b_current. After the algorithm finishes we + * suppress all elements from D that do not satisfy f >= (s - epsilon) * N, + * where N is the total number of elements in the input. We emit the + * remaining elements with estimated frequency f/N. The LC paper proves + * that this algorithm finds all elements with true frequency at least s, + * and that no frequency is overestimated or is underestimated by more than + * epsilon. Furthermore, given reasonable assumptions about the input + * distribution, the required table size is no more than about 7 times w. + * + * In the absence of a principled basis for other particular values, we + * follow ts_typanalyze() and use parameters s = 0.07/K, epsilon = s/10. + * But we leave out the correction for stopwords, which do not apply to + * arrays. These parameters give bucket width w = K/0.007 and maximum + * expected hashtable size of about 1000 * K. + * + * Elements may repeat within an array. Since duplicates do not change the + * behavior of <@, && or @>, we want to count each element only once per + * array. Therefore, we store in the finished pg_statistic entry each + * element's frequency as the fraction of all non-null rows that contain it. + * We divide the raw counts by nonnull_cnt to get those figures. + */ +static void +compute_array_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, + int samplerows, double totalrows) +{ + ArrayAnalyzeExtraData *extra_data; + int num_mcelem; + int null_cnt = 0; + int null_elem_cnt = 0; + int analyzed_rows = 0; + + /* This is D from the LC algorithm. */ + HTAB *elements_tab; + HASHCTL elem_hash_ctl; + HASH_SEQ_STATUS scan_status; + + /* This is the current bucket number from the LC algorithm */ + int b_current; + + /* This is 'w' from the LC algorithm */ + int bucket_width; + int array_no; + int64 element_no; + TrackItem *item; + int slot_idx; + HTAB *count_tab; + HASHCTL count_hash_ctl; + DECountItem *count_item; + + extra_data = (ArrayAnalyzeExtraData *) stats->extra_data; + + /* + * Invoke analyze.c's standard analysis function to create scalar-style + * stats for the column. It will expect its own extra_data pointer, + * so temporarily install that. + */ + stats->extra_data = extra_data->std_extra_data; + (*extra_data->std_compute_stats) (stats, fetchfunc, samplerows, totalrows); + stats->extra_data = extra_data; + + /* + * Set up static pointer for use by subroutines. We wait till here in + * case std_compute_stats somehow recursively invokes us (probably not + * possible, but ...) + */ + array_extra_data = extra_data; + + /* + * We want statistics_target * 10 elements in the MCELEM array. This + * multiplier is pretty arbitrary, but is meant to reflect the fact that + * the number of individual elements tracked in pg_statistic ought to be + * more than the number of values for a simple scalar column. + */ + num_mcelem = stats->attr->attstattarget * 10; + + /* + * We set bucket width equal to num_mcelem / 0.007 as per the comment + * above. + */ + bucket_width = num_mcelem * 1000 / 7; + + /* + * Create the hashtable. It will be in local memory, so we don't need to + * worry about overflowing the initial size. Also we don't need to pay any + * attention to locking and memory management. + */ + MemSet(&elem_hash_ctl, 0, sizeof(elem_hash_ctl)); + elem_hash_ctl.keysize = sizeof(Datum); + elem_hash_ctl.entrysize = sizeof(TrackItem); + elem_hash_ctl.hash = element_hash; + elem_hash_ctl.match = element_match; + elem_hash_ctl.hcxt = CurrentMemoryContext; + elements_tab = hash_create("Analyzed elements table", + bucket_width * 7, + &elem_hash_ctl, + HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT); + + /* hashtable for array distinct elements counts */ + MemSet(&count_hash_ctl, 0, sizeof(count_hash_ctl)); + count_hash_ctl.keysize = sizeof(int); + count_hash_ctl.entrysize = sizeof(DECountItem); + count_hash_ctl.hash = tag_hash; + count_hash_ctl.hcxt = CurrentMemoryContext; + count_tab = hash_create("Array distinct element count table", + 64, + &count_hash_ctl, + HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT); + + /* Initialize counters. */ + b_current = 1; + element_no = 0; + + /* Loop over the arrays. */ + for (array_no = 0; array_no < samplerows; array_no++) + { + Datum value; + bool isnull; + ArrayType *array; + int num_elems; + Datum *elem_values; + bool *elem_nulls; + bool null_present; + int j; + int64 prev_element_no = element_no; + int distinct_count; + bool count_item_found; + + vacuum_delay_point(); + + value = fetchfunc(stats, array_no, &isnull); + if (isnull) + { + /* array is null, just count that */ + null_cnt++; + continue; + } + + /* Skip too-large values. */ + if (toast_raw_datum_size(value) > ARRAY_WIDTH_THRESHOLD) + continue; + else + analyzed_rows++; + + /* + * Now detoast the array if needed, and deconstruct into datums. + */ + array = DatumGetArrayTypeP(value); + + Assert(ARR_ELEMTYPE(array) == extra_data->type_id); + deconstruct_array(array, + extra_data->type_id, + extra_data->typlen, + extra_data->typbyval, + extra_data->typalign, + &elem_values, &elem_nulls, &num_elems); + + /* + * We loop through the elements in the array and add them to our + * tracking hashtable. + */ + null_present = false; + for (j = 0; j < num_elems; j++) + { + Datum elem_value; + bool found; + + /* No null element processing other than flag setting here */ + if (elem_nulls[j]) + { + null_present = true; + continue; + } + + /* Lookup current element in hashtable, adding it if new */ + elem_value = elem_values[j]; + item = (TrackItem *) hash_search(elements_tab, + (const void *) &elem_value, + HASH_ENTER, &found); + + if (found) + { + /* The element value is already on the tracking list */ + + /* + * The operators we assist ignore duplicate array elements, + * so count a given distinct element only once per array. + */ + if (item->last_container == array_no) + continue; + + item->frequency++; + item->last_container = array_no; + } + else + { + /* Initialize new tracking list element */ + + /* + * If element type is pass-by-reference, we must copy it + * into palloc'd space, so that we can release the array + * below. (We do this so that the space needed for element + * values is limited by the size of the hashtable; if we + * kept all the array values around, it could be much more.) + */ + item->key = datumCopy(elem_value, + extra_data->typbyval, + extra_data->typlen); + + item->frequency = 1; + item->delta = b_current - 1; + item->last_container = array_no; + } + + /* element_no is the number of elements processed (ie N) */ + element_no++; + + /* We prune the D structure after processing each bucket */ + if (element_no % bucket_width == 0) + { + prune_element_hashtable(elements_tab, b_current); + b_current++; + } + } + + /* Count null element presence once per array. */ + if (null_present) + null_elem_cnt++; + + /* Update frequency of the particular array distinct element count. */ + distinct_count = (int) (element_no - prev_element_no); + count_item = (DECountItem *) hash_search(count_tab, &distinct_count, + HASH_ENTER, + &count_item_found); + + if (count_item_found) + count_item->frequency++; + else + count_item->frequency = 1; + + /* Free memory allocated while detoasting. */ + if (PointerGetDatum(array) != value) + pfree(array); + pfree(elem_values); + pfree(elem_nulls); + } + + /* Skip pg_statistic slots occupied by standard statistics */ + slot_idx = 0; + while (slot_idx < STATISTIC_NUM_SLOTS && stats->stakind[slot_idx] != 0) + slot_idx++; + if (slot_idx > STATISTIC_NUM_SLOTS - 2) + elog(ERROR, "insufficient pg_statistic slots for array stats"); + + /* We can only compute real stats if we found some non-null values. */ + if (analyzed_rows > 0) + { + int nonnull_cnt = analyzed_rows; + int count_items_count; + int i; + TrackItem **sort_table; + int track_len; + int64 cutoff_freq; + int64 minfreq, + maxfreq; + + /* + * We assume the standard stats code already took care of setting + * stats_valid, stanullfrac, stawidth, stadistinct. We'd have to + * re-compute those values if we wanted to not store the standard + * stats. + */ + + /* + * Construct an array of the interesting hashtable items, that is, + * those meeting the cutoff frequency (s - epsilon)*N. Also identify + * the minimum and maximum frequencies among these items. + * + * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff + * frequency is 9*N / bucket_width. + */ + cutoff_freq = 9 * element_no / bucket_width; + + i = hash_get_num_entries(elements_tab); /* surely enough space */ + sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i); + + hash_seq_init(&scan_status, elements_tab); + track_len = 0; + minfreq = element_no; + maxfreq = 0; + while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) + { + if (item->frequency > cutoff_freq) + { + sort_table[track_len++] = item; + minfreq = Min(minfreq, item->frequency); + maxfreq = Max(maxfreq, item->frequency); + } + } + Assert(track_len <= i); + + /* emit some statistics for debug purposes */ + elog(DEBUG3, "compute_array_stats: target # mces = %d, " + "bucket width = %d, " + "# elements = " INT64_FORMAT ", hashtable size = %d, " + "usable entries = %d", + num_mcelem, bucket_width, element_no, i, track_len); + + /* + * If we obtained more elements than we really want, get rid of those + * with least frequencies. The easiest way is to qsort the array into + * descending frequency order and truncate the array. + */ + if (num_mcelem < track_len) + { + qsort(sort_table, track_len, sizeof(TrackItem *), + trackitem_compare_frequencies_desc); + /* reset minfreq to the smallest frequency we're keeping */ + minfreq = sort_table[num_mcelem - 1]->frequency; + } + else + num_mcelem = track_len; + + /* Generate MCELEM slot entry */ + if (num_mcelem > 0) + { + MemoryContext old_context; + Datum *mcelem_values; + float4 *mcelem_freqs; + + /* + * We want to store statistics sorted on the element value using + * the element type's default comparison function. This permits + * fast binary searches in selectivity estimation functions. + */ + qsort(sort_table, num_mcelem, sizeof(TrackItem *), + trackitem_compare_element); + + /* Must copy the target values into anl_context */ + old_context = MemoryContextSwitchTo(stats->anl_context); + + /* + * We sorted statistics on the element value, but we want to be + * able to find the minimal and maximal frequencies without going + * through all the values. We also want the frequency of null + * elements. Store these three values at the end of mcelem_freqs. + */ + mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum)); + mcelem_freqs = (float4 *) palloc((num_mcelem + 3) * sizeof(float4)); + + /* + * See comments above about use of nonnull_cnt as the divisor for + * the final frequency estimates. + */ + for (i = 0; i < num_mcelem; i++) + { + TrackItem *item = sort_table[i]; + + mcelem_values[i] = datumCopy(item->key, + extra_data->typbyval, + extra_data->typlen); + mcelem_freqs[i] = (double) item->frequency / + (double) nonnull_cnt; + } + mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt; + mcelem_freqs[i++] = (double) maxfreq / (double) nonnull_cnt; + mcelem_freqs[i++] = (double) null_elem_cnt / (double) nonnull_cnt; + + MemoryContextSwitchTo(old_context); + + stats->stakind[slot_idx] = STATISTIC_KIND_MCELEM; + stats->staop[slot_idx] = extra_data->eq_opr; + stats->stanumbers[slot_idx] = mcelem_freqs; + /* See above comment about extra stanumber entries */ + stats->numnumbers[slot_idx] = num_mcelem + 3; + stats->stavalues[slot_idx] = mcelem_values; + stats->numvalues[slot_idx] = num_mcelem; + /* We are storing values of element type */ + stats->statypid[slot_idx] = extra_data->type_id; + stats->statyplen[slot_idx] = extra_data->typlen; + stats->statypbyval[slot_idx] = extra_data->typbyval; + stats->statypalign[slot_idx] = extra_data->typalign; + slot_idx++; + } + + /* Generate DECHIST slot entry */ + count_items_count = hash_get_num_entries(count_tab); + if (count_items_count > 0) + { + int num_hist = stats->attr->attstattarget; + DECountItem **sorted_count_items; + int count_item_index; + int delta; + int frac; + float4 *hist; + + /* num_hist must be at least 2 for the loop below to work */ + num_hist = Max(num_hist, 2); + + /* + * Create an array of DECountItem pointers, and sort them into + * increasing count order. + */ + sorted_count_items = (DECountItem **) + palloc(sizeof(DECountItem *) * count_items_count); + hash_seq_init(&scan_status, count_tab); + count_item_index = 0; + while ((count_item = (DECountItem *) hash_seq_search(&scan_status)) != NULL) + { + sorted_count_items[count_item_index++] = count_item; + } + qsort(sorted_count_items, count_items_count, + sizeof(DECountItem *), countitem_compare_count); + + /* + * Fill stanumbers with the histogram, followed by the average + * count. This array must be stored in anl_context. + */ + hist = (float4 *) + MemoryContextAlloc(stats->anl_context, + sizeof(float4) * (num_hist + 1)); + hist[num_hist] = (double) element_no / (double) nonnull_cnt; + + /* + * Construct the histogram. + * + * XXX this needs work: frac could overflow, and it's not clear + * how or why the code works. Even if it does work, it needs + * documented. + */ + delta = analyzed_rows - 1; + count_item_index = 0; + frac = sorted_count_items[0]->frequency * (num_hist - 1); + for (i = 0; i < num_hist; i++) + { + while (frac <= 0) + { + count_item_index++; + Assert(count_item_index < count_items_count); + frac += sorted_count_items[count_item_index]->frequency * (num_hist - 1); + } + hist[i] = sorted_count_items[count_item_index]->count; + frac -= delta; + } + Assert(count_item_index == count_items_count - 1); + + stats->stakind[slot_idx] = STATISTIC_KIND_DECHIST; + stats->staop[slot_idx] = extra_data->eq_opr; + stats->stanumbers[slot_idx] = hist; + stats->numnumbers[slot_idx] = num_hist + 1; + slot_idx++; + } + } + + /* + * We don't need to bother cleaning up any of our temporary palloc's. The + * hashtable should also go away, as it used a child memory context. + */ +} + +/* + * A function to prune the D structure from the Lossy Counting algorithm. + * Consult compute_tsvector_stats() for wider explanation. + */ +static void +prune_element_hashtable(HTAB *elements_tab, int b_current) +{ + HASH_SEQ_STATUS scan_status; + TrackItem *item; + + hash_seq_init(&scan_status, elements_tab); + while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL) + { + if (item->frequency + item->delta <= b_current) + { + Datum value = item->key; + + if (hash_search(elements_tab, (const void *) &item->key, + HASH_REMOVE, NULL) == NULL) + elog(ERROR, "hash table corrupted"); + /* We should free memory if element is not passed by value */ + if (!array_extra_data->typbyval) + pfree(DatumGetPointer(value)); + } + } +} + +/* + * Hash function for elements. + * + * We use the element type's default hash opclass, and the default collation + * if the type is collation-sensitive. + */ +static uint32 +element_hash(const void *key, Size keysize) +{ + Datum d = *((const Datum *) key); + Datum h; + + h = FunctionCall1Coll(array_extra_data->hash, DEFAULT_COLLATION_OID, d); + return DatumGetUInt32(h); +} + +/* + * Matching function for elements, to be used in hashtable lookups. + */ +static int +element_match(const void *key1, const void *key2, Size keysize) +{ + /* The keysize parameter is superfluous here */ + return element_compare(key1, key2); +} + +/* + * Comparison function for elements. + * + * We use the element type's default btree opclass, and the default collation + * if the type is collation-sensitive. + * + * XXX consider using SortSupport infrastructure + */ +static int +element_compare(const void *key1, const void *key2) +{ + Datum d1 = *((const Datum *) key1); + Datum d2 = *((const Datum *) key2); + Datum c; + + c = FunctionCall2Coll(array_extra_data->cmp, DEFAULT_COLLATION_OID, d1, d2); + return DatumGetInt32(c); +} + +/* + * qsort() comparator for sorting TrackItems by frequencies (descending sort) + */ +static int +trackitem_compare_frequencies_desc(const void *e1, const void *e2) +{ + const TrackItem *const * t1 = (const TrackItem *const *) e1; + const TrackItem *const * t2 = (const TrackItem *const *) e2; + + return (*t2)->frequency - (*t1)->frequency; +} + +/* + * qsort() comparator for sorting TrackItems by element values + */ +static int +trackitem_compare_element(const void *e1, const void *e2) +{ + const TrackItem *const * t1 = (const TrackItem *const *) e1; + const TrackItem *const * t2 = (const TrackItem *const *) e2; + + return element_compare(&(*t1)->key, &(*t2)->key); +} + +/* + * qsort() comparator for sorting DECountItems by count + */ +static int +countitem_compare_count(const void *e1, const void *e2) +{ + const DECountItem * const *t1 = (const DECountItem * const *) e1; + const DECountItem * const *t2 = (const DECountItem * const *) e2; + + if ((*t1)->count < (*t2)->count) + return -1; + else if ((*t1)->count == (*t2)->count) + return 0; + else + return 1; +} diff --git a/src/backend/utils/adt/selfuncs.c b/src/backend/utils/adt/selfuncs.c index 0a685aac2c..382cd7372b 100644 --- a/src/backend/utils/adt/selfuncs.c +++ b/src/backend/utils/adt/selfuncs.c @@ -127,6 +127,7 @@ #include "utils/syscache.h" #include "utils/timestamp.h" #include "utils/tqual.h" +#include "utils/typcache.h" /* Hooks for plugins to get control when we ask for stats */ @@ -1701,27 +1702,18 @@ scalararraysel(PlannerInfo *root, { Oid operator = clause->opno; bool useOr = clause->useOr; + bool isEquality = false; + bool isInequality = false; Node *leftop; Node *rightop; Oid nominal_element_type; Oid nominal_element_collation; + TypeCacheEntry *typentry; RegProcedure oprsel; FmgrInfo oprselproc; Selectivity s1; - /* - * First, look up the underlying operator's selectivity estimator. Punt if - * it hasn't got one. - */ - if (is_join_clause) - oprsel = get_oprjoin(operator); - else - oprsel = get_oprrest(operator); - if (!oprsel) - return (Selectivity) 0.5; - fmgr_info(oprsel, &oprselproc); - - /* deconstruct the expression */ + /* First, deconstruct the expression */ Assert(list_length(clause->args) == 2); leftop = (Node *) linitial(clause->args); rightop = (Node *) lsecond(clause->args); @@ -1737,6 +1729,46 @@ scalararraysel(PlannerInfo *root, rightop = strip_array_coercion(rightop); /* + * Detect whether the operator is the default equality or inequality + * operator of the array element type. + */ + typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR); + if (OidIsValid(typentry->eq_opr)) + { + if (operator == typentry->eq_opr) + isEquality = true; + else if (get_negator(operator) == typentry->eq_opr) + isInequality = true; + } + + /* + * If it is equality or inequality, we might be able to estimate this as + * a form of array containment; for instance "const = ANY(column)" can be + * treated as "ARRAY[const] <@ column". scalararraysel_containment tries + * that, and returns the selectivity estimate if successful, or -1 if not. + */ + if ((isEquality || isInequality) && !is_join_clause) + { + s1 = scalararraysel_containment(root, leftop, rightop, + nominal_element_type, + isEquality, useOr, varRelid); + if (s1 >= 0.0) + return s1; + } + + /* + * Look up the underlying operator's selectivity estimator. Punt if it + * hasn't got one. + */ + if (is_join_clause) + oprsel = get_oprjoin(operator); + else + oprsel = get_oprrest(operator); + if (!oprsel) + return (Selectivity) 0.5; + fmgr_info(oprsel, &oprselproc); + + /* * We consider three cases: * * 1. rightop is an Array constant: deconstruct the array, apply the |
